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Partial monounary algebras were investigated in several papers, e.g., [1], [2],
[7]-[12].

To each partial monounary algebra & = (4, f) there corresponds a directed
graph G(«#) = (4, E) without loops and multiple edges which is defined as follows:
an ordered pair (a, b) of distinct elements of 4 belongs to E iff f(a) = b.

A subset B of A will be called convex (in &) if, whenever a, by, b, are distinct
elements of A having the property that by, b, € B and there is a path (in G(=))
going from b, to b, and containing the element a, then a belongs to B as well.

We denote by Co(#) the system of all convex subsets of /. The system Co(=/)
is partially ordered by inclusion, and it is a lattice.

The aim of the present paper is to investigate the question to what extent the partial
operation f on A is determined by the system Co(.sz!). We shall describe all partial
operations g on A such that Co(4,f) = Co(4, g). In particular, necessary and
sufficient conditions for f will be found under which f is uniquely determined by the
system Co(4, f).

Convex subsets of partially ordered sets were studied by Birkhoff and Bennett [6];
cf. also Bennett and Birkhoff [5] and Bennett [3], [4]. Some results of the article
[6] are applied in the present paper.

1. BASIC NOTATION

By a (partial) monounary algebra we understand a pair (4, f), where 4 is a non-
empty set, f: A — Aisa(partial) mapping. Let % be the class of all partial monounary
algebras, 2 the class of all partially ordered sets and £, the class of all partially
ordered sets with the greatest element.

Let (4,f)e %, x € A, ne N, where N is the set of all positive integers. Put f%(x) =
= x. Assume that f"~'(x) exists and f"~'(x) = z. If f(z) exists in (4, f), then we
set f"(x) = f(z). Further, f7"(x) = {ye 4d: f*(y) = x}. If x,ye 4, ["(x) = f"(y)
for some n,me N U {0}, then we write x =, y. The relation = is an equivalence
relation on 4. A partial monounary algebra is said to be connected, if 4/= is
a one-element set. If X € A=, then X is called a connected component of (4, f).
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If x, ye 4, neN, then f*(x) = y means that f"(x) exists and coincides with y;
on the other hand, f"(x) + y means that if f"(x) exists, then it does not coincide
with y.

L.1. Notation. Let (N, f;)e % (for i = 0,1, 2, 3) be such that fo(n) = n + 1,
fi(n + 1) =fy(n + 1) = f3(n + 1) = n for each neN, f,(1) = 1, f5(1) = 2, and
f(1) does not exist. The class of all (4, f) which are isomorphic to a subalgebra
of (N, f;) for some i € {0, ..., 3} will be denoted by %,.

1.2. Notation. Let (A4, f)€ % — %, be connected and such that one of the fol-
lowing conditions is valid:

(a) there is c € A with f(c) = ¢;

(b) there is ¢ € 4 such that f(c) does not exist;

(c) there is c e A with f~*(c) = {f(c)} =* {c}.

The class of all such (4, f) is denoted by the symbol %;.

1.3. Notation. Let %, be the class of all connected monounary algebras which
possess a two-element cycle and do not belong to %, U %,. Further, let % be the
class of all connected monounary algebras which contain a cycle with more than 2
elements, and %, the class of all connected monounary algebras which are not in
Uy v %l.u Uy O Us.

1.4. Remark. Observe that (A4, f)e %, if and only if (4,f)e % is connected,
complete, contains no cycle and either () thereis {a,: n € Z} = A suchthatf(a,.,) =
= a, for each n € Z, or (b) there are a, b€ 4, a * b, such that f(a) = f(b).

Remark. We shall use the symbols v, A, < for the lattice Co(4, f). Further,
instead of {a} € Co(4, f) w= shall write a € Co(4, f) and instead of @ € Co(4, f) We
shall use also the symbol 0.

1.5. Lemma. If (A,f) € %, then Co(A,f) is a complete lattice.

Proof. The assertion is obvious.

1.6. Lemma. If (4, f) € %, then Co(A, f) is an atomic lattice.

Proof. Every nonempty convex subset of A is the join (in fact the union) of its
(convex) one-element subsets a € A. Since for each a € 4, a is an atom in Co(4, f)s
we obtain that Co(4, f) is atomic.

2. PARTIAL MONOUNARY ALGEBRAS AND POSETS

In this section we shall investigate whether Co(4, f) = Co(P) for some Pe Z,
provided (A,f) € Uy U ... U U, is given.

2.1. Lemma. If (A,f)e Uy %, and there is ce A such that either f(c) = ¢
or f(c) does not exist, then there is (4, X) € ?, such that Co(4,f) = Co(4, X).

Proof. Let a, be A. Put a X b if and only if there is n e N U {0} with f"(a) = b.
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Then c is the greatest element of (4, X), (4, X)e #,. Further, it is obvious that
Co(d, f) = Co(4, <).

2.2. Lemma. If (A,f)e%Uyw %, and there is ce A with f~'(c) = {f(c)} *+ ¢,
then there is (A, <) e 2, such that Co(4, f) = Co(4, X).

Proof. For a,be A, b % ¢ put a < b if and only if there is ne N U {0} with
f"(a) = b. Further, let a < ¢ for each a € A. Then < is a partial order on 4 and ¢
is the greatest element of (4, <). Obviously, Con(4, f) = Con(4, X).

2.3. Lemma. Let (4,f) € U, U U, and let neither the assumption of 2.1, nor the
assumption of 2.2 be valid. Then there is (4, X)e ? — P, such that Co(A,f) =
= Co(4, X).

Proof. It follows from the assumption and from 1.4 that (4, f) is connected and
possesses no cycle. For a, b e A put a < b if there is n € N U {0} such that f*(a) = b.
Then (4, X)e ? — 2, and Co(4, f) = Co(4, X).

2.3.1. Remark. The partially ordered set (4, <) defined in the proofs of 2.1—2.3
will be called a poset corresponding to a given (A, f) e Uy Uy L U,

Observe that (4, <) corresponding to (4, f) is uniquely determined except the
case when (4, f) € %, is a two-element cycle; in the following proofs when (4.1)
is a two-element cycle, take arbitrary (4, <) corresponding to (4, f).

2.4. Lemma. If (A,f) €U, P e P, then Co(A, f) and Co(P) are not isomorphic.

Proof. If P e 2, then Co(P) is join-semidistributive (i.e. a, b, c€ Co(P),a v b =
=a vV cimplyav b= (av (b A c)))according to [6]. Let C be a cycle of (4, f).
Then card C > 2, thus there are distinct elements a, b, ce C and we have a Vv ¢ =
=C=avbC+a=av0=av(bac)(inCo(4,f)).

2.5. Lemma. If (A,f) € %,, P 2, then Co(A, f) and Co(P) are not isomorphic.
Proof. Since (A,f) €% ,, there are distinct elements a, b,c,d € A such that

f(a) = f(c) = b, f(b) = f(d) = c. Then

()b=ave,

2)c<bvd
Let Co(4,f) = Co(P, X) for some (P, X)e 2. Since A is the set of atoms of
Co(4, f) and P is the set of atoms of Co(P), without loss of generality we may assume
that A = P. Then (1) and (2) yield

(1) either a Kb =<c or ¢ 2 b= aq,

(27) either b= ¢ Zdord=c=Xb.
Thus either

()a=xb=zc=d,
or

4d=2c=2b=Za.
If (3) is valid, then b < a v din Co(P),and b £ a v din Co(4, f), a contradiction;
if (4) holds, then ¢ < a v din Co(P),c £ a v din Co(4, f), which is a contradiction.
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3. COHERENCY OF PARTIAL MONOUNARY ALGEBRAS

In this section we shall prove some auxiliary results concerning coherency of
partial monounary algebras.

3.1. Notation. If (4, f) € %, we put

Si(4,f) = {xe A: f7}(x) = 0, f(x) * x and either f(x) does not exist or f*(x) =
= f(x)} U {x € 4: the connected component containing x is a two-element cycle},

S(A, f) = Sy(A, f) v {f(x): f1(f(x)) = f(x) € Sy(4,f)} U {xe A: the connected

component containing X is a one-element set}.

Example. If (A,f) is a partial monounary algebra from Fig. 1 or Fig. 2, then
Sy(A,f) = {a, b}, S(A,f) = {a, b, c}
or S,(A4,f) = {a, by, by} = S(4, ), respectively.

Fig. 1 d Fig. 2

3.1.1. Remark. If (4,f)e %, xe S(A4,f), then x belongs to a connected com-
ponent A’ of (4, f) such that (4',f)e %, v %, and (4’, f) satisfies either the as-
sumption of 2.1 or the assumption of 2.2.

3.1.2. Remark. If (4, f) € %, then A — S(A4, f) is closed under f.

3.2. Lemma. Let (A, f) e %, x € A. Then x € S(A, f) if and only if

(i) x v y covers x and y (in Co(A, f)) for each y e A — {x}, and

(i) if zy, z, are distinct elements of A — {x}, then x £z, v z,.

Proof. Let x € S(4, f). It follows from the definition that if y € 4 — {x}, then
x v y = {x, y}, which covers x and y. Now 3.1.1, 2.1 and 2.2 imply that there is
(4’, £) corresponding to (4, f), where A’ is the connected component of (4, f)
containing x. Let z,,z,e A — {x}, x £ z, V z,. Then z, z, € A’ and either

(1) zy X x = 23,
or

(@) z2=2x=z,.
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We can assume that (1) is valid. This yields that f(z;) = x or z; = x, hence f(z,) = x,
and analogously, f(x) = z,. Thus x ¢ S,(4, f), since f~*(x) # 0 and x does not
belong to a two-element cycle. We have x € S(4, f), therefore there is y € S,(4, f)
such that x = f(y), f~'(f(v)) — f(») < Si(4,f). Since the connected component
containing y is the connected component containing x and x ¢ Sl(A,f), we obtain
that it is not a two-element cycle. Further,
z; = f(x) = (),

thus from the definition of S;(4, f) we have that f(y) = f(y) = x, i.e. z, = x, which
is a contradiction.

Suppose that (i) and (i) hold. First assume that f(x) does not exist. If f “2(x) * 0,
there are distinct elements x,, x, € A with f(x;) = x,, f(x,) = x, and then x; <
< X; V Xy = {x;, %} < {x;, %, X} =x; Vx, a contradiction to (i). Hence
f7*(x) =0 and for yef~'(x) we obtain that ye S,(4,f), thus xeS(4,[). If
f(x) = x, the proof is analogous. Suppose that f(x) # x. If f?(x) exists and f?(x) ¢
¢ {x, f(x)}, we get a contradiction, since

x<xV f(x) <x v fix).

Therefore

(3) either f2(x) does not exist or f3(x)e {x, f(x)}.

Let there be zef *(x) — {f(x)}. Then x < z v f(x), z and f(x) are distinct,
z % x # f(x), a contradiction to (ii). This, according to (3), implies that x € S,(4, f),
thus x € S(4, f).

3.3. Definition. (A,f) € % is said to be coherent, if it is connected and either
card A =1 or S(4,f) = 0.

A poset P is called coherent, if it is connected and no maximal element of P covers
any minimal element of P (cf. [6]).

3.4. Lemma. (i) If (A, f) €U, 0 U3 Uy, then (A, f) is coherent.

(ii) If (A, f) € Uy, then (A, f) is coherent if and only if card A =+ 2.

(iii) If (A,f)e Uy U U, then (A, f) is coherent if and only if the poset (A, X)
corresponding to (A, f) is coherent.

Proof. Let (4, f) be a connected partial monounary algebra. It follows from 3.1.1
that if S(A4,f) = 0, then (A,f)e @, %,. Thus we obtain that (i) is valid. The
assertion (ii) is obvious.

Let (A, f)e o0 U,.

If card A = 1, then (iii) holds. Let card A > 1. Suppose that (A4, f) is not coherent,
i.e. S(A,f) # 0. Thus 3.1.1 implies that one of the following conditions is satisfied:

(a) there are x, c € 4 such that f(c) = ¢, xef~'(c), f7'(x) = 0;

(b) there are x, c € A such that f(c) does not exist, xe f~*(c), f~!(x) = 0;

(c) A is a two-element cycle.

In each of the cases (a)—(c) a minimal element of (4, X) is covered by a maximal
clement, therefore (4, <) is not coherent.

Let (4, <) be not coherent. Let ¢, x € 4 be such that ¢ is a maximal element of
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(4, X), x is a minimal element of (4, <) and x is covered by c. Then some of the
following conditions is satisfied:

(81) £(0) = ¢ x5~ 1) = 0

(b1) f(c) does not exist, x € f ~'(c), f ~!(x) = 0;

(c1) A ={x,¢}, f(x) = ¢, f(c) = x.
Therefore x € S(4, f), and (4, f) is not coherent.

4. THE CLASSES #Z; (i=0,1,...,4)

In this section we thoroughly investigate the classes %; (i = 0, 1,...,4) in order
to obtain the following result. Let i € {0, 1,...,4}, let (4, f) and (4, g) be partial
monounary algebras with coherent connected components such that Co(4, f) =
= Co(4, g). If A’ is a connected component of (4, f) and (4’,f) e %;, then A’ is
a connected component of (4, g) and (4’, g) € %;.

4.1.1. Lemma. Let the following conditions be satisfied:

(i) (4,f) is a partial monounary algebra with coherent connected components,
n>2 N, ={1,2,..,n} or Ny =N, A" = {a;:keN,} < 4;

(i) (a) ay v a3 * a, Vv as;

(b) a;y Vv a, covers a; v a,_, (in Co(A, f)) for each ke N, — {1};
(c) if xeA — A',ae A, then x v a covers x and a (in Co(A4, f)).
Then A’ is a connected component of (A, f).

Proof. Let the assumption hold. By 4; we denote the connected component of
(A, f) containing a,. Assume that there is x € A, — A’. We shall consider the fol-
lowing two cases:

(1) x belongs to some cycle C or f(x) does not exist;

(2) (1) does not hold.

Let (1) be valid. If a € A’, then (ii) (c) implies that some of the following conditions
is satisfied:

(3.1) {a,x} = C;

(3:2) f(a) = x and if x belongs to a cycle C, then a ¢ C;

(33) a¢ A,

Thus for a, € A’ (and analogously for a,, a;) either (3.1) or (3.2) or (3.3) holds.
If f(x) does not exist, then (3) (i.e. (3.1)—(3.3)) implies that f(a,) = f(a,) = f(as) =
= x, thus a; v a; does not cover a; V a,, a contradiction to (ii) (b). Therefore x
belongs to a cycle C and the only possibilities (in view of (3) and (ii) (b)) are:

(4.1) a, ¢C, f(ay) = x, {ay, a3} = C;

(4.2) {ay,a,} = C, a3 ¢C, f(as) = x.

If (4.1) holds, then a, vV a, = a, V as, thus (ii) (b) is not valid. If (4.2) holds, then
a; vV az = a, V as, a contradiction to (ii) (a). Hence we obtain that (1) is not valid,
ie.,

(¥) xe A, — A’ implies that f(x) exists and x does not belong to a cycle.
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For a € A’, (ii) (c) yields that some of the following conditions is satisfied:

(5.1) f(x) = a,

(5.2) f(a) = X, .

(5.3) a¢ {fi(x):ieN}, x¢{f(a):ieN}.
This is valid for a,, a,,ase A" and since a, < a; V az (in view of (ii) (b)), we
obtain either .

(6.1) ay ¢ {fi(x):ieN}, x¢{f(a,): ieN}
or

(6.2) f(x) = ay.
Therefore

(6.3) ay ¢ {fi(x):ieN, i > 1}, x¢{f(a,): i e N}.
There are je N, Ie N U {0} with

Fi(x) = fay), FU(x) * f(ay) for (o, ly) * (. 1),
jl é J s ll é l
Pur f/(x) = b. First, let j > 1. Then I = 1, b¢ A’ (in view of the conditions (5))
and (ii) (c) implies that I = 1. From (x) for the element b e 4; — A" we have that
f(b) exists and b does not belong to a cycle. Put b’ = f(b). From (5) we obtain that
b’ e A’ (if we consider the elements b’, a,), b’ = a; for some ie N — {1}. Then
a,£a,vaz=..<a;va =/{a,bb},
b¢ A, hence i = 2. But
a,<bva,<b va=a,va,

which is a contradiction to (i) (b). Now let j = 1, > 1. Then (ii) (c) (for b and a,)
yields that there is i € N, i + 1 such that b = a;. Since a; Vv a; does not cover a,,
we obtain that i # 2. From the assumption that each connected component of
(4, f) is coherent we conclude that either

(7.1) there is y e A with f(y) = x, or

(7.2) f(b) = b =% b.
If (7.1) holds, then (5) (for y, a;) implies that y € A, y = a; for some j e N. We get

ay £ ayvoa;={aga;,
thus j = 2 and
ay v ay = {ay, a,§ £ {ay, f(a,), oo fiay) = a;} =a; v a;,

a contradiction. If (7.2) holds, then (5) (for b’, a,) yields that b’ e A’ and (5) (for
x, b') implies that b’ ¢ A’, which is a contradiction. Now suppose that j = 1, | = 1.
As above, (7.1) or (7.2) is valid. If be A’, b = a; for some i€ N, i > 1, then

a,Sa;vay<..2a;va ={aa;}
and i = 2. If (7.1) holds, then y v a, = {y, x, a,} does not cover a,, and (ii) (c)
yields that y e 4’. Thus (ii) (b) implies a, < a; v y = {ay, y}, which is a contra-
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diction. If (7.2) is valid, then b’ v a, does not cover a,, thus b’ € A’ according to
(ii) (c). Then x v b’ does not cover x, which contradicts (ii) (c). Therefore b ¢ A'.
According to () for the element b we get that f(b) exists and b does not belong to
a cycle. Put b' = f(b). Then (5) (for b’ and a,) implies that b’ € 4’, but (5) (for x
and b’) yields that then b’ ¢ A’, a contradiction. Finally, assume thatj = 1,1 = 0, i.e.
b = a,. We have either (7.1) or (7.2); first let (7.1) be valid. According to (ii) (c) we
get ye A, i.e., there is je N, j > 1 with y = a;. Since a, < a; Vv a; = {a;, X, a;},
the relation j = 2 holds. In view of (5) (for x and a3) we obtain that either f(a;) = x
oray ¢ {f(x):ieN}, x¢{f(as): i e N}. The both cases contradict (ii) (b) (a, v a3
does not cover a; v a,). Now let (7.2) hold. From (ii) (¢) (for x and b’) we get that
b’ ¢ A’, and then (5) (for b" and as, for x and a;) implies

(8) az ¢ {fi(b'): ieN}, b' ¢ {f(as): ie N}.
Therefore a, v a3 = {a,, as}, a contradiction to (ii) (b).

In each case we have got a contradiction, thus

(9) Ay — A’ =0, ie., A, < A'. .
Since a, < a, v a;foreach i > 1, we obtain that a,, a,, a, belong to the same con-
nected component (for i e N — {1, 2}), hence

(10) A4’ < 4,.
Therefore (9) and (10) imply that 4, = A’

4.1.2. Lemma. Let (i) and (ii) from 4.1.1 hold. Then (A'.f)e , and either
f(ay) = ay_y for each ke Ny — {1} or Ny = N and f(a,) = a4+ for each ke N;.

Proof. 4.1.1 implies that A’ is a connected component of (4,f). Assume that
(A',f) ¢ «,. Then either

(1) there are distinct elements x, y € A’ — {a,} such that f(x) = ay, f(a;) = »,
or

(2) the condition (1) is not satisfied and there are x, y € A’, x # y such that
fO) # x *+ f(x) = f(y) + y # f(x). If (1) holds, thena; v x £a, v y £a, v x,
a contradiction to (ii). Thus either

(3) f7(a) = 0.
(4) f(ay) = ay, or f(a,) does not exist, or f~*(a,) = {f(ay)} * {a,}.

According to (2) we may assume (without loss of generality) that a, v y <
<a, v x, thus y < a; v x. First let y + a;. Then x # a, and (in view of (2))
there is a cycle C of (4’, f) such that

(5) {y.a:} € C, ay # f(x)e C.

Then card C = 2, f~*(a,) # 0, thus (4) is valid and then card C = 2, C = {y, a,}.
Thus f(y) = a, # f(x), a contradiction to (2). Now let y = a;. Then (3) holds and
there is je Ny, j > 1 with f(a,) = f(x) = a;e A’. We obtain

agvxfa va;fa, vx,

o

a contradiction to (ii) (b). Hence we have proved that (4', j) € %,. Then it is obvious
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that (ii) (b) implies that either f(a,) = a,—, for ke N, — {1} or f(a)) = a;,, for
each ke N.

4.1.3. Lemma. Let (i) from 4.1.1 hold. The following conditions are equivalent:

(i) A" is a connected component of (A,f), (A',f)€ U, and either f(a,) = a,—,
for each ke Ny — {1} or Ny = N, f(a,) = ay4, for each ke N,;

(i1) (ii) from 4.1.1 is valid.

Proof. It is obvious that (i) yields (ii). The converse implication follows from
4.1.2,

4.1.4. Corollary. (a) If (A, f)e %, card A = 1, then (4, f) is coherent and belongs
to U,.

(b) Let (A,f)e %, card A > 1. Then (A, f) is coherent and belongs to %, if and
only if card A > 2 and

(i) S(4,1) =0,

(ii) thereisNy = {1,2,...,n},n > 20r N, = Nsuchthat A = A’ = {a,: ke N}
Sulfils (i) from 4.1.1.

4.2.1. Lemma. (A,f)e %, C = {c¢;,¢,} < A’ = A, ¢, # c,. The following con-
ditions are equivalent:

(i) Cisacycleof (A',f), where A’ is a connected component of (A, f), (A', f) € U,;

(i) (a) ¢y Ve, =C

(b) if x€ A’, then there is a unique ¢ = ¢(x)e C with x v ¢ % C;

(¢) {xedie(x) =ci} —{e;} £ 0% {xedc(x) =c,} — {cz};

(d) ifxe A — {c;},ye A — {c;} and o(x) = ¢y, ¢(y) = c5,thenx v y % C;
(¢) ze A — A’ implies thatz v ¢; £ C,z v ¢, % C.

Proof. Let (i) hold. If x € A’, then there exists the smallest n € N U {0} such that
f"(x)e C = {cy, ¢;}; denote ¢(x) = f"(x). From this and from the definition of %,
we obtain that (ii) is valid.

Assume that (ii) is satisfied. Since the assumptions concerning ¢, and ¢, are sym-
metric, in view of (a) we can suppose that some of the following cases occurs: (L.1)
f(e) ¢z, f"(cy) # ¢y for each neN; (1.2) f(ey) = ¢, fles) = u ¢ {cy, c2};
(1.3) f(ey) = ¢5 = f(c3); (1.4) f(cy) = ¢, and f(c,) does not exist; (1.5) f(c;) = ¢,
f(e2) = ¢;. Since ¢(c,) = ¢,, according to (c) we obtain that 4" — {cy, ¢,} * 0.
Further, (4', f) is connected, because if not, then for x € A’ which do not belong
to the same component as e.g. ¢, we obtain

) {x Ve, ={x,¢,}, hence x v, 2C,

c,¢x Ve, hence x vey £C,
which contradicts (b). If (1.1) holds, then we get a contradiction analogously by
taking x = f(c,). Let (1.3) or (1.4) be valid. We either have

(3) there is x e A’ — {c;, ¢} With f(x) = c,,
or (3) fails to hold. Then (3) implies x v ¢; 2 C, x Vv ¢, % C, which contradicts
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(ii) (b). If (3) does not hold, then for each x € A" — {c;, c,} we have
xVe 2C, xve,2C, ie {xed:ic(x)=c} —{c;} =0,

which contradicts (ii) (c). Assume that (1.2) holds. Take arbitrary elements x, y € A’
with ¢(x) = ¢; # x, ¢(y) = ¢, # y (they exist according to (ii) (c)). Then (ii) (d)
yields

4)xve 2C xve2C,

5) yvez2C,yve 2C.
This implies that x € f ~"(c, ) for some n e N U {0}, y = f"(c,) for some me N u {0},
but then x v y = C, a contradiction to (d). Therefore (1.5) is valid. Since we have
shown that (A’, f) is connected and since (e) holds, we get that A’ is a connected
component of (4, f) and (i) is valid.

4.2.2. Corollary. Let (A,f)eU. Then (A,f) €%, if and only if there is C =
= {¢y, c2} S A, ¢, * ¢,, such that 4.2.1 (ii) is valid, where A’ = A.

4.3.1. Lemma. Let (A,f)e U, C< A = A, 2 <card C < ¥,. The following
conditions are equivalent:
(i) Cisacycleof (A,f), A" is a connected component of (A, f), (A, f) € Us;
(ii) (a) ¢y v ¢, = C for each ¢y, ¢, € C, ¢y * ¢33
(b) if x € A’, then there is a unique ¢ = c¢(x)e C with x v ¢ % C;
(c) ifzed — A, ceC,thenx v ¢ 2 C.
Proof. The implication (i) = (ii) is obvious. Let (ii) hold. If for distinct elements
C1, €4, 3 € A the relation ¢, v ¢, = ¢; Vv c5 is valid, then c,, c; belong to some
cycle C,. Therefore (ii) (a) implies that C = C,, where C, is a cycle. Then

¢, Ve, =C, foreach c¢4,c,€C, ¢ Fc¢,,
1 2 1 1> %2 1 2

and hence C; = C. Let A, be the connected component containing C, x € 4;.
There exists the least nonnegative integer n such that f"(x) e C; put ¢ = f"*!(x).
Then
xvez{xjuCzC

and (ii) (c) yields that x € A’. Hence

(1) 4, < A",
Suppose that there is ye A’ — A;. Then y v ¢ % C for each c € C, a contradiction
to (i) (b). According to (1) we obtain

(2) A, = A,
thus (i) is valid.

4.3.2. Corollary. Let (A,f)e %. Then (A,f)€ U, if and only if there is C = A
with 2 < card C < R, such that 4.3.1 (ii) is valid, where A’ = A.

4.5.1. Notation. If (A,f) €U, x,y,z€ A, then by the symbol <x, y, z) we denote
the sublattice of Co(4, f) which is generated by x, y and z (considered as atoms
in Co(4, f)). Further, 3 € 2, denotes a 3-element chain.
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4.5.2. Lemma. (a) (cf. [6], p. 228) Let P€ 2, a, b, c € P. Then {a, b, ¢) = Co(3)
if and only if a, b, ¢ form a 3-element chain in P.
(b) (cf. [6], Thm. 10) Let P € 2, c € P. Then ¢ is maximal or minimal in P if and
only if
XvY)ac=(XnAc)v(YAc) foreach X,YeCo(P).

4.6.1. Lemma. Let (A, f) be a partial monounary algebra with coherent con-
nected components, A’ = A. The following conditions are equivalent:

(i) A" is a connected component of (A, f),(A',f)eU;

(ii) (a) A’ does not contain any connected component B’ of (A, f) with the property
(B.f) ey Uy 0 Us;

(b) thereis ce A’ such that

(b)) (X vY)Aac=(X Ac)Vv(YAc)foreach X, Ye Co(4,f);

(b2) if x,y,z€ A", x # ¢ % z, {x,y,z) = Co(3), then {c, x, zy = Co(3);
(c) ifze A — A", xe A’, then x v z covers x and z.

Proof. Let (i) hold. According to 2.1 and 2.2 there exists (4, X)e 2, cor-
responding to (4', f). Let ¢ be the greatest element of (4’, <). Then 4.5.2 (b) implies
that (b1) is valid. Assume that x, y,z€ 4’, x + ¢ * z, {x, y, z) = Co(3). Without
loss of generality we may suppose that x < z. Then x <z =< ¢, hence 4.5.2(a)
yields that {c, x, z) = Co(3). The assertions (ii) (a) and (ii) (c) are obvious.

Conversely, let (ii) hold. It follows from (a) and 2.1—2.3 that there exists (4', <) e
€ 2 corresponding to (4', f) ((4’, X) need not be connected). Since (bl) is valid,
according to 4.5.2 (b) we obtain that ¢ is minimal or maximal in (4’, X). Let 4,
be the connected component containing c. Then (a) yields that (A, f) e %, U U,.
Assume that 4" — A; + 0 and let 4, =< A" — A, be a connected component of
(A, f). Then (A,, f) € %, v %,. Since each connected component of (4, f) is coherent,
there exist distinct elements X, y, z € A, with x < y < z and thus (in view of 4.5.2 (a))
<x, y, z) = Co(3). Then (b2) yields {c, x, z) = Co(3), a contradiction to 4.5.2 (a),
because x,z¢ A,, ce A;. Therefore A" = A,. Since A; is a coherent connected
component of (4, f), (Ay,f) €U, U U,, then there is ze A; — A" and x € A’ such
that x v z does not cover x, which contradicts (c). Hence A’ = A, A’ is a connected
component of (4,f). Suppose that (4',f) e %,. Then ¢ must be minimal. Since
(A'.f) ¢ U,, there is x; € A’ such that ¢ < x; doss not hold. Denote y = f(x,),
z = f(y). We obtain (in view of 4.5.2 (a))

{x,y,2z) = Co(3), <c,x,2> 4 Co(3),

a contradiction to (b2). Therefore (4', f) e %,.

4.6.2. Corollary. Let (A, f) e %. Then (A,f) is coherent and belongs to %, if and
only if S(A,f) = 0, card A > 1 and 4.6.1 (ii) holds, where A’ = A.

4.7.1. Lemma. Let (A, f) be a partial monounary algebra with coherent connected
components, O = A’ = A. The following conditions are equivalent:
(i) A’ is a connected component of (A, f), (A',f) € U4;
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(ii) (a) A’ does not contain any connected component B' of (A,f) such that
(B,f)eUo 0 Uy Uy Us;

(b) if A’ is a disjoint union of nonempty A; and A,, then there are a, € Ay,
a, € A, such that a, v a, does not cover a;

(c) ifze A — A', xe A', then x v z covers x and z.

Proof. Let (i) hold. It is obvious that (a) and (c) are valid. Suppose that the
assumption of (b) is satisfied. The relation (4’, f) € %, implies that there are x, y, z
€ A’ such that

(1) f(x) =y, f(y) = z,
and eithter

(2.1) {x,y} = 4;, ze 4;,
or

(22) xe Ay, {y.z} = A4,
or

(2.3) {x,z} = 4;, ye 4,
where {i,j} = {1,2}. If (2.1) or (2.2) holds, put a; = x, a; = z. Then a; v a; =
= {x, y, z} and it covers neither a; nor a;. Let (2.3) hold. If {f"(z): ne N} < 4,,
we can take a; = y, a; = f(z); then

a; v a;={y,2,f(2)} = {a;, a1, /(2)}

and it covers neither a; nor a;. If ve {f*(z):neN} n A4; + 0, put a; = v, a; = x;
then

a; v a; = {x,f(x),...,v},
and it covers neither a; nor a;. Therefore (b) is valid.

Now assume that (ii) holds. Let a € A’ and let B, be the connected component
containing a, A, =B, nA', A,=A4— A,. If 4, & 0, then a, v a, covers a,
and a, for each a, € A, a, € A, (since a, does not belong to the same connected
component as a,), which is a contradiction to (b). Thus 4, = 0, i.e.,

(3) 4’ < B,.

Since B, is a coherent connected component of (4, f), according to (3) we obtain
that there are ze B; — A’ and x € A’ such that x v z covers neither x nor z, which
contradicts (c). Hence A’ is a connected component of (4,f) and (a) yields that
(A',f) e Us.

4.7.2. Corollary. Let (A,f)e%. Then (A,f)e %, if and only if S(4,f) =0
and 4.7.1(ii) is valid, where A’ = A.

4.8. Corollary. Let (4, f) and (A, g) be partial monounary algebras with coherent
connected components, Co(A, f) = Co(A4, g) and i€{0,1,...,4}. Then (A,f)e¥;
if and only if (A, g) e U;. ‘

Proof. If i = 0, then the assertion follows from 4.1.4 (the conditions considered
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are expressed merely by Co(4,f) in view of 3.2 and 4.1.1). For i =2 and i = 3
the result is obtained in view of 4.2.2 and 4.3.2. Since the condition (ii) (a) of 4.6.1
can be expressed in terms of Co(4, f) (with respect to 4.1.3, 4.2.1 and 4.3.1), the as-
sertion holds for i = 1 according to 4.6.2. Analogously, 4.7.2 implies that it is valid
for i = 4.

4.9. Theorem. Let (A, f) and (A, g) be partial monounary algebras with coherent
connected components, Co(A,f) = Co(A, g), A’ = A. Then A’ is a connected com-
ponent of (A, f) if and only if A" is a connected component of (A, g). Moreover, if
ie€{0,1,...,4}, then (A',f) e %, if and only if (A', g) € U;.

Proof. The assertion follows from 4.1.3, 4.2.1, 4.3.1, 4.6.1 and 4.7.1 (because all
conditions considered can be expressed merely in terms of the system Co(4, f)).

5. COHERENT (4, f), (4,9) WITH Co(4, f) = Co(4, g9)

In this part we investigate the relations between (4,f) and (4, g) under the
assumption that Co(4, f) = Co(4, g), where (4, f), (4, g) are coherent and (4, f),
(4, 9)eu, (i=0,1,...,4).

Notation. Let (A, f)e %, and f(a) = f(b) imply a = b for each a,be A. Put
h(x) = y if and only if f(y) = x. Then (4, h) is a monounary algebra, and will
be denoted by the symbol (4, f)~.

5.1. Lemma. Let (A, f), (4, g) € %, and Co(A, f) = Co(4, g).

(i) If f(a) = f(b) implies a = b for each a,be A, then either (A, g) = (A4,f)
or (4, 9) = (A.f)”

(i) If there are distinct elements a, b e A with f(a) = f(b), then (4, g) = (4, f).

Proof. In [6], p. 231 —232 it was proved:

(BB1) If (P, £,) and (P, =X,) are coherent, Co(P, <) = Co(P, <,), then either
(P,Z,)=(P,=2y) or (P,=X,)=(P,=Z,)”, where (P,=,)” is the dual of

(P, Xy).

According to 2.3 there is (4, <,) corresponding to (4, f) and (4, <,) cor-
responding to (4,g). Then Co(4, X;) = Co(4, X,), hence either (4, X,) =
=(4,=,) or (4,=,) = (4, Z,)”. Thus (i) holds. If the assumption of (ii) is valid,
there is no Z€% such that (4, <,)~ corresponds to %#.Hence we get that (4, <,) =
= (4, X)), ie., (4,9) = (4,1).

5.2. Theorem. Let (A, f), (4, 9) € U,.

(i) If the assumption of (ii) from 5.1 is valid, then Co(A f) = Co(4, g) if and
only if (A,f) = (4, g).

(ii) If the assumption of (i) from 5.1 holds, then Co(A, f) = Co(4, g) if and only
if (4,9)e{(4.1).(4.1)"}.
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Proof. The assertion follows from 5.1 and from the fact that Co(4,f)” =
= Co(4,f).

5.3.1. Notation. Let (4, f)e %, and (4, f) be coherent, ie., there is N, =
={1,...,n},n > 2o0r N; = N such that 4 = {a,: k € N} and one of the following
conditions is satisfied:

(a) Ny = N, f(a,) = ay4, for each ke Ny,

(b) f(ay) = ay—, for each ke N, — {1}, f(a,) = a,

(¢) f(ai) = a;, for each ke Ny — {1}, f(a,) does not exist,

(d) f(ay) = ay—, for each ke Ny — {1}, f(a,) = a,.
If N, = N, then the partial operation on A fulfilling the condition (a) ((b), (c), (d))
will be denoted by the symbol f, (f1, f2, f3). Let Ny = N. By the symbol f1(f2, f5) we
denote the partial operation on A such that f,(f2, f3) fulfils the condition (b) ((c), (d)).

Further, put

fala) = fs(a) = fo(ar) = arss for each keN, — {n},
fu(a,) = a,, fs(a,) doesnotexist, fe(a,) = a,_;.

5.3.2. Theorem. Let (A, f) and (4, g) be coherent, (A,f), (4, g)e U,, card A =
= No. Then Co(4,f) = Co(4, g) if and only if (4, g)e{(4,f):ie{(0,1,2,3}}.

Proof. It is obvious that if (4, g) = (4,f;) for some ie {0, 1,2,3}, then
Co(A, f) = Co(4, g). Assume that Co(4,f) = Co(4, g). Denote by (4, <) and
(A4, =,) the posets corresponding to (4, f) and (4, g) (they are uniquely determined
in view of 2.3.1). Then Co(4, =X,) = Co(4, =<,) and (BBI) yields that either
(4, =2,) =(4, X)) or (4,X,) = (4, =Z,)". Consider the first case. If (a) from
5.3.1 is valid, then (4, g) = (4, f). If (b) or (c) or (d) holds, then (4, g) € {(4, f:):
ie{1,2,3}}. In the latter case, (a) from 5.3.1 implies that (4, g)e{(4,f):ie
e {1,2,3}} and if (b) or (c) or (d) is valid, then (4, g) = (4., f,).

5.3.3. Theorem. Let (A, f) and (A, g) be coherent, (A, f), (A, g) € %, and card A <
< No. Then Co(4,f) = Co(4, g) if and only if (4,9)e{(A,f):ie{l1,2,...,6}}.
B Proof. It follows from 5.3.1 that (4, f) fulfils some of the conditions (b), (c) or (d).
It is clear that if (4,9) = (A, f;) for some i€ {1,2, ..., 6}, then Co(4, f) = Co(4, g).
Now let Co(4, f) = Co(4, g). According to 2.3.1 there are posets (4, <;) and
(A4, £,) corresponding to (4, f) and (4, g). Hence Co(4, X,) = Co(4, <,) and
(BB1) imply that either (4, =,) = (4, Zy) or (4, 2,)=(4,=Z,)". If (4, X)) =
= (4, Zy), then (4, g9) e {(4,f;): ie{1,2,3}}.If (4, Z,) = (4, =,) ", then (4, g) €
e{(A,f):ie{4,5,6}}.

5.4.1. Notation. Let (4, f) € %, be coherent. Assume that there is ¢ € A such that
one of the following conditions is satisfied:

(a) f(c) = ¢, card f(c) = 2,

668



(b) f(c) does not exist, card f ~!(c) = 1,

(€) £7H(e) = {f(e)} * {c}.
Denote f,(x) = f,(x) = f3(x) = f(x) for each x € A — {c}, f1(c) = ¢, f,(c) does not
exist and f3(c) = a, where {a} = f"(c) — {c} (such a exists and is uniquely de-
termined).

5.4.2. Theorem. Let the assumption of 5.4.1 hold, let (A, g)e %, be coherent.
Then Co(4,f) = Co(4, g) if and only if (A, g)e {(4,f): ie{1,2,3}}.

Proof. It is obvious that if (4,g)e{(4,f,):ie{1,2,3}}, then Co(4,f) =
= Co(4, g). Let Co(4, f) = Co(4, g). Denote by (4, X;) and (4, <,) the posets
corresponding to (4, f) and (4, g). According to (BB1) either (4, X,) = (4, X;)or
(4, Z,) = (4, Z,)". Since (A,f)e %,, there are distinct elements a, be A with
f(a) = f(b). Then there is no # € % such that (4, =<,)~ corresponds to % and there-
fore (4, X,) = (4, Z,). This yields that (4, g) € {(4, f,): ie{1,2,3}}.

5.5.1. Notation. Let (A, f)e %, be coherent and let the assumption of 5.4.1
fail to be fulfilled. It follows from the definition of %, that there is ¢ € A such that
card (f~'(c) — {c}) = 2 and either f(c) = ¢ or f(c) does not exist. Put fy(x) =
= f,(x) = f(x) for each x € A — {c}, f1(c) = ¢ and f5(c) does not exist.

5.5.2. Theorem. Let the assumption of 5.5.1 hold, let (A, g)e U, be coherent.
Then Co(A4, f) = Co(A4, g) if and only if (A, g) e {(4,f):ie{1,2}}.
Proof. Analogously as 5.4.2.

5.6.1. Notation. Let (4, f)e %, U U5, let C = {¢y, ¢5, ..., ¢,} be a cycle of (4, f).
The set of all permutations of 1, 2, ..., n will be denoted by S,. If € S,, put f5(x) =
= f(x) for each xe A — C, f5(cpui+1)) for each i€ {1,2,....,n— 1}, fo(cpm) = cpr)-

5.6.2. Theorem. Let the assumption of 5.6.1 hold, (A,g)€e %, v %s;. Then
Co(A,f) = Co(4, g) if and only if (A, g) € {(A,f): B€S,}.

Proof. If (4, g) = (4, f;) for some BeS,, then obviously Co(4, f) = Co(4, g).
Assume that Co(4, f) = Co(4, g). It follows from 4.2.1 and 4.3.1 that C is a cycle
of (A, g). Define an equivalence relation 6 on A as follows:

o f{x}, if xed-C,

(1) x0= {c, if xeC.
(Instead of x0 = {x} we shall write also x0 = x.) Then 0 is a congruence of (4, f)
and of (4,9),(4,f)0eUo 0 U,, (4,9)/0 €Uy U,. Denote (4,f)[0 = (4',f"),
(4,9)/0 = (4',g), where A’ = (A — C) v {C}. Since Cisacycle of (4, f) and (4, g),
we obtain that f(c) € C and g(c) € C for each ¢ e C and hence

2) f(€)=c¢, g(c)=cC.
According to 2.1—-2.3 there are (4, <,) and (4’, X,) corresponding to (4’, f')
and (4',9g'). Thus Co(4’, <,) = Co(4’, £,) and (BBl) implies that either

669



(4, Z25) = (4, Zy)or (4, Z,) = (4, Z,)”. Now (2) implies that then (4', <,) =
= (A, Zy), g'(x) = f'(x) for each xe A" — {C}. Therefore g(x) = f(x) for each
xe A — C. Since C is a cycle of (4, g), this yields (4, g) € {(4, f;): Be S,}.

6. THE GENERAL CASE

In the present section we proceed as follows. Let (4, f) and (4, g) be partial
monounary algebras. We have to decide whether

(1) Co(4,f) = Co(4, g)
is valid.

First we show that there exists a uniquely defined partial monounary algebra
(A,fl) such that

(i) each connected component of (4, f,) is coherent,

(i) Co(A4, f) = Co(4, f,).
In the same way we can construct a partial monounary algebra (4, g,).

For deciding whether (1) holds it suffices now to decide whether

(2) Co(4, f1) = Co(4, g,)
is valid. In view of (2) and 4.9, (4, f,) and (4, g,) have the same connected com-
ponents {A4;};c;, and (A}, f,)e %, if and only if (4;,g,)e%; (i =0,1,...,4); for
deciding whether

(3) Co(4;,f1) = Co(4;,49,)
Section 5 can be used. The results arc summarized in Theorem 6.3.

The notion introduced in the next definition is analogous to that given in the paper
by Birkhoff and Bennett [6].

6.1. Definition. Let (4,f),(A,g)e%. If xeA— (S(A,f)n S(A,g)) implies
g(x) = f(x), then we say that (4, f) and (4, g) are isomedic and write (A, f) = (4, g).

6.2.1. Notation. Let (4, f)e %. Put

x) if xed— S(4
(1) filx) = g( : if xeS(4, f)( -
6.2.2. Lemma. Let (A,f)e U. Then (A, f,)e % and
(i) each connected component of (A, fy) is coherent;
(i') (4. f) = (4. f1);
(iii) Co(4,f) = Co(4, f,).
Proof. Definition 3.1 of S(4,f) yields that (4, f;)e % and S(4,f,) = S(A4, f).

Further, each connected component of (4, f;) is coherent. Then (1) yields that (11) is
valid. Let U e Co(4, f), a,be U, a + b, ke N be such that

(2) f4(a) = b, fi'(a) * b for each k, < k.
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Further, let ¢ = f{(a), 0 < m < k. Since fi(a) + a, fi(a) * fi(a),...,f¥a) +
* /17 '(a), we get (according to (1))

() f1(a) = f(a), fi(a) = f*(a), ... f1(a) = f"(a), ... f}(a) = f*(a) = b .
Then (2) and (3) imply

(4) fa) = b, f**(a) *+ b for each k, < k, ¢ = f"(a),
and the relation U € Co(A,f) implies that ¢ € U. Therefore

(5) Co(A,f) c Co(A,fl).
Now assume that Ve Co(4, f;),a,be V,a + b, ke N and

(6) f*(a) = b, f**(a) * b for each k; < k.
Let ¢ = f"(a), 0 <m < k. Then k =2 and then a ¢S(4,f), f(a) ¢ S(A.f),...
...f¥a) ¢ S(A4, f), thus (1) yields

(7) f1(a) = f(a), ....f1(a) = f™(a), .... f{(a) = f*(a) = b.
Since Ve Co(4, f;), we obtain that ¢ € V and this implies Ve Co(4, f), i.e.

(8) Co(4, f1) < Co(4,f).
Therefore (iii) is valid by virtue of (5) and (8).

6.3. Theorem. Let (A,f),(A, g)e %. Then Co(A,f) = Co(4, g) if and only if
the following conditions are satisfied:

(i) (4, f,) and (4, g,) have the same connected components {A;} ;.;;

(ii) Co(A4;,f,) = Co(A;, g,) for each jeJ.

Proof. Assume that Co(4, f) = Co(4, g). According to 6.2.2, (4, f,) and (4, g,)
have coherent connected components and we have

(1) Co(4,f,) = Co(4,f) = Co(4, g) = Co(4, g,).
It follows from 4.9 that (i) is valid. Then (1) and (i) imply that (ii) holds.

Conversely, let the conditions (i) and (ii) be satisfied. Without loss of generality
it suffices to show that Co(4, f) < Co(4, g). In view of 6.2.2 (iii) we are to prove
that Co(4, f,) < Co(4, g,). Let U € Co(4, f,). Then U is the disjoint sum of U; =
=Un A4j, je J and we have

(2) Uje Co(A4;, f,) for each je J.
Then (iii) implies

(3) Uje Co(4;, g,) for each je J
and therefore U (the disjoint sum of Uj;, je J) belongs to Co(4, g,). Hence
Co(4, f,) € Co(4, g,).

6.3.1. Remark. Let us recall that the validity of the condition (ii) from 6.3 can be
decided by applying 4.8, 5.2, 5.3.2, 5.3.3,5.4.2, 5.5.2 and 5.6.2.

6.4.1. Corollary. A partial monounary algebra (A, f) is uniquely determined
by Co(A, f) if and only if each connected component A’ of (A, f) belongs to U, U U,
and there are distinct elements a, be A’ with f(a) = f(b),

Proof. The assertion follows from 6.3 and from the theorems of Section 5.

671



References

[1] W. Bartol: On the existence of machine homomorphisms I, Bull. Acad. Polon. Sci., Sér.
Sci. Math., Astron., Phys. 19 (1971), 856 —869; 11, ibid, 20 (1972), 773—777.

[2) W. Bartol: Algebraic complexity of machines, Bull. Acad. Polon. Sci., Sér. Sci. Math.,
Astron., Phys. 22 (1974), 851—856.

[3] M. K. Bennett: Lattices of convex sets, Trans. AMS 345 (1977), 279—288.

[4] M. K. Bennett: Separation conditions on convexity lattices. Lecture Notes Math. 1985,
No 1149, 22—36.

[5]1 M. K. Bennett, G. Birkhoff: Convexity lattices, Alg. Univ. 20 (1985), 1—26.

[6] G. Birkhoff, M. K. Bennett: The convexity lattice of a poset, Order 2 (1985), 223 —242.

[7] D. Jakubikovd-Studenovskd: Partial monounary algebras with common congruence rela-
tions, Czech. Math. J. 32 (107) 1982, 307—326.

[8] D. Jakubikovd-Studenovskd: Endomorphisms and connected components of partial mo-
nounary algebras, Czech. Math. J. 35 (110) 1985, 467—490.

[9]1 M. Novotny: On some problems concerning Pawlak’s machines, in: Lecture Notes in
Computer Science 32, Mathem. Foundations of Computer Science 1975, 4th Symposium,
Marianské Lazné, Sept. 1—35, 1975, Ed. J. Bedvar, 88— 100.

[10] M. Novotny: On mappings of machines, in: Lecture Notes in Computer Science 45, Mathem.
Foundations of Computer Science 1976, 5th Symposium, Gdansk, Sept. 6—10, 1976, Ed.
A. Mazurkiewicz, 105—114.

[11] O. Kopelek: Homomorphisms of partial unary algebras, Czech. Math. J. 26 (101) 1976,
108—127.

[12] O. Kopelek: The category of connected partial unary algebras, Czech. Math. J. 27 (102)

1977, 415—423.

Author’s address: 041 54 KoSice, Jesenna 5, Czechoslovakia, (PF UPJS).

672



		webmaster@dml.cz
	2020-07-03T06:30:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




