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EMBEDDING m-QUASISTARS INTO n-CUBES

LADISLAV NEBESKY, Praha

(Received November 13, 1986)

In the present paper the letters i, j, k, m, n and p denote integers. By a graph we
mean a graph in the sense of [1]; V(G) and E(G) denote the vertex set and the edge
set of a graph G, respectively. We shall say that graphs G, and G, are vertex-disjoint
if V(Gy) n V(G,) = 0.

A graph which is homeomorphic to the star K(1, m), where m 2= 3, will be referred
to as an m-quasistar. We say that an m-quasistar T of order p is balanced if p is even
and there exists a 2-coloring of T with p/2 blue vertices and p[2 yellow ones. I. Havel
[2] conjectured that

if 3 < m < n, then every balanced m-quasistar of order 2" can be embedded into
the n-cube.

The conjecture has been proved for m = 3 by Havel [2], for m = 4 and 5 by the
present author [4], and for m = 6 by N. B. Limaye [3]. In the present paper the
conjecture will be proved for every m = 5.

Let P be a nontrivial path. Then P is a graph homeomorphic to K,. If u is a vertex
of degree one in P, then we say that P is a u-path. If P is a u-path, then the only vertex
of degree one in P hich is different from u will be denoted by a(P, u).

Let G be an n-cube, n = 1. If u; and u, are adjacent vertices in G, P, and P, are
vertex-disjoint nontrivial paths in G such that P, is a u;-path and P, is a u,-path,
then we denote by Py + uyu, + P, the path in G induced by E(P;)u {u,u,} U
U E(P,). Since G is an n-cube, where n = 1, it is clear that there exist vertex-disjoint
(n — 1)-cubes G’ and G” such that V(G')u V(G”) = ¥(G) and E(G')u E(G") =
S E(G); the set {G’, G"} will be referred to as a canonical partition of G.If {G’, G"}
is a canonical partition of G and ue V(G’), then the only vertex of G” which is adjacent
to u in G will be denoted by u/G".

The proof of Havel’s conjecture (for m = 5) will be divided into two lemmas and
two theorems. '

Lemma 1. Let m = 1, let G be an m-cube, let u € V(G), and let W < V(G) such
that lWI =< m — 1. Then there exists a hamiltonian u-path P in G such that
(P, u) ¢ W.

Proof. Obviously, there exists a 2-coloring of G with 2™~ blue vertices and 2™~ *
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yellow ones. Without loss of generality, let u be blue. Havel [2] has shown that for
each yellow vertex v of G, there exists a hamiltonian path P in G such that s(P,u) = .
Since m — 1 < 2™~ !, the assertion of the lemma follows.

Lemma 2. Let m = 2, let G be an m-cube, let u, vy, v, be distinct vertices of G
such that v,v, € E(G), and let W < V(G — v, — v,) such that |W| £ m — 2. Then
there exists a hamiltonian u-path P in G — v, — v, such that &(P, u) ¢ W.

Proof. We proceed by induction on m. The case when m = 2,3 is obvious.
Let m = 4. Assume that the lemma is proved for m — 1. It is clear that there exists
a canonical partition {G’, G"} of G such that

|Wr\ V(G")‘ <m-—3 and vy, v,eV(G").
We distinguish two cases.

1. Let u e V(G’). Recall that m — 1 = 3. According to Lemma 1 there exists
a hamiltonian u-path P’ in G’ such that &(P’,u)¢ {v;/G’, v,/G'}. Denote u' =
= ¢(P',u) and u” = u'|G". According to the induction hypothesis, there exists
a hamiltonian u”-path P” in G” — v; — v, such that &(P”, u”) ¢ W V(G"). Clearly,

(1) P+ wu” + P” is a hamiltonian u-path in G — vy — v, such that &P’ +
+ u'u" + P’ u)¢ W.

2. Let u € V(G"). According to the induction hypothesis, there exists a hamiltonian
u-path P” in G” — v, — v,. Denote u” = ¢(P”, u) and u' = u”/G'. According to
Lemma 1, there exists a hamiltonian u’-path P’ in G such that &(P’, u") ¢ W V(G').
Clearly, (1). Thus the proof is complete.

The following theorem is the main step in our proof of Havel’s conjecture.

Theorem 1. Let k and m be integers such that
12kgm if 1£m<3 and
1gk<m if m=4.

Then Q(k, m), where Q(k, m) is the statement as follows:
forany G, u, ..., uy, ay, ..., ag, Wi, ..., W, such that

(2) G is an m-cube,
(3) Uy, ..., u, are distinct vertices of G,
(4) ay, ..., ay are positive even integers with a; + ... + a, = 2",

(5) Wy, ..., W, are subsets of V(G) fulfilling
W |sm—k, .., |Wsm-k,

there exist vertex-disjoint paths P, ..., Py, in G such that
(6) P, is a ui-path of order a; such that &(Py, u;) ¢ W, for each i, 1 £i < k.

Proof. It is easy to prove Q(1, 1), Q(2, 2) and Q(3, 3) by an immediate inspection.
Thus, we shall prove that if m = 2 then Q(k, m), for each k, 1 < k = m — 1. We
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proceed by induction on m. The case m = 2 is obvious. Let m = 3. Assume that
we have proved Q(k*, m — 1) foreach k*, 1 < k* <m — 2.
Let 1 £k <m— 1. Consider G, uy,..., Uy, dy,...,a, W,..., W, such that
(2)—(5). For any canonical partition {G,, G,} of G and any f e {1, 2}, we define
I(G;) ={i;12i=kandueV(G))},

kGy) = II (Gf)l ’
U(G,) = {u; i€l(G,)}, and
A(G)) = Y a;.
iel(Gy)
We distinguish several cases and subcases.
1. Assume that there exists a canonical partition {G,, G,} of G such that 4(G,) =
= A(G,).
Consider f € {1,2}. Obviously, A(G;) =2"""and 1 S k(G)<k—1<m—1.
Denote
I, = I(GI)’
ugp=u;, a;p=a; and W, = W,nV(G,) foreach iel,.
It is clear that

or u;; (iely) are distinct vertices of G,

and

(8); a;; (iely) are even positive integers such that Y a;, = 2""1.
iely

Obviously, [W;,| < |Wj| < m — k for iel,. Since m — k < (m — 1) — |I],

9), |W,-,|§(m—— 1)——]1f|, for each iel,.

According to Q(k(G,), m — 1), there exists a set of IIfl vertex-disjoint paths P,
(iel;)in G, such that
(10);  Pi; is a u;;-path of order a;, with the property that &(P;, u;;) ¢ W;, for
each ielj.
Denote
Py =P, ificl,, and Py =Py if icl,.

Clearly, Py, ..., P, are vertex-disjoint paths in G such that (6).
(1) (k)

2. Assume that A(G*) + A(G**) for any canonical partition {G*, G**} of G.

2.1. Let k = 1. Then a; = 2". Lemma 1 implies that there exists a path P, in G
such that (6). '

2.2. Let k = 2. Clearly, a, # a,. Without loss of generality we assume that
a, > a,.

2.2.1. Let a, = 2. Since |W,| £ m — 2, there exists u3 e V(G) — ({u,} U W)
such that u,u3 € E(G). We denote by P, the path in G induced by {u,u3}. Since
IWll < m — 2, it follows from Lemma 2 that there exists a hamiltonian u-path P,
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in G — u, — uj such that &(P,,,u,) ¢ W,. Hence, P;, and Pz are vertex-disjoint
paths in G such that (6).

2.2.2. Leta, = 4. Since a; > a,, m = 4. Clearly, there exists a canonical partition
{G,, G,} of G such that

(11) Wi aV(G)|sm—3 for f=1 and 2.

Without loss of generality we assume that u, € V(Gl)‘

22.2.1. Let u, € V(G,) and W, n V(G,) = 0. Denote

I, = {192}, Ugg = Uy, Uz = Uy, dyy =21 —a,,
ayy =dp, Wy =0=W,y.

It is clear that (7);—(9);. According to Q(2,m — 1), there exist vertex-disjoint
paths P,, and P,; in G, such that (10),. Denote v = &(P;y, 41;) and u;, = v/G,.
As follows from (11) and Lemma 1, there exists a hamiltonian u;,-path Py, in G,
such that &(Py,, us,) ¢ Wy 0 V(G,). Define Py = Py; + vuy, + Py, and P,y =
= P,,. Obviously, P and P, are vertex-disjoint paths in G such that (6).

2.2.2.2. Let u, € V(G,) and W, n V(G,) *+ 0. Hence,

(12) W, A V(G,)| s m—3.
Denote
I ={1,2}, uy =uy, upy =t,, a;,; =2"""1-2, a5 =2,
Wiy =0=W,.

It is clear that (7); —(9),. According to Q(2, m — 1), there exist vertex-disjoint paths
P,; and P,; in G, such that (10),. Denote

I, = {192} > U = e(Pll,u“), U, = 6(P21,u21), Uy = U1/G2 >
Uy, = 0,]Gy, Ay =a, +2—-2""", ay,=a, -2,
Wi, =W, n V(GZ) , W =W,n V(Gz).

It is clear that (7), and (8),. It follows from (11) and (12) that (9),. According to
Q(2,m — 1), there exist vertex-disjoint paths P,, and P,, in G, such that (10),.
Define Py = Py; + vyuy, + Py, and P,y = Py + vyu,, + P,y Obviously,
P, and Py, are vertex-disjoint paths in G such that (6).

2.2.2.3. Let u, € ¥(G,) and W, n V(G,) = 0. According to Lemma 1 there eXists
a hamiltonian u,-path Py, in G, such that &(Py,, u,) # u,/G,. Denote

vy = Py, u), I = (1,2}, up=0,/Gy, uyy =u,,
Ay, = a4y — om=1 , dyy = 4y, le = W1 N V(Gz) , W22 — W2 A V(Gz) .

It is clear that (7),—(9),. According to Q(2, m — 1), there exist vertex-disjoint

paths Py, and P,, in G, such that (10),. Define Py, = Py, + vyu;, + Py, and

P,y = P,,. Obviously, P, and P, are vertex-disjoint paths in G such that (6)
2.2.2.4. Let u, € V(G,) and V(G,) n W, * 0. Hence,

(13) W, n V(Gy)| £ m = 3.
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There exists v, € V(G, — u,) such that v, is adjacent to u, in G, and vz * u,/G,.
We denote by P,, the path in G, induced by {u,v,}. Denote

I, = {1:2}) Ugg = Uy, Uz = ”2/61 , a; =2"1+2-a,,

ayy =a; —2, W= {uZ/Gl} and Wy =W, n V(Gl)’

It is clear that (7); and (8),. Since m — 1 = 3, (13) implies that (9);. As follows
from Q(2,m — 1), there exist vertex-disjoint paths P;; and P,, such that (10),.
Denote v; = &(Pyy, uy;) and u;, = v,/G,. It is easy to see that uyz ¢ {4, v,}. It
follows from Lemma 2 and (11) that there exists a hamiltonian u;,-path Py, in
G, — u, — v, such that &(Py,, u;,) ¢ Wy 0 V(G,). Define Pyy = Py + v3ty, + Py,
and P,y = P,, + vyu,; + P,;. Obviously, Py and P, are vertex-disjoint paths
in G such that (6).

2.3. Let k = 3. Then m = 4. Recall that A(G*) # A(G**) for any canonical
partition {G*, G**} of G. We first prove that

(14)  there exists a canonical parition {G,, G,} of G such that A(G,) > A(G,) and
1< kGy) < k—2.

To the contrary, let us assume that

(14)  for any canonical partition {G*, G**} of G, if A(G*) > A(G**) and 1 <
< k(G**), then k(G**) = k — 1.

Since k = 3, there exists a canonical partition {G,;, G;,} of G such that A(Gyy) >
> A(G,,) and k(G,,) = 1. According to (14), k(Gy;) = k — 1, and therefore
k(Gy;) = 1. Obviously, there exists i, 1 < i < k, such that U(G,;) = {u;}. Since
A(Gyy) > A(Gyy), a; > 2" 1.
Since k(G,) = k — 1 = 2, there exists a canonical partition {G,;, G,,} of G
such that
U(Gy,) 0 V(Gay) # 0 =+ U(Gyy) N V(Gyy).

Without loss of generality we assume that A(G,;) > A(G,,). Since U(G;,) N
N V(Gyz) #+ 0, k(Gy,) = 1. According to (14), k(G,z) = k — 1, and therefore
k(Gz1) = 1. There exists j, 1 < j < k, such that U(G,,) = {u;}. Since A(G,,) >
> A(G,,), a; > 2™ 1. Since U(Gy,) N V(G,,) # 0 and U(G,,) = {u;}, we can see
that u; € V(G,,). Hence i % j. As follows from (4), a; + a; < 2", which is a con-
tradiction. Thus, we have proved (14).

Denote

a =mina;.
icI(G1)
We shall prove that

(15) a=2""' —2(k(Gy) - 1).
To the contrary, let
a>2""1 2(k(Gy) — 1).
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Since a is even, we have that

(15) az 2"t = 2(k(Gy) — 2).
Since k(G,) = 1, A(G,) = 2. Hence,

2" —2
(16) a s’

K(Gy)

If k(G,) = 2, then — combining (I5) and (16) — we get that 2"~ * — 1 = 2"~ 1
which is a contradiction. Let k(G,) = 3. Obviously, m — 2 = k(G,). Thus —
according to (15) and (16) — we get that
2m -2 2" =2 >
3 k(G,)
Hence, 6m — 26 = 2™~ !, which is a contradiction. Thus, we have proved (15).
Denote I, = I(G,). It follows from (15) that there exist disjoint nonempty subsets
I* and I’ of I, and even positive integers a,; (for each i € 1,) satisfying
I, =Ful’,

a;, =a;, if iel*,

v

2"t — 2(k(Gy) — 2) 2 2"t — 2(m — 4).

Il

a; <a;—2, if iel’, and
Yoay =2""1.
y iely
Denote
u, =u; if iel,,
W,y = W,nV(G,) if jel*, and
W,y = {v;v/G,el(G,)} if jel.
Since k(G,) = k — k(G;) < (m — 1) — k(G,), we can see that (9);. According
to Q(k(Gy), m — 1), there exists a set of |I,| vertex-disjoint paths P;; (iel,)in G,
such that (10),. Denote
v; = &(Pj,u;;) foreach jel.

Moreover, denote
I, I'u I(Gz) s
uy, =u; it i€l(G,), u,=uv]G, if iel’,
a; if ie€l(G,),
a, =a; —a; if iel”, and
Wi =W;n V(Gz) if jel,.
It is clear that (7),—(9),. As follows from Q([12|, m — 1), there exists a set of |I,
vertex-disjoint paths P;, (i € I;) such that (10),.
Define

Il

iz

Py =Py if iel®,
P; = Py + vu, + Py, if iel’, and
Py =P, if iel(G,).
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It is obvious that Py, ..., P, are vertex disjoint paths in G such that (6).
Thus, the proof of the theorem is complete.

Remark 1. Let k 2 m = 4. Consider G, uy, ..., Uy, ay, ..., d,, Wy, ..., W, such
that (2)—(5), a, = 4,..., a4, = 4, and uqu, ..., uu € E(G), where u is a vertex of G.
Then (6) holds for no set of k vertex-disjoint paths Py, ..., Py, of G. This means
that for k = m = 4, Q(k, m) does not hold. (It is also clear that Q(k, m) does not
hold for m < 3 and k > m.)

Remark 2. Let 2 < k < m. Consider G, uy, ..., Uy, ay,...,ax, Wy, ..., W such
that (2)—(4), a, = 2, and
IW1| >2m—k+1.

Let uy, ..., u, be chosen so that there exist m — k + 1 vertices of W,, say vertices
Wiy oo Wook g, such that wywy,...,uw, 441 € E(G), uqu,, ..., u u, € E(G), and
{ugy o couy 0wy, oo Wygs1} = 0.

Hence, no set of k vertex-disjoint paths Py, ..., P, in G satisfies (6). Let j = 1.
We can see that in Theorem 1 the inequalities

‘Wl| <m-— k,...,.Wkl <m-—k
cannot be replaced by the inequalities
Wlsm—k+j,...|[W|]sm-k+j.
We are now prepared to show that Havel’s conjecture is true.

Theorem 2. If 3 < m =< n, then every balanced m-quasistar of order 2" can be
embedded into the n-cube.

Proof. We proceed by induction on m. In our proof we make use of the fact
that the case m = 3 has been proved in [2] and the case m = 4 has been proved
in [4]. Let m = 5. Assume that we have proved that for any j, m — 1 < j, every
balanced (m — 1)-quasistar of order 2/ can be embedded into the j-cube.

Let T be a balanced m-quasistar of order 2". Then T contains exactly one vertex
of degree m, say a vertex s, and exactly m vertices of degree one, say vertices ty, ..., t,,.
We denote by b; the distance between s and ¢; in T for each i, 1 < i < m. Without
loss of generality we assume that by = ... = b,,. Clearly, by + ... + b,, = 2" — 1.
Since T is balanced, it is easy to see that there exists exactly one h, 1 £ h < m,
such that b, is odd.

We shall first prove that

(17) by + .o by 22"+ 2(m—4)+ 1.
To the contrary, let '
(17) by + ...+ by £2"7" +2(m — 4).

2.2 =1 =2"— L= m(2 " + 2m - 8)|(m — 2),

Since by + ... + b, =2" — L and b, = ... Z b, it follows from (17) that
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and thus
2m—2).2" ' —=(m—2)Sm2"" +2m* — 8m.
Since m < n, we get that
(m—4)2""' <2m?* —Tm — 2.

Hence m < 4, which is a contradiction. Thus, we have proved (17).
This means that there exist I < {1,..., m — 2}, even positive integers a; for each

iel, and exactly one f el such that

ar = by,

a; <b; foreach iel —{f}, and

Ya;=2""1.

iel
For each i el we denote by v; and w; the vertices which belong to the path con-
necting s and t; in T and such that the distance between s and v; equals b; — a;,
and the distance between s and w; equals b; — a; + 1. Obviously, the vertices v;
(i €I) are mutually distinct, and v, = s. Denote

C={vw;iel}.
Moreover, we denote by T’ the component of T — C which contains the vertex s.
It is clear that T is a balanced (m — 1)-quasistar of order 2™~ .

Let G be an n-cube, and let {G’, G"} be a canonical partition of G. According to
the induction hypothesis, T’ can be embedded into G'. Thus, we can assume that T’
is a subgraph of G'. Denote ’

u; = v;/G" for iel.

It follows from Theorem 1 that there exists a set of |I| vertexdisjoint paths P;, (i € I)
in G" such that P(;)is a u;-path of order a; for each i € I. The subgraph of G induced by

E(T") U {vu;; iel} U E(Pg)
iel
is isomorphic to T, which completes the proof of the theorem.

Acknowledgement. The author wishes to thank I. Havel and P. Liebl for their
stimulating interest.
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