Czechoslovak Mathematical Journal

Bohdan Zelinka
A remark on signed posets and signed graphs

Czechoslovak Mathematical Journal, Vol. 38 (1988), No. 4, 673-676

Persistent URL: http://dml.cz/dmlcz/102262

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102262
http://dml.cz

Czechoslovak Mathematical Journal, 38 (113) 1988, Praha

A REMARK ON SIGNED POSETS AND SIGNED GRAPHS

BOHDAN ZELINKA, Liberec

(Received October 20, 1986)

In [1] signed posets and signed graphs corresponding to them are studied. The
concept of a signed partially ordered set (shortly poset) is defined by means of the
Mobius function on a poset.

Let P be a finite poset. The Mobius function g on P is a mapping of P x P into
the set of integers defined in such a way that p(x,y) =1 for x =y, u(x,y) =
= — ) u(x,z)for x < y and p(x, y) = 0 otherwise. A poset P is called signed,

xSz<y
if the Mbius function on P attains only the values —1,0 and 1.

A signed graph is an undirected graph together with a mapping of its edge set
into the set {1, —1}. In other words, a graph is signed, if its edge set is partitioned
into two disjoint sets; the set of positive edges and the set of negative edges.

To a signed poset P a signed graph S(P) is assigned in such a way that the vertex
set of S(P) is P and two distinet vertices x, y are joined by a positive (or negative)
edge if and only if u(x, y) = 1 (or p(x, y) = —1, respectively).

In [1] a problem is posed, for which signed graphs S do we have S(P) = S for
some poset P. We shall consider a particular case when all edges of S(P) are negative.
Some results concerning this case are given in Theorem 1 in [1]. If all edges of S(P)
are negative, then S(P) contains no triangle, is isomorphic to the Hasse diagram
of P, and each interval [x, y] for x < y in P is a chain. The condition that S contains
no triangle is not sufficient for S to be S(P) for some P.

Before formulating a theorem, we introduce some concepts concerning trees.

A rooted tree is an ordered pair (T, r), where Tis a tree and r is one of its vertices,
called the root. (It may be chosen arbitrarily.) If a rcoted tree (T, r) is given and v
is a vertex of T, then the subtree of (T, r) rooted at v is the rooted tree (", v), where T"
is the subtree of T whose vertex set is the set of all vertices x or T with the property
that v lies on the path connecting r and x in T.

Now we can prove a theorem.

Theorem. Let S be a finite undirected signed graph, all of whose edges are
negative. Then the following two assertions are equivalent:

(i) There exists a signed poset P such that S = S(P).
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(ii) There exist two-empty disjoint subsets X, Y of V(S) and a system T of sub-
trees of S with the following properties:

(a) The graph S is the union of all trees of .

(b) There exists a one-to-one correspondence between the elements x € X and
trees T(x) € 7 such that x e V(T(x)) and x¢ U V(T(y)) for all xe X.
yeX —{x}

(c) All terminal vertices of all trees of I are in Y.

(d) If two trees T(x,), T(x,) from T have a common vertex v, then there exists
a tree Ty such that (Ty, v) is a subtree of both(T(x,), x;)and(T(x,),x,) rooted at v.

Remark. If G is a graph, then V(G) denotes (as usual) the vertex set of G.

Proof. (i) = (ii). Let there exist a poset P such that S = S(P). According to [1],
S is isomorphic to the Hasse diagram of P. We may consider it directly as the Hasse
diagram of P; thus we take V(S) = P. Two vertices x, y of S are adjacent if and only
if x covers y or y covers x. We introduce an orientation in S in such a way that an
edge joining x and y is directed from x to y if and only if y covers x. Let S, be the
directed graph obtained in this way from S. The graph S is evidently acyclic. We shall
prove that for any two vertices u, v of S, there exists at most one directed path from
u to v. Suppose that there exist two such paths Py, P,. If we go along P, from u to v,
then let x,, x; be the vertices of P, such that x,x, is the first edge of P, not belonging
to P,. The vertex x, belongs to both P, and P,. If also x; belongs to P,, then there
exists a subpath of P, from x, to x; of a length at least 2. In the ordering of P the
inner vertices of this path are greater than x, and less than x,, hence x; does not
cover x, and this is a contradiction with the assumption that S is the Hasse diagram
of P. Therefore x; does not belong to P,. Let x, be such a vertex that xyx, is an
edge of P,; the vertex x, does not belong to P, for the same reason as x; does not
belong to P,. Theset {y e P | y = x; & y = x,} is non-empty, because it contains v.
Let x; be a minimal element of this set. Then x; > xo and p(xo, x3) =
= — Y ux,z). We have u(xo.Xo) =1, p(xe, X;) = p(x, X,) = —1 and

xX0Sz<x3
i(xg,y) £0 for all y & x. Hencz Y pxo, z) < u(Xo, Xo) + (X0, X1) +
X0SZ<x3
+ p(xg, x;) = —1and u(x,, x3) = 1, which is a contradiction. Thus we have proved

that there exists at most one directed path from u to v in S,. Let X (or Y) be the set
of all sources (or sinks, respzctively) of S,. As S, is finite and acyclic, X + 0 and
Y % 0. Let x € X and let Ty(x) be the subgraph of S, whose vertex set is the set of
all vertices of S, to which directed paths from x go. Suppose that Ty(x) contains
a subgraph H which (considered as undirected) is a circuit. The graph H, being
a subgraph of an acyclic graph, is acyclic and contains a sink y. Then it contains
vertices y,, ¥, such that y,y, y,y are edges of H. As y,, y, belong to To(x), there
exist a directed path P, from x to y; and a directed path P, from x to y,. If we add
the vertex y and the edge y,y (or y,y) to Py (or to P,), we obtain a path P} (or Pj,
respectively) from x to y. The paths P}, P are distinct, because their last edges are
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distinct; this is a contradiction with the above proved assertion. Hence Ty(x),
considered as undirected, is a tree. For each x € X let T(x) be the tree Ty(x) considered
as undirected, i.e. as a subtree of S. Let x;, x, be two distinct vertices from X and
consider Ty(x;) and Ty(x,). Suppose that they have a common vertex v and let Tg(v)
be the subgraph of S, induced by the set of all vertices to which directed paths
from v go. As directed paths go to v from both x; and x,, there are also directed
paths from x; and x, to all vertices of Ty(v), and Tj(v) is a common subgraph of
To(x,) and To(x,). If T'(v) is the graph T4(v) considered as undirected, then evidently
(T"(v), v) is a subtree of both (T(x,), x;) and (T(x,), x,) rooted at v. Therefore (d)
holds. The validity of (a) is evident. Each tree T(x) evidently contains x and cannot
contain any y € X — {x}, because all vertices of X are sources of S,; this implies (b).
The condition (c) follows from the fact that Y is the set of all sinks of S,.

(ii) = (i). Let (ii) hold. We direct any tree T(x) in such a way that x becomes its
unique source (this can be done in exactly one way). Such an orientation causes
that each subtree of (T(x), x) rooted at a vertex v is directed so that v is its unique
source. Hence if some edge of S belongs to more than one tree from 7, by (d) it is
directed in the same way in the orientations of all of them. The graph obtained by
such an orientation from S will be denoted by Sy; evidently it is acyclic. Let u, v
be two vertices of S, such that there exists a directed path from u to v. Each directed
path from u must lie in the tree T'(u) with the property that (T"(u), u) is a subtree
of (T(x), x) rooted at v for any x € X such that v is in T(x). This implies that the
directed path from u to v is unique. Now on P = V(S) we can define a partial
ordering < in such a way that x < y if and only if there exists a directed path from x
to y in S,. In the poset P with this ordering every interval [x, y] is a chain; by Theo-
rem 1 from [1] this implies (i). O

From this result some corollaries easily follow.
Corollary 1. A finite undirected graph S satisfies (i) if and only if it can be di-

rected in such a way that for any two vertices x, y there exists at most one directed
path from x to y.

Corollary 2. Let a finite undirected graph contain two subsets X, Y of its vertex
set such that (i) holds for them. Then (ii) holds also in the case when we inter-
change X and Y.

Corollary 3. Let P be a finite signed poset for which all edges of S(P) are negative.
Let P have the greatest element or the least element. Then S(P) is a tree.

Corollary 4. Let P be a finite signed poset for which all edges ofS(P) are negative.
Let P have the greatest element and the least element. Then P is a chain and S(P)
is a path.

Corollary 5. Every finite signed bipartite graph S in which all edges are negative
is isomorphic to S(P) for some signed poset P.
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Note the in this case X and Y may be the bipartition classes of S and all trees
of J may be stars.

Corollary 6. If a finite signed graph in which all edges are negative is isomorphic
to S(P) for some signed poset P, then every graph obtained from S by subdividing
its edges has the same property.

At the end we remark that Theorem enables us to construct graphs with the
mentioned property, but another theorem would be needed which would enable us
to decide whether a given graphs has this property.
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