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Let S be a semigroup. By a tolerance T on S we mean a reflexive and symmetric
binary relation on S with the Substitution Property with respect to the multiplication
in S, i.e., T'is a subsemigroup of the direct product S x S. The set of all tolerances
on S constitutes an algebraic lattice Tol (S) with respect to the set inclusion [1].
The lattice Con (S) of all congruences on S is not its sublattice in general.

Let A and B be two semigroups, A x B their direct product and Te Tol (4 x B).
T is said to be directly tolerance decomposable if there exist T, € Tol (4) and T, €
€ Tol(B)suchthatT = Ty x T,.(Wehave(x, y)eT, x T;ifand onlyif (pr,x, pr;y)e
e T, and (pr,x, pryy)€T,.) Analogously © € Con (A x B) is called directly con-
gruence decomposable if there exist @, € Con(A) and @, € Con (B) such that
@ = 0, x 0,. If every tolerance (congruence) on A x B is directly tolerance
(congruence) decomposable, we say that A x Bhas directly decomposable tolerances
(congruences). Abbreviated: 4 x B has DDT (DDC, respectively).

The aim of this paper is to describe all direct products of commutative semigroups
which have DDT or DDC. Congruences and tolerances on direct products were
studied in several papers ([2], [3], and [4]). Terminology and notation not defined
here may be found in [5] and [6].

Let S be a semigroup. The notation S* stands for S if S has an identity, otherwise
for S with an identity adjoined. For a, be S we denote by T(a, b) (Os(a, b)) the
least tolerance (congruence) on S containing (a, b), i.e., Ts(a, b) (O(a, b)) is the
principal tolerance (congruence) on S generated by (a, b).

It is very easy to verify the following.

Lemma 1. Let S be a commutative group and let g,be S, a = b. Then for
x,y€S, x % y, we have (x, y) e Tg(a, b) if and only if there exist z€ S and a po-
sitive integer m such that either (x, y) = (a, b)" (z, z) or (x, y) = (b, a)" (2, z).

Theorem 1. Let A, B be non-trivial semigroups. If A x B has DDT or DDC,
then A and B are simple.
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Proof. We shall show that A is simple. Let a;, a, € A. Choose b,, b, € B with
b, # b,. Put R = (4'a,A" x B) x (4'a,A' x B)Uid xp. It is easy to show
that R is a congruence on 4 x B and ((a,, b,), (a5, b,)) € R.

Case 1. Suppose that 4 x B has DDT. Put T = Tyxs((az, by), (az, b,)). Then
T =T, x T,, where T, € Tol(4) and T, € Tol(B). Hence we have (b, b,)e T, and
so ((ay, by),(ay, b,))eT < R. Thus a, € A'a,A", which means that A4 is simple.

Case 2. Assume that 4 x B has DDC. Using the same method of proof as in
Case 1, we obtain that ((ay, by),(ay, by))€ @4x5((ay, by), (a3, by)) = R and so
a, € A'a,A'. Therefore A is simple.

The following lemma shows that the simplicity of non-trivial semigroups 4 and B
need not imply that A x B has DDT or DDC.

Lemma 2. Let L be a two-element left zero semigroup. Then L x L has neither
DDT nor DDC.

Proof. Let L= {e, f}. It is clear that Tol(L).= Con(L) = {id,, L x L}. We have
cardid, = 2 and card L x L= 4. Put @ =id.., U {((e, e), (/. 1)), (/. f), (e, €))}.
Evidently ©® € Con (L x L) < Tol (L x L) and card @ = 6. If @ = T, x T,, where
T,, T, € Tol (L), then card @ € {4, 8, 16}, which is a contradiction.

Lemma 3. Let A, B be semigroup and let a,,a,€ A, b,, b, € B. Suppose that
A x B has DDT. If (x, y)e T4(a,, a,) and (u,v) e Ty(by, b,), then ((x,u), (y,v))e
€ Tyxp((ay, by), (az, by)).

Proof. Put T = T, 4((ay, by), (as, by)). If A x B has DDT, then T =T, x T,
where T, € Tol (A4) and T, € Tol (B). Hence we have (a,, a,) €Ty, (b, b,)e T, and
so (x, y) €Ty, (u, v) € T,. Therefore ((x, u), (y,v))eTy x T, =T.

For any element x of a semigroup S we denote by (x) the subsemigroup of S
generated by x. If S is a periodic group, then by the order of xeS we mean ord x =
= card {(x).

Theorem 2. Let A, B be non-trivial commutative semigroups. Then the following

conditions are equivalent:
(i) A x B has DDT;

(ii) A x B has DDC;

(iii) A, B are periodic groups and ord a, ord b are relatively prime whenever
ae A, beB.

Proof. (i) or (ii) = (iii). It is well known that every commutative simple semi-
group S is a group and Tol (S) = Con (S). According to Theorem 1, 4 and B are
groups and A x B has DDT. Let e = e?e€ A and f = f? € B.

Now we shall show that the groups 4 and B are periodic. By way of contradiction,
we assume that a is an aperiodic element of A. Choose b € B with b = f. It follows
from Lemma 3 that ((a?, f), (a*, b)) € Tsxs((a. ), (a%, b)). According to Lemma 1,
we have the following possibilities: '

Case 1. (a%,f) = (a,f)"(x, y) and (a*, b) = (a?, b)" (x, y) for some positive
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integer m, x€ A and y € B. Then a® = a™x, a* = a®"x and so a* = a"*+2. Hence
we have m = 2 and so f = fy = y, b = b®y = b*. Consequently b = f, which is
a contradiction.

Case 2. (a%,f) = (a®,b)"(x, ) and (a*, b) = (a,f)"(x, y) for some positive
integer m, x € A and y € B. Thus we have a? = a®"x, a* = a™x and so a"** = 42
Hence a™*2 = e, which is a contradiction.

Consequently, 4 is a periodic group. Analogously we can show that B is a periodic
group.

Finally, we shall prove that ord a, ord b are relatively prime whenever a € A4,
b e B. We can suppose that a + e and b =% f. Let k be a positive integer such that k
divides ord a and ord b. According to Lemma 3, we have ((a, f), (e, f)) € Ty« 5((a, f),
(e, b)). Lemma 1 implies the following two possibilities:

Case 1. (a,f) = (a,f)" (x, y) and (e, f) = (e, b)" (x, y) for some positive integer
m,x€ A and yeB. Then x = e, y = f and so a = a™, f = b™. Hence k divides
m — 1 and m. Consequently, k divides 1.

Case 2. (a,f) = (e, b)" (x, y) and (e, f) = (a,f)" (x, y) for some positive integer
m,x€ A and y e B. Thus we have x = a, y = fand so e = a™*!, f = b™. Hence k
divides m + 1 and m. Consequently, k divides 1.

Therefore ord a and ord b are relatively prime.

(iii) = (i) and (ii). Let T be a tolerance on 4 x B, where 4 and B are periodic
commutative groups. Put (a,c)e T, if and only if there exist u,ve B such that
((a, u), (c,v)) € T. Analogously we put (b, d)e T, if and only if ((x, b), (y,d))e T
for some x, y € A. It is easy to show that T, € Tol (4), T, € Tol(B)and T = T} x T,.

Now, we shall prove that T} x T, = T. Let (a,c)eT, and (b,d)eT,. Then
((a,u), (c,v))e T and ((x, b), (y,d))eT for some x,ye A and u,ve B. Hence we
have ((ac™', uv™"), (e,f)) e T and ((xy~', bd™?), (e,f)) € T, where e = ¢* € A and
f = f*e B. By hypothesis ord ac™* and ord uv~! are relatively prime and so there
exist integers i and j such that

(1) iordac™ + jorduv ™' =1.
Analogously we can get
(2) rordxy™! + sord bd™! =1

for some integers r and s. Put k = jord uv™' and m = rord xy~!. Then by (1)
and (2) we have ((ac™', 1), (e, f)) = ((ac™*, uv™ ), (e, f)*)e T and ((e, bd ™", (e, f)) =
= ((xy~',bd™")", (e,f)") € T. Therefore ((ac™!, bd~1), (e,f))eT and so ((a, b),
(¢, d)) e T. This means that T; x T, < T. Consequently T =T, x T, and so A x B
has DDT. Since A, B are groups, A x B has DDC.

Let 4; (i = 1,2,...,n) be a semigroup, by induction we can define that their
their direct product X A4; has directly decomposable tolerances (congruences).

i=1

Abbreviated: X A4; has DDT (DDC, respectively).
i=1
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Theorem 3. Let A; (i =12,..., n) be non-trivial commutative semigroups. Then
the following conditions are equivalent

(i) X 4; has DDT;

i=1
(i) X 4; has DDC;
i=1

(iii) 4; (i = 1,2,...,n) is a periodic group and ord a;, ord a, are relatively
prime whenever a; € A, a, € 4y and j, ke {1, 2,..., n},j * k.

The proof follows from Theorem 2 by induction.

If Vis a class of semigroups such that for every pair A, Be V, A x B has DDT
(DDC), V is said to have directly decomposable tolerances (congruences). Ab-
breviated: ¥ has DDT (DDC, respectively).

Theorem 4. Every variety of semigroups having DDT or DDC is trivial.

Proof. Let V be a variety of semigroups having DDT or DDC. By way of contra-
diction we suppose that there exists 4 of ¥ such that card 4 = 2. Let a € A. Then
{a) e V and so <{a) x {a) has DDT or DDC. It follows from Theorem 2 that
card {a> = 1 and so a? = a. Hence 4 is a band. It is well known that A4 is a semilat-
tice S of rectangular bands. Thus we have S e Vand so S x S has DDT or DDC.
Theorem 2 implies card S = 1 and so A4 is a rectangular band. Then there exists
either a two-element left zero subsemigroup Lof A or a two-element right zero sub-
semigroup R of A. Thus we have either Le V or R € V, which is a contradiction,
(see Lemma 2 and its dual).
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