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INTRODUCTION

In this part we continue our investigation of integration of d-tuples of vector
valued functions with respect to the operator valued d-polymeasure I, started in
Part IX. Throughout the paper we use the notation and concepts from Parts VIII
and IX.

From the variety of results obtained: Theorems 1 and 2 are Egoroff-Lusin type
theorems of independent interest. In Theorem 3 we obtain the equality#(I') = J,(I)
under the assumption that the vector d-polymeasures I'(+) (x;): XP; - Y, (x;) € XX,
have locally control d-polymeasures. (The control polymeasure problem, see Problem
2 in Part VIIL is still open). By Corollary of Theorem 5 the same equality holds if
each space X;, i = 1, ..., d, is finite dimensional. Theorems 6 and 9 give satisfactory
descriptions of the range of the integral of a given integrable d-tuple of functions.
We introduce the so called product S-integral (a generalization of the S-integral
of A. Kolmogoroff [19]), and in Theorems 7 and 8 we relate it to integrability. For
bimeasures this concept was already used by A. K. Katsaras in [18]. Theorem 11
is a Vitali type convergence theorem. Theorem 14 is a generalization of Theorem
1.17, while Theorem 15 generalizes Theorem 3 in [14].

1. PRELIMINARIES

In the following two theorems £ is a d-ring of subsets of a given set T and X is
a Banach space.
From Theorem L.8 in [3] we easily obtain the following general result:

Theorem 1. Let f: T — X be a P-measurable function and let its range f(T) = X
be a relatively o-compact subset of X. Then there are P-simple functions f, €
€S(?,X), n=1,2,..., and sets Fye P, k=1,2,... such that f,(T) < f(T)
for each n =1,2,..., Fx 7 F ={teT, f(t) + 0}, and on each F;, k =1,2, ...
the sequence f,, n = 1,2,... converges uniformly to the function f. Hence the
function f: T - X, = sp f(T) is P-measurable.
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Proof.Let C, < X, k = 1,2, ... be a non decreasing sequence of compact subsets
such that U Cy > f(T),and put E, =F nf ~*(C,). Then E,€0(2) for each k=1,2, ...
k=1

by the #-measurability of the function f. Since F € o(2), there are F e 2, k =
=1,2,... such that F, » F. Clearly F, = E,nF, » F, and F, €2 for each
k = 1,2,.... Since owing to Theorem 1.8 f x(F,) € S(F; n 2, X), there is a sequence
for €S(FynP?,X), n=1,2,... such that |f x(Fy) — far|r < 1/2n for each

n=1,2,.... Bach f,p, n=1,2,... is of the form f, r, = X ; x(E, ;) With
j=1

E,;eF,n?,and E, ;, nE,;, = 0 for j, # j,. Take arbitrary points t, ;€ E, ;,

n,j1 n,j2

and put f, p, = 3 f(ts.;) X(E, ;). Clearly ||f x(F,) — fu.r,|lr < 1/n. Without loss of
i=1

generality we may suppose that F, # F;. Since again by Theorem 1.8 f xF, — Fy)e
eS((F, — F;) n 2, X), similarly as above we obtain a sequence f, p,-p,, # = 1,2, ...
such that fn,F;—Fl(FZ - Fl) Cf(Fz - Fl) Cf(T), and HfX(FZ - Fl) -

— fuFamFi “ r < 1/n for each n. Continuing in this way we successively obtain a double

sequence fy i = fur-Fe.» Nk =1,2,..., Fg = 0. Now the sequence f, = ) f, .,
n = 1,2, ... evidently has the required properties. The theorem is proved. *~'

In Remark 3 in Part IV we explicitly noted that the Egoroff-Lusin Theorem, see
Section 1.4 in Part I, remains valid also for submeasures in the sense of Definition 1
in [12]. Inspecting carefully the usual proof of the Egoroff-Lusin theorem we easily
verify the validity of the assertions of the next remark.

Remark 1. The Egoroff-Lusin Theorem remains valid if p: o(2) — [0, + 0]
is a o-finite countably additive measure, or if u is a semimeasure in the sense of Defini-
tion 1 in [13], particularly if  is a submeasure.

We use this facts in the proof of the following theorem.

Theorem 2. (Generalized Egoroff-Lusin Theorem.) Let p:o(2) — [0, + 0] be
a o-finite countably additive measure, or a semimeasure in the sense of Definition 1
in [13]. Further let f,,: T— X, n,k = 1,2,... be P-measurable functions, and
let f,4(t) = f,(t) € X as k —> oo for each n = 1,2, ... and each te T. Finally, put

F=U {teT, f,ut) # 0} €6(?). Then there are sets Neo(?) and F;e 2,
nk=1

j=1,2,... such that u(N) =0,F; 7 F — N, and on each set F;, j = 1,2, ... the
sequence f,,, k = 1,2,... converges uniformly to the function f, for each n =
=1,2,....
Proof. Since Fe 6(9’), there are pairwise disjoint E, € 2, r = 1,2, ... such that
0
F = U E,. If p is a measure we suppose without loss of generality that y(E,) < + oo

r=1
for each r = 1,2, .... Obviously it is enough to prove the theorem on each E,,
r=1,2,... (If we obtain the required F, ;, j = 1,2,..., and N, on E,, then F; =
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J o

=UF,;and N =UN,, j = 1,2, ... have the required properties.) Let r be fixed.
r=1 r=1

By Remark 1 the Egoroff theorem holds for the convergences f, i(t) — f,(1) as

k— oo, n=1,2,...,and for the restricted u: E,na(#)— [0, 4 o |. Consequently, for

each given § > 0 and each n = 1,2, ... there is an 4,€ E,.n a(?) = E,n 2 such

that u(E, — A,(5)) < 6/2" and the sequence f,;, k = 1,2, ... converges uniformly

to the function f, on A4,(3). Put A, = () A4,(5). Then A, ; € E, 0 2, W(E, — 4;,) <
n=1

< &, and on A, each sequence {f, ;};>,, n = 1,2,... converges uniformly to the
function f,. Similarly, replacing E, by E, — A4;,; and & by 6, we obtain a set 4;, €
€ (E, — A;,1) 0 2 such that u((E, — A4;,,) — A;2) < 36 and on 4; , each sequence
{fuxti=1» n = 1,2,... converges uniformly to the function f,. Continuing in this
way we obtain a sequence of sets A5 ;€ E,n 2, s = 1,2, ... with the corresponding

® J
properties. Now clearly N, = E, — N 4;, and F,; = U 4; have the required
properties. The theorem is proved. *=' s=t
Using Theorem 1.8 we immediately obtain

Corollary. Let p:o(?)— [0, + 0] be as in the theorem and let f,: T— X,
n=1,2,... be P-measurable functions. Then there is a set N € o(?) such that
#(N) = 0 and for each n =1,2,... the subset f,(T — N) = X is relatively o-
compact.

We will also need the following simple consequence of Theorem VIIIL.9:

Lemma 1. Let y: Xo(2;) > Y be a uniform vector d-polymeasure, let A;,€
eo(?),i=1,...d, n=1,2,..., and let A;, — A; for each i = 1,...,d. Then
lim  9(4;,,n B;) = y(4; " B)

uniformly with respect to (B;) € Xa(2;), and
lim  (4;, 0 B;) = 74;n B,

Nyiyeenyig= O
uniformly with respect to (B;) € Xo(2,).
Proof. For i=1,...,d put Tyy; =T, P,;; =P, and for (4,,..., Ay,

By,...,B)€P; x ... x Py, put y'(4,,..., Ay, By,....,B)) =
=9y(4,nBy,...,A;nB,). Then y: 2 x ... x P~ Y is a uniform vector
2d-polymeasure, and thus the assertions of the lemma are immediate consequences
of assertions 2 and 3 of Theorem VIIL.9.

2. FURTHER PROPERTIES OF THE INTEGRAL WITH RESPECT
TO THE OPERATOR VALUED d-POLYMEASURE

The following theorem demonstrates the importance of the existence of a control
d-polymeasure for a vector d-polymeasure, see Section 3 in Part VIII, for our approach
to integration with respect to the operator valued d-polymeasure.
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Theorem 3. Let I'(...)(x;): X, > Y have locally control d-polymeasures for
each (x;) e XX, see Section 3 in Part VIII, let fi: T; > X;, i = 1,...,d, be P
measurable functions and let f;, e S(?,X,), i =1,...,d, n=1,2,... be such
that f,,(t,) > fit;) as n > o for each i = 1,...,d and each t,e T;. Further let
X,c X, i=1,...,d, be closed separable linear subspaces such thatfi,,,(Ti) c X;
for eachi=1,...,d and each n = 1,2, .... Finally, put F; =

= U {t;e Ty, fi.(t;) + 0} e 6(2P)) for i = 1,...,d. Then there are sets N; € o(2;) N
n=1

AF,and Fi, e P, i=1,..,d,k=1,2,... such that:
(i) F(Fix) < + 0, and |||, S k for each k =1,2,...,
(i) F;p # F; — N, for each i =1, ...,d,
(iii) on each fixed F;, the sequence f;,, n = 1,2,... converges uniformly to the
function f;, and
(iv) for any P -measurable functions g;: T; > X}, i = 1,...,d we have
(91 X(Nl)’ 9o - gd), (gla g2 X(Nz)a G35 - gd), voes (15 -+ Ga-15 9a X(Nd) €
es (), and fiup (91 t(N1)s G20+ 90) AT = fap (91, 95 2(N2), G35 9a)
dr = ... = [uy (915 > Ga—1> 94 X(N2)) AT = O for each (4;) € Xo(2,).
If (f;)e #(I), then there is a subsequence {n} = {n} such that fi,(t;) =
= fim(t:) x(Fix O N)) (t;) = f{t;) as k > oo for each i = 1,...,d and each t;€ T},
fi.€S(2,, X}) for each i and k considered, and

San (fi)dl = :L“; Sean (fin)dl

for each (4;) € Xo(2,). Hence (f;) € #4(I'). Thus S(I') = #,(I') under the above
given assumption on I'. If, moreover, the semivariation I" is bounded on X#; and
each f;, i =1,...,d, is a bounded function, then we can take the functions f;,
above so that

f(m)(fi)dr=k lirkn Jean (fig)dr

for each (4;) € Xa(2;). ,

Proof. Let I'" = I': X(F; n 2;) > I{X; Y). Obviously we may replace I' by I”
in the theorem. According to Theorems 15, 17 and 19 from Part VIII the supremation
I': X(F;n6(2;)) - [0, + 0] has a control d-polymeasure, say A; X ... X Az
X(F;n o(2;)) - [0, + ). Applying the Egoroff-Lusin theorem, see Section 1.4 in
Part I, coordinate-wise for i = 1, ..., d and using the o-finiteness of the semivariation
I X(F;na(2,)) = [0, + ] and the fact that {t;e F;, |f(t)| <k} »F; as
k — oo for each i = 1, ..., d, we easily obtain the assertions (i)—(iv) of the theorem.

Now let (f;) € #(I'"), and for (4;) € X(F; n o(2;)) put

2 A) = fean (f) AT = [y (f)) AT

Then y: X(F; n o(2;)) - Yis a vector d-polymeasure (0 — 0) absolutely continuous
with respect to the supremation I"', see assertion 4 of Theorem IX.3. Hence

(1) Y(A4;) =94, — N)) = ) lim wy(Ai AFiy)

1yeeey ka=
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by Theorem VIIL1. Clearly (i) and (iii) imply: a) for each k = 1,2, ... there is an
n, > k such that |f;,[f,, S 2k for each n = n} and each i = 1,...,d, and b) for

each k = 1,2, ... there is an n, = n, such that

) (I _fl,nHFx,k v o = Sanllra,) @RY T I(F) < 1]k
for each n = n,. Evidently we may suppose that n,,; > n, for each k = 1,2, ....
Now, using (1), assertion 1 of Theorem 1X.3, (2) and (iv) we easily verify that the
subsequence {n,} < {n} has the required properties.

For the last assertion of the theorem, if ¢ = max “f “F < + 0, then we take
a subsequence {n,} = {n} such that 1siad

(fs = Fomloow + oo+ 1 fa = fanllran) Qo) =" F'(Fy) < 1]k

for n = n,. Similarly as above we verify that {n,} has the required properties. The
theorem is proved.

Corollary 1. Let I'(...)(x;): X2; > Y have locally control d-polymeasures for
each(x;) e XX; and let (f;)€ # = JF. Then the indefinite integraly of (f;), v(4;) =
= [ (fi)dT, (A;) € Xa(2;), has a control d-polymeasure.

Using Theorem VIIL11 for the general I' we immediately have the following
weaker result.

Corollary 2. Let (f;)e #(I), let (4,) e Xa(2,) and let (f;,) e Fo = XS(2;, X)),
n=1,2,... be such that f;, = f; for each i = 1,...,d. Then for any countably
generated S-subrings P, < Py, i =1,...,d, such that (A;)e Xo(2}) and (f;,)s
€ XS(2, X;),n = 1,2, ...(they always exist) there are (F} ;) € Xo(2}),k = 1,2, ...,
and a subsequence {n,} = {n} such that fi, = fi .. x(Fi.) = fi (fi.€S(2: X))
foreachi=1,...,d, and

Sam (fi)dr = ,}Lm S (fix) dr

for each (A4}) € Xo(2;), particularly for (4}) = (4;).
If, moreover, each f;, i = 1, ...,d, is a bounded function and [(T;) < + oo, then
we can take such (fi,), k = 1,2, ... that

Scam (fi)dl = . ]if:lq §car (fix) dr
for each (A}) € Xo(2)).

The next theorem is in a sense a generalization of the previous one. For its proof
the Generalized Egoroff-Lusin Theorem is needed, i.e., Theorem 2.

Theorem 4. Let I' have a control d-polymeasure Ay x ... x Ag: Xa(2;) - [0,+ oo)
and let (f;)e # = #,. Further, for each i = 1,...,dlet'f, ,: T; > X, n = 1,2,.
be 2-measurable functions and let f;(t;) —>f(t) for Aralmost every t,eT
Then there are (Fi;)e X2, k =1,2,... with [(F,,) < + oo for each k, and
a subsequence {n} = {n} such that (fi, x(Fi)eXS(F;, 0 ?,X)c S =S
foreach k = 1,2, ..., fi(t;) = fin(t:) X(Fi) (t:) > fi(t;) for Ar-almost every t; € T,
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i=1,...,d, and
Seap (fi)dr = tim [y, (fis) dT
k— o0

for each (A;) e Xo(2,). If, moreover, each f;, i = 1,...,d, is a bounded function
and [(T;) < + oo, then we can take such (fi,) that
fean (fi)dr = lif,f‘ Scan (fi) dr
ki,eens 4= ©
for each (4;) € Xo(2)).

Proof. Applying the Egoroff-Lusin Theorem, see Section 1.4 in Part I, to the
convergences f;, = f; a.e. A;, i = 1,...,d and the measures A; we obtain the cor-
responding sets F; e 2, i =1,...,d, k=1,2,.... For each couple (i,n), i =
=1,...,d, n=1,2,..., take a sequence f;, ;€ S(P;,X;), j =1,2,... such that
finj— fin as j— co. Applying Theorem 2, i.e., the Generalized Egoroff-Lusin
Theorem, we obtain sets F; , € #;,i = 1,...,d, k = 1,2, ... with the corresponding
properties. To prove the theorem, put F;, = F;, n F], and proceed as in the
proof of Theorem 3 above.

Similarly as Theorem 3, using Theorem 1 one can prove

Theorem 5. Let (f;) e # = S(I'), and let each f(T;) = X, i = 1....,d, be relative-
sy a-compact. Then (fi)efl, If, moreover, each f;, i =1,...,d, is a bounded
function and [(T;) < + oo, then there are f; , € S(?:,X;), i =1,...,d,n =1,2,...
luch that f;, — f; for each i = 1,...,d and

S (F)dr = lim fo (fin)dl
n ng—* oo
for each (4;) € Xo(2)).
Corollary. Let each X;, i = 1,...,d, be a finite dimensional Banach space.

Then S = 4.
For any d-tuple (f;) of functions f;: T; = X, i = 1,...,d we put
ry ra
ro(f)={ Y ... % I(Ai;) (flti ), Aiji€Pis tij€ Ay,
Jji=1 Jja=1
for fixed i the sets A; j,» ji = 1,...,; are pairwise disjoint,

Fiyeees ry = 1, 2, } .
By I's(f;) we denote the closure of I';(f;) in Y.
We are now ready to prove

Theorem 6. Let (f;) € #(I'). Then

R(I(f,)) = {fun (f) 4T, (A4i) € Xa(2,)} < Ts(f3) -

Proof. Let (4;) € Xo(2;) and let ¢ > 0. For each i = 1, ..., d take a sequence
9in€S(Z,X,)),n =1,2,...such that g;,, = fi. Since y(+, 4y, ..., A;): A; 0 o(2,) >
— Y, where y(4;) = Seap (fi)dr, is a countably additive vector measure, it has
a control measure, say 1,: A, n a(?;) — [0, + ). Applying the Egoroff-Lusin
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Theorem to the convergence g1, = f1,in accordance with Theorem 1.8 or Theorem 1
we obtain a set N; € 4; 0 o(2;) such that ,(N,) = 0 and the range of the function
f1x(A; — Ny, is relatively o-compact. Clearly y(4,, ..., Ag) = (4, — Ny, 4,, ..., 4y).
Repeating the above consideration for the convergence g, , — f, and for a control
measure of the vector measure y(4;—Ny,., 4, ..., Aj): A, 0 6(P;) = Y we obtain
aset Nye a(?z) such that the function f, )((A2 - N 2) has a relatively o-compact
range and y(4;) = y(4; — Ny, 4, — N,, A;, ..., 4;). Continuing in this way we
obtain sets N;e 4,0 a(2,), i =1,...,d, such that y(4;) = y(4; — N;) and the
range of each function f; x(4; — N;), i = 1, ..., d, is relatively o-compact.

Now by Theorem 1 there are sets F; , € Z;,i = 1,...,d,k = 1,2, ... and for each i
a sequence f;,€S(2;,X;), n=1,2,... such that F;; #4; —N; as k— o
fiAAi = N;) = f(A; — N;) for each n = 1,2, ..., and on each F;;, k = 1,2,...,
the sequence f;,, n = 1,2,... converges uniformly to the function f;. According
to Theorem VIII.1 there is a k, such that

ly(Ai - Ny - V(Fi,k,)l < 3e

for each ki, ..., kg = ko. Take k; = ky = ... = k; = k,. Clearly ¢ =
= sup |fimllFiwo < +o0 (each f;, is a simple function and f;, = f; uniformly on

Fit for each i = 1,..., d), hence sup I fil Fino < ¢ + 1. Now

H(F,,ko) (fi) ar — I(Fi,ko) (fi,n) dTl s
= d qu “f' - fi»"”Fi,ko (C + l)d_l f(Fi,ko) -0

as n— oo by the uniform convergence f;,— f; on F;,, (use Theorem IX.3).
Hence (4, (f))dI e T'5(f;). Since (4;)e Xo(2;) was arbitrary, the theorem is
proved.

Since X2, is a multiplicative system of sets, we can use the isometric isomorphism
between I}(X;;Y) and L(X, ®" ... ®" X,, Y), see the beginning of Part VIII,
to define the S-integral of Kolmogoroff with respect to our polymeasure I' in the
usual way, see [19] and Part VI. However, to the theory of integration with respect
to the polymeasure I' just developed there corresponds a seemingly weaker (it is
an open problem whether really weaker) integral, which we call the product | — XS-
integral and which we now introduce.

Let (4;) € X2,. By a finite product partition of (4;) we mean a partition of (4,)
of the form m,(4,) x ... x n,(A4,), shortly Xm(4,), where n(4,), i =1,....d,
is a finite 2 -partition of 4;. If Xr; 1(4;) and Xn; ,(4;) are two finite product parti-
tions of (A) then we write Xn; 1(A) < Xn; 5(4;) if and only if 7, 1(4;) < 7, 5(4,)
foreachi = 1,...,d,ie.,if n; 2(A ;) is a refinement of ;.,(A4;) for each i. It is evident
that the set XIT (A,) of all finite product partitions of (4;) is a directed cofinal subset
of the set TI(4;) of all finite 2, x ... x 2, partitions of the rectangle Ay X ... x Ay

Let us have functions fi: T; » X;,i = 1,...,d. If n,(4;) = (4, ;,)}'=, is a partition
of A;, i =1,...,d, choose points t; eA i=1,...,d, j,=1,...,n; and, in

lj( l_]’
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accordance with the beginning of Section 2 in Part VI, write

Sxwian(Ts (fi)s (11.5.)) =,§1 x 'jglr(Ai’j‘) (filt:,;.) -

If the net Syu,an(I, (f3), (+)), Xny(4;) e XII(4;) on Y converges to an element
y €Y, we say that the d-tuple of functions (f;) is product S-integrable, or XS-integrable,
on (4;), and write XS, ,(f;) dI" = y.

For each S-integrable function f; ®" ... ®" fi: XT; = X; ®" ... ®" X, on the
rectangle XA4;, 4;,€ 2,,i = 1,...,d, see the beginning of Section 2 in Part VI and
the beginning of Section 1 in Part VIIL, the d-tuple (f;) is clearly XS-integrable on
(A;). It is an interesting open problem when the converse is true.

Evidently the XS-integral shares coordinatewise the simple properties of the S-
integral which are listed before Lemma 2 in Part VL. If the d-tuple of functions (f;)
is XS-integrable on (4;) € X2, then clearly

IXSan(f)dr| < [f1]la - e | fall aa T(45) -
Further, the following analog of Lemma 2 from Part VI obviously holds.

Lemma 2. Let (f;)e XS(2,, X,), let (4;)e X?;, and let [(4;) < +oo. Then
(fixa,) is integrable (l,) as well as XS-integrable and the integrals coincide on
each (4;) e X2,.

Using Theorem 1 and the ideas of the proofs of Theorems 4, 5 and 6 in Part VI,
their generalizations can be easily proved in the following form:

Theorem 7. Let f;: T; > X;, i = 1, ...,d, be bounded P -measurable functions,
and let the multiple Li-gauge L[(f.), (*)]: Xo(2,) - [0, + ] be separately con-
tinuous on Xa(2;), hence bounded by Theorem VIIL6. Then the d-tuple (f;) is
XS-integrable on each (A,.) e X 2, it is integrable by Theorem 1X.7, and

XS(A',)(f‘.) ar = f(As) (fi) ar
for each (4;) e X2,.

Theorem 8. Let f;: T, > X;, i = 1,...,d, be 2-measurable functions, let (4;) €
€ X2,, and let the d-tuple (f;) be XS-integrable on (A;). Then (fix4,) €, and

.[(Bi) (f:) ar = X(B()S(fi) ar
for each (B;) e X(4; n 2,).

Using Theorem 1, Corollary of Theorem 2 and Lemma 1 we easily obtain

Theorem 9. Let I'(+) (x;): X2, — Y have locally a control d-polymeasure for each
(x;)e XX;, let (f)e S (= F, by Theorem 3), and let the indefinite integral
fe (fi)dr: Xo(2;) > Y be a uniform vector d-polymeasure, see Definition VIIL1.
Then:

1) There is a sequence of d-tuples of functions (f;,)e Fo = XS(2;,X,), n=
=1,2,... such that f;,,— f; and |fi,,,| 2 |f,.| pointwise as n — o for each i =
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=1,...,d, and
tim fap (fin) AT = fean (£) T

n— o

uniformly with respect to (4;)€ Xo(2:). If each f;, i = 1,...,d, is a bounded
function and [(T;) < + oo, then we can take such a sequence (fin)eForn=1,2,...

that
lim I(Ai) (fi,"i) dar = j(Ai) (fl) ar

uniformly with respect to (4;) € Xo(2))-
2) For each & > 0 there are sets A; j, € P, i =1,....,d,ji =1,...,n; < o0 and

points t; ; € A; ;, such that A; j,, j; = 1,...,n; are pairwise disjoint for each fixed
ie {1, s d}, and
ny na
[§can (fi)dI — .Zl~--,ZIF(Am A ) f(t)] < e
J1= Ja=

for each (4;) € Xa(2,).
Proof. 1) Take fi;eS(?;,X,), i =1,....,d, j=1,2,... such that f;; > f;
and |f7;| 7 |fi| pointwise as j — oo for each i = 1,...,d. Put X; = sp {UfiAT)}
ji=1

and F, = {t; €T, f|(t;) & 0} for i as above. Then for our consideration we may replace
X; by X.. Since each X! is a separable closed subspace, by Theorems VIII.17 and
VIIL.15 we conclude that I': X(F; n 2;) - I(X}; Y) has a control d-polymeasure,
say Ay X ... x Azt X(F;n 2?,) - [0, +0). Applying the Egoroff-Lusin Theorem
in each coordinate i we obtain sets N; € F; n 0(9,-) and F; ,e F,n2,i=1,...,4d,
k =1,2,...such that A(N;) = 0, F;, // F; — N, as k — o, and on each fixed F;
the sequence f; ;, j = 1,2, ... converges uniformly to the function f;. Without loss
of generality we may suppose that I'(F;,) < +oo for each k = 1,2,.... For
(4;) e Xo(2,) put y(4;) = [, (fi)dI'. Since by assumption y: Xo(2,) - Y is
a uniform vector d-polymeasure, we have
lim  y(4; 0 (Fiy, = Ny)) = 9(4; 0 (F; = Ny) = y(4))
0

uniformly with respect to (4;) € Xa(2;) by Lemma 1. Hence there is a subsequence
{k(n)} = {k} such that
1
IY(Ai) - V(Ai N (Fi,k; - Ni))l < 571
for each (4;) € Xo(2;) and each ky, ..., k; = k(n).

Since on each fixed F; ; the sequence f; ;, j = 1,2, ... converges uniformly to the
function f;, and since ['(F, ;) < + oo, there is a subsequence {jn} = {j} such that

sup |/ = £, L

Fi,k(n) < -
n

foreachn =1,2,...,and

’ 1
“U‘i) (/i 2(F i) A = Scan (F i 1(F i) dFI = 2n
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for each (4;) € 6(2;) and each n. Now it is clear that

fim=fij. X(Fi,k(n) UNy),
i=1,...,d,n=1,2,... have the required properties.
2) Is evident if one replaces the values of the simple functions fi,;, X(F; ) above
by suitable f(t; ;,) as in the proof of Theorem 1.
From Theorem 4.4 in [20], see (Y) at the beginning of Part VIIL, and from Corollary
2 of Theorem VIIIL.2 we immediately obtain

Corollary. The assertions of the theorem are valid for any (f;) € # in the following
cases:

1) d =2 and Y = K — the scalars,
2) T, =N =1{1,2,...} and 2, = &, = the collection of all finite subsets of N
for each i =1,...,d.
Whether the assertions of the previous theorem are valid in some other cases is
an opzn problem. .
Without assuming the existence of local control d-polymeasures I'(*) (x;): X2; - Y
for each (x;) € XX; we have the following result.

Theorem 10. Let (f)e S and let the indefinite integral y(+) = [.,(f;)dI:
Xo(2,) > Y be a uniform vector d-polymeasure. Then there are sets N, € o(%,),
i=1,...,d, such that Ny, Ty, ..., Ty) + ... + (T, ..., Ty—1, Ny) = 0, hence

Sean (f) AT = feap (fi (T = Ny)) dr

for each (4;) € Xo(2,), and for the integrable d-tuple of functions (fixr,-n,) the
assertions 1) and 2) of Theorem 10 are valid.

Proof. Taz supremation j: Xo’(.%) - [(), + oo), see Definition VIII.2, is separately
a subadditive submeasure in the sense of D:zfinition 1 in [12], see Theorem VIIL.7.
Now w: proczzd as in the proof of Theorem 9 using either the subadditive sub-
measurss 7+, Fy, ..., Fy), ..., 7(Fy, ..., F4_y, +), see the paragraph before Theorem
2, or their control measurss, see Theorem VIII.10.

Theorem 11. Let o and «,, n = 1,2, ... be countable ordinals such that o > a,
foreachn = 1,2, .... Let (f;,) € ,, for each n = 1,2, ... and let f;, — f; point-
wise for each i =1,...,d. For (4;))e Xa(?,) put y,(4;) = [, (fi)dl, n =
=1,2,..., and let the supremations 7,: Xo(2;) - [0, + ), n = 1,2, .. be separately
uniformly exhaustive (equivalently, continuous). Then (f;) e £,, and
lim y,(4;) =”“j2 §can i) dT = feay (f)) AT = 5(4y)

n—o

and
lim ?"(Ai) = 77(Ai)

both uniformly with respect to (4;) € Xo(2,). Hence y: Xo(2;) > Y is also a uni-
form vector d-polymeasure.
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Proof.(f;) € #,and lim y,(4;) = y(4;) for each (4;) € Xo(2;) by Theorem IX.4-2).

Since §,: Xo(2;) > [0, +0), n =1,2,... are separately uniformly continuous,
the set functions y, = y: Xo(2,) > Y and A4: Xa(P;) - ¢(Y),

A(A4;) = (o(As), y1(A4i)s - 7lA40), - ) e oY),
(A4;) € Xa(2;), are uniform vector d-polymeasures.

For i=1,....d put F,=U{t;eT;, fi,(t:)) +0}eo(#), and let p,(B,) =
n=1

= A(By, Fy, ..., Fy), ..., u(By) = A(Fy, ..., Fs, By) for B;e F;no(2,). Then p;:
F;na(2,)- [0, + ), i =1,...,d, are subadditive submeasures in the sense of
Definition 1 in [12]. Hence by the Egoroff-Lusin Theorem, see the paragraph before
Theorem 2, there are sets N;e F,no(#;) and F,,e F,n 2, i=1,...,d, k =
=1,2,... such that u(N;)=0, F;, # F, — N, as k> oo for each i = 1,...,d,
and on each fixed F;, the sequence f;,, n = 1,2, ... converges uniformly to the
function f;. Since by assumption the semivariation I': X(F; n o(2))) - [0, + 0] is
o-finite, we may suppose that I'(F;,) < + oo for each k = 1,2, .... Let k be fixed.
Then evidently lim y,(F; , 0 4;) = p(Fix 0 A;) and llm y,,( N A) =H(Fipn A)

n— oo

both uniformly with respect to (4;) € Xa(2,). Since by Lemma 1 11m A(4; " Fyy) =
= A(4;n (F; — N;)) = A(4;) and hm A(A N Fiy) = A(4; 0 (F - Ny) = 4(4))

both uniformly with respect to (4;) € Xa(ﬂ ;), the theorem is proved.

Before the next theorem let us recall that the Banach space I(X; Y) is isometrically
isomorphic to the Banach space L(X; ®" ... ®" X,,Y), see the beginning of
Part VIII. Using this identification we have

Theorem 12. Let I'*: ?; ® ... ® Z?, > L(X, ®" ... ®" X;; Y) be an operator
valued measure countably additive in the strong operator topology with a locally
o-finite semivariation I'* on P, ®... 0P, Further let f: T; > X;,i=1,...,d
be P;-measurable functions, and let the function f; ®" ... ®" f4: XT; > X; ®" ...

.. ®" X, be integrable with respect to I'*. Finally, let I': X2, > I{(X;; Y) be
the restriction of I'* to X2;. Then

1) T'(+) (x;): X2, —> Y is a uniform vector d-polymeasure for each (x;)e XX;

2) I'(4;) < I'*(A4;) for each (4;) e Xo(2,);

3) (f)e S = S, and

WA) = [oan (f) AT = [a xxanft ® oo @7 fydl™* = y¥(A4; X ... X Ay
for each (A;) € Xo(2));

4) y: Xo(2;) > Y is a uniform vector d-polymeasure.

Proof. 1) and 4) are immediate, since the d-polymeasures considered are restric-
tions of measures. 2) is obvious by the same argument.

3) Applying the first part of Theorem 3 and its proof to I' and f;, i = 1,....d
we easily obtain the assertions of 3) for the functions fixr,_yNi» i =1, ..., d inthe
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notation of Theorem 3 and its proof. Under this notation it is evident that the vector
measure y*: (F; no(2,)) x ... x (F;n 0(2,)) > Y is absolutely continuous with
respect to the measure A, X ... X A;: (Fy 0 o(2,)) x ... x (Fyn o(2,)) >
- [0, + ). Hence y*(X4;) = y*(X(4; n (F; = N)))) = 9(4; 0 (F; = N,)) = %(4;)
for each (4;) € Xa(2;). The theorem is proved

The next theorem is a generalization of Theorem VIL.4. In fact, it is in a sense
a more precise version of Corollary 1 of Theorem IX.4.

Theorem 13. Let I'(+) (x;): X2; — Y have locally control d-polymeasures for each
(x;)e XX; and let (f;)e S(I') = F(I'). Further let P, 2;, i=1,...,d, be
d-subrings such that each f; is ?-measurable. Then (f;)e S(I'") = S (I'""), where
I' =T:X2; > (X Y), and

j(m (fi) dr' = f(Aa) (fi) ar
for each (A;) € Xo(2)).
The following theorem is a generalization of Theorem I.17.

Theorem 14. Let I'(+)(x;): X2, > Y have locally control d-polymeasures for
each (x;) e XX; and let ¢y & Y, see [1] and [2]. Then (f;)e S = J, if and only
if (fi)e #£,(y*I) = F(y*I) for each y* e Y*.

Proof. The “only if”” part is a consequence of Theorem 1X.4 — 3). We prove the
sufficiency part using the idea of the proof of Theorem I.17. Let (f;) € #(y*I') for
each y* e Y*, and let us adopt the notation from the proof of Theorem 3. Hence it
is now sufficient to show that (f; x(F; — N;))e 4(I'). First we deduce that

(f1 t(F10)s s fams X(Fac14)s Sax(Fa — Ng))e J(I') for each k =1,2,.... Let k
be fixed. According to Theorem IX.4 — 2) it is enough to verify that

kli_{l;loj(m) (fx AF14)s s fams X(Fd,k)vfd X(Fd: kd)) drey
exists for each (4;)e Xo(2;). Suppose the contrary. Then there is an & > 0, an
(4;) € Xo(2,), and a subsequence {k, ;} = {k,} such that (Z; = (4, ..., Ay_y, 4; 0
O (Fapayer = Fapa,)

|)’jl = Um,- (f1 X(Fl,k), ) X(Fd—1)»fa X(Fd - Nd)) drl =

= {feao (F1 2(Fri)s oo fam1 1Fa-10)s fat(Fan,ysn)) AT —

- f(A.-) (f1 X(Fl,k)5 R X(F:l—l,k)’fd Z(Fd,k,,,j)) dFl > &
for each j = 1,2,.... But this is impossible since owing to the assumption (f;) €

€ S(y*I') for each y* € Y** the series Z y, is weakly, hence by [1] or [2] also strongly

(co ¢ Y) unconditionally convergent Thus (f; x(Fy i) s fam1 2(Fa=1)s
fax(Fs — Ny))e #(I') for each k =1,2,.... Starting w1th this integrable d-tuple
of functions in the same way as above we obtain that also (f; x(Fy.),---

corfaez2 XFazz ) faey M(Fa-y — Nu1), fa2(Fs — Ny)) € H(I')foreach k = 1,2, ...
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Continuing in this way we finally obtain that (f; (F; — N;)) e #(I'), which we wanted
to show. The theorem is proved.

Our final theorem in this part is a generalization of Theorem 3 in [14]. Its validity
is clear from the preceding proof.

Theorem 15. Let I'(+) (x;): X2; —> Y have locally control d-polymeasures for each
(x;) € XX,. Then (f;)e & = #, if and only if (f;)e F(y*I') for each y* e Y* and
the indefinite integrals {{,(f;) d(y*I'): Xo(2;) > K-scalars, y*e Y*, |y*| < 1}
are separately uniformly countably additive.
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