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1. INTRODUCTION

In our paper we will establish some conditions on p, g and the weight functions
g, ¥y, w under which the continuous imbedding

(1.1) WHR(Q; v, v,) Q L(Q; W),
or the compact imbedding

(1.2) WhP(Q; vy, v,) QQ LH(Q; w)
takes place.

Similar problems have been studied by various authors. As to the problem of
compact imbeddings we refer the reader to our paper [7]. The problem of con-
tinuous imbedding is studied for p = g by A. Kufner in the book [2]. The case
1 < p £ g < w is investigated by P. I. Lizorkin and M. Otelbaev in [5], by W.
Zajaczkowski for power-type weights in [8] and in our paper [7].

Throughout the paper we will suppose that Q is a bounded domain in R¥ with the
boundary 0Q, 1 < p < q < o, I[N 2 1/p — 1/q. If x € Q then we set d(x) =
= dist (x, 0Q). By #7(Q) we denote the set of weight functions on Q, i.e. the set
of all measurable, a.e. in Q positive and finite functions.

For we #(Q), 1 £ r < oo the weighted Lebesgue space L'(Q;w) is the set of
all measurable functions u defined on Q with a finite norm

(1:3) el = (fa u(e)] wix) dx)*".

Throughout the paper we assume that

(14) v e #(@) N Lol®), 0577077 (@) (p' - —PI) .
p —

We define the weighted Sobolev space W'P(Q; vy, v,) as the set of all functions
u e I7(Q; vy) which have on Q distributional derivatives du[dx; e I7(Q; vy), i =
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=1,2,...,N. We can easily verify that the space W"?(Q; v, v,) with the norm

N 14 1/p
(L5) T (nuuz,g.m, +y )
i=1 P,R,v1

is a Banach space. Further we define

W, "P(Q; vy, 01) = C_:)O(E)”.”I’I,'Q’v“’vl

Ju
0x

(for details see [4]).
Given x € RN and R > 0, we put
B(x,R) = {y € R";
If h is a positive number we use the notation
h B(x, R) = B(x, hR) .
By %°! we denote the class of all bounded domains in RY with a Lipschitz

boundary (in the sense of [3], Definition 5.5.6).
If 0 = R then |Q| is the Lebesgue measure of the set Q.

x—y|<R}.

2. MAIN THEOREMS

In this section we present the main results of our paper. We will consider the case
when the weight functions may have singularities or degenerations only on the
boundary 0Q of the bounded domain Q. (That is, on any bounded domain G,
G < Q, the weight functions are bounded from above and from below by positive
constants, and thus we can use the fact that the classical Sobolev imbedding theorems
take place on G.)

Proofs of the theorems presented in this section will be given in Section 3.
Throughout this paper we will suppose
2.1. Assumptions. (i) Let {Q,}_, be a sequence of domains such that
2,e6%, {xe@n ' <d(x)} cQ,c{xeQ(n+ 1) <d(x)}*
Put Q" = int (2\ Q,).

(ii) There exist noe N, ny = 3, a positive measurable function r defined on Q™
and a constant ¢, = 1 such that

r(x) £ d(x)[3, xeQ™,

(2.1) xeQ™, yeB(x,r(x)=¢ ' < r—(y—)'_s_ ¢, . *¥)

~r(x)

- 0
*) Evidently 2, 2,,, £ 2, U Q,= Q.
n=1

**) This condition will appear to be very useful, but it is rather restrictive. How to get results
without condition (2.1) will be shown in Section 6.
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2.2. Theorem (sufficient conditions for the continuous imbedding). Let the fol-
lowing conditions be fulfilled:

Cc1 WhP(Q,5 v, v) G LH(R2,5 W), n = ng.

C2 There exist positive measurable functions agy, a, defined on Q" such that
for all x € Q" and for a.e. y € B(x, r(x))

(22) W) = aofx), ai(x) = vi(y).
C 3 There exist a constant Ky > 0 such that

(2.3) 04(x) 77P(x) < Ko vo(x) for a.e. xeQ.
C4 lim &/, = o < o0, where

(2.4) o, = 2391?,’_ %/%((_x_)) r(N/q)—(N/p)H(x) . *)
Then :

(2:5) WhP(Q; 09, v,) Q IH(Q; W) .

2.3. Theorem (sufficient conditions for the compact imbedding). Let us suppose

1/N > 1/p — 1/q and conditions C2, C3. Moreover, let the following conditions
be fulfilled:

C1* WHP(Q,; 09, v1) QQ IR W), n 2 ng.
C4* lim o, = 0, where s, is defined by (2.4). Then
(2.6) WHP(Q; 09, 1) QQ L(RQ; w) .

Sufficient conditions for non-imbeddings are given by the two following theorems.

2.4. Theorem. Let the following conditions be fulfilled:

~C2 There exist positive measurable functions 4, d, defined on Q™ such that
for all x e Q™ and for a.e. y € B(x, r(x))

(2.7) w(y) = do(x), dy(x) = v4(y).

~C 3 There exists a constant ko > 0 such that

(2.8) ko vo(x) < vy(x) r7P(x) for a.e. xeQ™.
~C4 lim o, = oo, where

(2.9) o, = sup dox)'" rNID= (NP1 (5)

xeQn dl(x)”"
Then W''P(Q; vy, vy) is not imbedded in I(Q; w).

2.5. Theorem. Suppose conditions AC 2 and "C3. Moreover, let the following
conditions hold:

*) The sequence {M"},‘f’: 1 is nonincreasing and so the limit exists.
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~C4* lim o, > 0, where <7, is defined by (2.9).

n— oo

Then W"P(Q; vy, v,) is not compactly imbedded in L(Q; w).

Combining Theorem 2.2 and 2.4 (or 2.3 and 2.5) we easily get the following two
theorems that give us necessary and sufficient conditions for the imbedding (2.5)
(or (2.6), respectively) to take place.

2.6. Theorem (the continuous imbedding). Let condition C 1 and the following
two conditions be fulfilled:

~“C2 There exist positive constants ¢y < Cy, ¢y < C, and positive measurable
functions ay, a, defined on Q" such that for every xe Q" and for a.e.

y € B(x, r(x))
(2.10) co ag(x) £ w(y) £ Coag(x), c¢;ay(x) S vy(y) = Cpayx).
~C 3 There exist positive constants ko, < K, such that
(2.11) ko vo(x) < v,(x) r7P(x) < Ko vo(x) for a.e. xeQ™.
Then the imbedding (2.5) holds if and only if condition C 4 is satisfied.
2.7. Theorem (the compact imbedding). Let 1/N > 1/p — 1/q and let conditions

C1*, “C2, “C3 be fulfilled. Then condition C 4* is necessary and sufficient for
the imbedding (2.6) to take place.

2.8. Remarks. Let us discuss some special cases of conditions C2, “C2, “C2,
C4 and C4*.

(i) It is easy to see that in conditions C 2, *C 2 we can take, for x € Q":

ao(x) = esssup w(y), do(x) = ess inf w(y),
yeB(x,r(x)) yeB(x,r(x))

ay(x) = essinfv,(y), d(x) = esssupvy(y).

yeB(x,r(x)) yeB(x,r(x))

(ii) Suppose that the functions w(x), v,(x) are defined for all x € ™. Moreover, let

cw(x) < essinfw(y) < esssupw(y) < Cw(x),

yeB(x,r(x)) yeB(x,r(x))
¢ v4(x) < essinf o (y) < esssup v,(y) £ Cvy(x)
yeB(x,r(x)) yeB(x,r(x))

(0<e¢=1=C< o, xeQ™). Then conditions C2 and *C 2 are fulfilled with
ao(x) = Cw(x), ay(x)=cuvx),
do(x) = cw(x), dy(x) = Coyx), xeQ™.
Condition ~C?2 is fulfilled as well (with the constants ¢ = ¢/C, Cy =1, ¢; = 1,
C; = C/c). So we can conclude that Theorem 2.6 (or Theorem 2.7) remains valid
if condition ~C 2 is replaced by the following one:
There exists positive constants ¢, C, ¢ < C, such that for every x € Q" and for
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a.e. ye B(x, r(x))
212)  ew(®) S W) S Cul(x). co(x) S 0(3) S Coul).

(iii) Now, let us consider the case when the functions w, v, have the special form
(2.13) w(x) = w(d(x)), vy(x) = 5,(d(x))

for all x € Q", where w and ¥, are non-negative measurable functions defined on the
interval (0, ny '). Then inequalities (2.12) have the form

(214)  cW(d(x)) = W(d(y)) = CW(d(x)), ¢ ,(d(x)) < 7,(d(y)) £ € 5,(d(x))
for all x € Q"™ and for a.e. y € B(x, r(x)).

Moreover, if
(2.15) ' r(x) = Fd(x)), xeQ™,

where 7 is a positive measurable function defined on (0, ny '), then it is possible to
show that condition ~C 2 can be replaced by the condition (cf. (2.14))

~C2 There. exist positive constants ¢, C, ¢ < C, such that for all te(0,n5")
and for a.e. te(t — i(t), t + (1))
(2.16) cw(t) S w(t) < Cw(t), cby(r) £ oy(1) £ Coyft).
In this case we can replace condition C 4 by the condition
wl/a
-C4 lim sup =) Fi0=- 1) < oo
t—>04 l_)}/p(t)
and condition C 4* by the condition
“C 4 tim sup =) v~ ") =0.
t—0 4 l-)i/p(t)
In the rest of this section we will suppose that the functions w(x), v4(x) satisfy

(2.13) and r(x) satisfies (2.15).

2.9. Corollary (the continuous imbedding). Suppose conditions C1, "C2, "C3
are satisfied. Then the imbedding (2.5) holds if and only if condition ~C 4 is ful-
filled.

2.10. Corollary (the compact imbedding). Let the inequality 1/N > 1[/p — 1/q
and conditions C 1%, “C2, “C3 be fulfilled. Then condition ~C 4* is necessary
and sufficient for the imbedding (2.6) to take place.

2.11. Remark. If the function r(x) satisfies (2.15) then Assumption 2.1.(ii) can
be replaced by the following one: ' '

i) <13 for 1€(0,n5")
and -
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there exists a constant c¢; = 1 such that

(2.17) te(0,n5'), |t—tl<f(t)=c{‘§@§c;.
(1)
With regard to the inequality 7(f) < t/3 for te(0,n5") we can see that condition
(2.17) is satisfied if there exists a constant ¢; = 1 such that
(2.18) te(0,n5Y), P U
3 0t 3 (1)

(Cf. with Property (H) from [2], Section 11.)

3. AUXILIARY ASSERTIONS

First, let us present some results by the second author [6] that we will use in the
sequel.

3.1. Lemma. Let p, g€ {1, ), let Q = R" be an open set. Suppose that
(3.1) W'P(G; vy, v,) Q L(G; w)
for each domain G from a countable system of domains {G,};= such that G,
< Gn+1 % Q’ Q = 91Gn;

(32) lim sup ufg.ougw < o0
n=w |[ull{,p,0,00,01 =

Then
(33) Wh(Q; v, v;) Q L(Q; W) -
Conversely, if the imbedding (3.3) holds then condition (3.2) is satisfied.

3.2. Remark. Lemma 3.1 remains valid if conditions (3.1)—(3.3) are replaced by

(3.4) W'H(G; vo, v1) QG LA(G; W) ,

(3.5) lim sup Julsong,m =0,
n=o lull1,p 000,051

(3.6) wh ’p(Q; Vo, U1) (@@ U(Q; W) s

respectively.

3.3. Lemma (Besicovitch covering lemma). Let A be a bounded set in RY and ¢
-a positive function defined on A. Then there exists a sequence {x,}i~y = A such
that the sequence of balls {B}i,, B, = Bi(Xi, o(x,)) satisfies

(i) A= UB,.
k=1
(ii) There exists a number © depending only on the dimension N such that for all

ze RN we have Y 15(z) < @ (where X, is the characteristic function of By).
K=1
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(iif) The sequence {B,} can be divided into £ families of disjoint balls (the number &
depends only on N).

3.4. Remarks. Lemma 3.3 is valid also for A an unbounded set if we suppose that
the function @ is bounded on A.
For the proof of Lemma 3.3 and Remark 3.4 see [1].

The next lemma shows how the imbedding constant in the Sobolev imbedding
theorem W'?(B) C L/(B) depends on the radius of the ball B.

3.5. Lemma. Let 1 < p, g < oo, 1IN 21/p—1[q, R >0, xe R". Then for
u € W?(B(x, R)),
(37) (Fe.my [u(v) dy)te <
< KRVONP(RP ey [u(0)]7 Y + [oee,ry [Vu(y) [ dy)'/2
(with K > 0 independent of x, R and u).¥)
Proof. The lemma is an easy consequence of the Sobolev imbedding theorem for
B(0, 1) and of the substitution theorem.

In the proofs of theorems from Section 2 we use the following

3.6. Lemma. Suppose n = 3m, me N, m = 3, and B(x,r(x))n Q" % 0. Then
B(x, r(x)) = Q™.
Proof. Let z € B(x, r(x)), y € B(x, r(x)) n 2". Then we have

(3.8) d(z)éd(y)+|y—z|<_'1;+2,.(x)§_’1;+2d_(31).
Further, we have

d(x)éd(y)+|y—z|<%+r(x)§%+‘1(Tx)’
therefore
(3.9) d(x) < 5’— .

Inequalities (3.8) and (3.9) imply

n

dz)<2s > <1
n 3m m+1

This yields z € Q™ which completes the proof of Lemma 3.6.
4. PROOFS OF THE MAIN THEOREMS

Proof of Theorem 2.2. By Lemma 3.1 it is sufficient to verify condition (3.2),
where we set Q = Q and G, = Q3,, ne N.
N |ou 14
*) We set |vu(x)|P = 3, f— )] .
i=10x;
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Let us put 4 = Q™ and ¢ = r in Lemma 3.3. Then there exists a sequence
{x}i~1 = Q™ such that

(4.1) Q" c U B, B,=B(x;,r(x)),
k=1

(4.2) S in(z) SO, zeRY.
Fix n = n, and denote o
A, ={keN; B,n Q" £ 0} . *)
By virtue of (4.1) we have
(43) [8limnoum = lulianaunn = Joon ) W) dy = 3 i fu()[ w0) dy -
Using the first inequality in (2.2) and Lemma 3.5 we obtain
(4.4) §o )7 w(y) dy < ao(xi) [n, [u(y)| dy <

< [Kag'(xi) rY/a Mo+ ()]0 [r77(xe) [, [u(p)[? dy + [, [Vu(y)|? dy]¥?,
where ke A, .
The second inequality in (2.2), (4.4), Assumption 2.1. (ii), (2.3) and (2.4) yield

“3) )] w0 07 5
s [k e[ e [ o 22 e+ [ wutp )] <

< KSR o [ 50 03 + i [T 403) ] =
< Kyl o [u(0)[? 00() Ay + [, [Vu(Y)|” v2(v) dy]*7
where K; = K%max (c?K,, 1)), ke o',

Inequalities (4.3), (4.5) and g/p = 1, relations (4.2) and G B, = Q imply
(«9) oo
= K 3 Jn [ 2o0) + [Vu@) o)1 dy}” =
< 0K st 3[ult 5.0,00.0 -
Using (4.6) and condition C 4 we get (3.2) and the theorem is proved.

Proof of Theorem 2.3. Inequality (4.6) and condition C 4* imply (3.5) and the proof
is completed by Remark 3.2.

Proof of Theorem 2.4. By *C 4 there exists an increasing sequence of natural

*) By Lemma 3.6 we have |J B, = Q"< Q™ and this fact enables us to apply conditions C2
and C3 for points y € B,. *¥n
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numbers {n,};>, and a sequence {x;};%{, x, € Q™,*) such that
@7) B(5)™ gm0y S k) ke .
d,(x)1/?
Now let us put
(4.8) u, = Ry X3as, >, k=1,2,...
(R, is a mollifier with radius ¢, i.e. (R,f) (x) = ™" [gv ¥((x — »)[e) f(») dy, where ¥

is a function such that ¥ e C3(B(0,1)), ¥ = 0, [gv ¥(x)dx = 1). Functions u,,
k=1,2,..., posses the following properties:

(4.9) ueC3(B), 0<u <1, k=1,2,...;
(4.10) u,=1oniB,, k=1,2,...;
(4.11) o> 0= M) s -°~, xe@, i=1,2,...N,
ax; r(x) ‘
k=1,2,...;
(4.12) u e Whr(Qv0,0,), k=1,2,....
Let ke N. By (4.10) and (2.7) we obtain
(4.13) (Ja )] w(v) d9)* = (fi1/2)m w(v) dy)'e 2

> 27M4|B(0, )|/ do(x,) e r¥a(x,) .
Now using (4.9), (4.11), (2.8), Assumption 2.1 (ii) and (2.7) we get
(4.14) (§a |e0)|? vo(y) dy + [a [Vu(¥)|? vs(y) dy)''? <
(§5. vo(¥) dy + Ne? [5, r™7(x,) v(y) dy)'’” <
(ko " . vs(y) 177(y) dy + Ne'r™2(xy) [, v1(y) dy)'/” <
< [(kg 'c? + NcP) r=2(x;) [m, dy(xe) dy]'? =
= LrV?=Y(x,) d,(x, )",
with L = [(kg 'c? + Nc?) |B(0, 1)[]"/".
Now, suppose that
(4.15) WHP(Q; vy, v,) Q L(2; W) .
Then (4.13) and (4.14) yield
27| B(0, 1)| "/ dg(x,) ' rN/Y(x,) < KL~ (xy) dy(xi)"'”

=
=

for ke N (K is the norm of the imbedding operator from (4.15)), which contradicts
(4.7) and the theorem is prooved.

*) We can suppose that n, = 3ny, k = 1,2, ..., where ng is a number from Assumption 2.1.
(ii). Then by Lemma 3.6 we have B, = B(x;, #(x})) < 2™, k= 1,2,..., and we can use in-

equality (2.8) for y € B,.
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Proof of Theorem 2.5. To prove the theorem it is sufficient to verify that condition
(3.5) from Remark 3.2 is violated (provided we put Q = Q, G, = Q,).

By “C4* there exist ¢ > 0, an increasing sequence of natural numbers {n};% |,
ny = ng, and a sequence {x,};%, x, € 2™ such that

(4.16) M pNazNipri(x Yy > e, keN.
dl(xk)””

Further, by Lemma 3.6 we have

(4.17) B, = B(x, r(x,)) = @™, keN.

Set ,

(4.18) i, = w1 ,p.00000 5 KEN,

where u, are the functions from (4.8). By virtue of (4.9), (4.13) and (4.14) we have

- 1/q
Z_o%%ﬂrwq—wmﬂ(xk), keN,
1\ Pk

with L, = 27V4L71|B(0, 1)|'/4, and (4.16) yields

Nl g.0m00 = lFi]lg.00 = Ly

sup lullg.omw 2 [#]q0omnw 2 Lie, keN,
||""1,p,ﬂ,vo,vl'§1

which contradicts (3.5). Theorem 2.5 is proved.

5. EXAMPLES

In the following examples we will give some applications of Corollaries 2.9 and
2.10.

5.1. Example. Let a, f be real numbers. For x € Q we put
(1) W) = &), o) = (), oi(x) = ().
Further, let us take ny = 3 (n, from Assumption 2.1. (ii)) and
(5.2) r(x) = d(x)[3, xeQ™.

The function r has the form (2.15) with #(f) = /3. By Remark 2.11, Assumption
2.1.(ii) is fulfilled if the function F satisfies inequality (2.18). It is easy to see that
this inequality is true with the constant ¢; = 3/2. Condition ~C 3is obviously fulfilled.
Functions w, v; have the form (2.13), where

w(t) = t*, by(1) =",

min {(2/3)%, (4/3), (2/3)%, (4/3)” 1
max {(2/3), (4/3), (2/3)’, (4]3)"}

we can see that condition ~C 2 is fulfilled as well.

Putting
c

C

Il

Il
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A. Continuous imbedding

Condition C1 is an immediate consequence of the classical Sobolev imbedding
theorem. By Corollary 2.9 the imbedding

(5.3) Whr(Q; dP e, d’) Q IA(Q; d%)
takes place if and only if condition ~C 4 holds or equivalently, if
(5.4) N<l—l>+°—z—ﬁ+1§0.

9 P q p

B. Compact imbedding

Let 1/N > 1/p — 1/q. Condition C 1* is an immediate consequence of the Rellich-
Kondrashov theorem. Now, Corollary 2.10 implies that the imbedding

(5.5) Whr(Q; d* P, d%) QQ IX(Q; d%)
holds if and only if condition ~C 4* holds or equivalently, if
(5.6) N(1—1>+5—E+1>0.
q Pp q p
5.2. Example. Let o, 8, y, & be real numbers. For x € Q we put
w(x) = d*(x) [log d(x)[" if d(x) <1/3
37%log’ 3 if d(x)=1[3,
(5.7) volx) = d?~7(x) |log d(x)]" if d(x) <1/3
o) =137 F 1og? 3 it d(x)=1]3,
(x) = d*(x) Ilog d(x)l" if d(x) <1[3
M= 3P log? 2 it d(x) = 1]3.

Further, let us take ny = 3,
(5.8) r(x) = d(x)[3, xeQ™.

A. Continuous imbedding

By Corollary 2.9 the imbedding
(5.9) WEP(Q; v, v,) Q L(RQ; w)

takes place if and only if

(510) N(1_1)+E—E+1>0 or
q p q P
N<1_1>+§_g+1=0 and Z_é§0
g p/ 4 P 9 P
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B. Compact imbedding
Let 1/N > 1/p — 1/q. Now Corollary 2.10 implies that the imbedding

(5.11) WhP(Q; v, v,) QQ LA(Q; w)
holds if and only if
(5.12) N(1-1)+3‘—E+1>0 or
9 P q9 p
N<1—1>+5—5+1=0 and L-2<0
q9 P q P q p

5.3. Example. Let «, f be real numbers. For x € 2 we put
(5.13) w(x) = exp (a/d(x)), vo(x) = d™2"(x) exp (B[d(x)),
ou(x) = exp (Bld(x)) .
Further, let us take n, = 3,
(5.14) r(x) = d*(x), xeQ™.*)
A. Continuous imbedding

By Corollary 2.9 the imbedding

(5.15) WP (Q; d*P exp (B[d), exp (B/d)) G L(2; exp («/d))
takes place if and only if
(5.16) alg — Blp<0.

B. Compact imbedding

Let 1/N > 1/p — 1/q. Now Corollary 2.10 implies that the imbedding
(5.17) WhP(Q; d=27 exp (B|d), exp (B]d)) QQ LA(R; exp (afd))
holds if and only if condition (5.16) is fulfilled.

6. IMBEDDINGS UNDER WEAKENED ASSUMPTIONS

In the proof of Theorems 2.2 and 2.3 we have used ‘‘the right hand side of ine-
quality” (2.1).**) If condition (2.1) is not satisfied, Theorem 2.2 can be reformulated

in the following way.

6.1. Theorem (sufﬁcient conditions for the continuous imbedding). Let the fol-

*) If we put »(x) = d(x)/M with M = 3, then condition C 2 would not be fulfilled.
**) “The left hand side of inequality’’ (2.1) was used in the proofs of Theorems 2.4 and 2.5.
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lowing conditions be fulfilled:
cr WhP(Q,50,0) QINQ, W), n = n,. *)

C 2% There exist positive measurable functions a,, a, defined on Q" such that for
all x e Q™ and for a.e. y € B(x, r(x))

6.1) W) S i), @) S o).
c4 lim%#, =% < o, where
ay/(x)

6.2 B, = 20 7 pNia=Nip(y)
( ) :?Qp" ai“’(x) r (x)
Then
(6.3) WhP(Q; v, 0) Q LA(2; w) .

Proof is a modification of that of Theorem 2.2. Inequality (4.4) is now replaced
by the estimate

(64) I [u()[* w(y) dy =
< [Ka*(x) P02 [T, [u(3)? 4 + r2(5%) T [Va5) Q17
where ke X, .
From the assumptions that Q is bounded and r(x) < d(x)[3, x € ™, we obtain
7(x,) < (diam Q[6)7, ke A,.
Analogously as in the proof of Theorem 2.2 we get
(6.5) l#li.0nnw = O K i |u]1,5,0,0.0
(K, = Kmax (1, (diam Q/6)?)]%7), which together with C 4* completes our proof.

The next theorem is an analogue of Theorem 2.4.

6.2. Theorem. Let the following conditions be fulfilled:

AC2¥ There exist positive measurable functions d,, 4, defined on Q" such that
for all x € Q™ and for a.e. y € B(x, r(x))

©9) W) 2 dos)s B 1)
~“C4 lim o7, = o, where s, is defined by (2.9).

n—o

Then W'2(Q; v, v) is not imbedded in L'(Q; w).

*) Let us recall that we still suppose that the weight function v (v = vy = v,) satisfies assump-
tion (1.4).
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Proof is analogous to that of Theorem 2.4. Using (4.9), (4.11) and (6.6) we get
©7) (Ta [ )] o3) 4y + [ [V ()] () dy)* <
< (Ja o(y) dy + Ne? f5, r7(xi) o(y) dy)''? <

((sz o(y) dy) (1 + —(—)»w <

< (. d(xe) dy)'/? (1 L ")” < L =1(x,) dy(x) /7

rP(xi)

(with L = (2N|B(0, 1)|)*/? ¢) for k € N such that n, = 1/(3cN"/?).
If we suppose that

(6.8) WA (Q; 0, v) Q L(2; w),

than (4.13) and (6.7) give

do(xk)”q rN/q-N/p+1(xk) < KLIB(O, I)I—-llq
til(xk)””
(K is the norm of the imbedding operator in (6.8)), which contradicts (4.7). The
theorem is proved.
For completeness we shall formulate the corresponding theorems in the case of
compact imbeddings. Their proofs are left to the reader.

6.3. Theorem (sufficient conditions for the compact imbedding). Let us suppose
1/N > 1]p — 1]q and condition C2f. Moreover, let the following conditions be
Sfulfilled:

Cc1™ Whe(Q,;0,0) QQ (2, w), n=ng.
C 4 lim &, =0, where B, is defined by (6.2).
Then e
(6.9) whr(Q; v, 0) QQ L2 w) .
6.4. Theorem. Suppose condition ~C 2*. Further, let the following condition hold:
AC 4* lim 2, >0, where o, is defined by (2.9).

Then W''P(Q; v, v) is not completely imbedded in I}(Q; w).

It is the intention of the authors to develop the present topics in further papers,
including imbedding theorems for special weight functions, for weight functions
which have singularities or degenerations on some part of the boundary 9 or inside
Q, and imbedding theorems on unbounded domains.
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