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1. INTRODUCTION

This paper is an application and extension of the results obtained in our previous
papers [4, 15]. Here, we shall develop the theory of existence of solutions of non-
linear partial differential equations of the type

Lu(x) = f(x) + N u(x)

where L is a linear operator and N denotes special non-linear operators. If Q is
a smooth bounded domain in R, (the Euclidean n-space) with boundary 02, then
we are looking for solutions of the above equation which satisfy boundary conditions
and where the corresponding linear problem is non-invertible.

We consider these problems in the framework of the theory of the function
spaces B;,q(Q) and F; (9Q), respectively. These two scales of spaces include many
well-known classical spaces. We use essentially the fact that these spaces are admis-
sible in the sense of Klee [8], mapping properties of non-linear operators acting
in these spaces, and results of Landesman-Lazer- and Kazdan-Warner-type, respec-
tively.

The plan of the paper is the following. In Section 2 we describe the preliminaries
(function spaces in R, and on smooth domains, regular elliptic differential equations,
admissibility of spaces, mapping properties of non-linear operators generated by
C>-functions). In Section 3 we consider in contrast to [4] non-linear partial dif-
ferential equations with boundary conditions where the corresponding linear problem
is non-invertible. For this purpose we use the topological method of the Leray-
Schauder degree.

2. PRELIMINARIES
2.1. Spaces. Let R, be the Euclidean n-space. The theory of the spaces Bj (R,)
and F; (R,) was developed in Triebel [16, 17]. We do not need the full theory, but

only some properties, which we list in the sequel.
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The spaces B}, (R,) and F; (R,). Let S(R,) be the Schwartz space of all complex-
valued rapidly decreasing infinitely differentiable functions on R, and let S’(R,)
be the set of all tempered distributions on R,. Let ¢ = {p/(x)}2o = S(R,) be
a smooth resolution of the unity in R, with the following properties:

(i) {@j(x)}=0 is a system of real-valued even functions with respect to the

origin, i.e.

¢i(x) = @)(—x) if xeR,.
0

(i) 0 ox) = 1ifxeR,and j = 0,1,2,...,and ) ¢(x) = 1.
(iii) supp o = {x, x| =2}, j=o

supp @; < {x, 277 < |x| S 2V*}if j=1,2,....
(iv) For any multi-index o there exists a constant ¢, such that

|D* @x)| £ c,27/ if xeR, and j=0,1,2,....

Let &(R,) be the collection of all systems ¢ < S(R,) satisfying the properties
()= (iv)-

Remark 1. In general (cf. Triebel [17, 2.31]), ®(R,) is defined without property
(i). We use (i) to introduce the real part of the spaces B} ,(R,), etc. (for definition see

[4,3.2.]).

Let F and F~! be the Fourier transform and its inverse on S’(R,), respectively.
If —0 <s<,0<p<o0,0<g< o and ¢ e PR,) then

(1) B;,q(Rn) = {f|f€ S/(Rn)’ ”fl B;.q(Rn)“‘p =

= (j:i(’Zfsq(sR,. F‘l[qoij] (x)lp dx)‘I/P)l/q < oo}

and

@) FiR) = {F|Fe SR, |f| FouRo)" =
= (Ja. (izm | F=1[,Ff] () |9yt dx) < oo} .

If g = oo then one has to replace Zl |)/ by sup |+| in (1) and (2). If p = oo
j
(and 0 < g < o0) then one has to replace (f&a |7 dx)!/7 in (1) by sup |*|- Then the

spaces B; (R,) are defined for —o0 <s < 0, 0 <p =< 0, 0< q < o and the
spaces F;, (R,) are defined for —o0 <5 < 0,0 <p < o0 and 0 < g £ 0.

The following facts are well-known (see, e. g. Triebel [16, 17]). | f | B} ((R,)|¢ and
|| F;.o(R,)|¢ are quasi-norms (norms if min (p, ) = 1). If p € &(R,) and ¥ € &(R,)
then “ f | B}, ((R,)||” and |f | B ((R,)||¥ are equivalent quasi-norms in Bj ,(R,) and
we write | f | B 4(R,)| in the sequel Similarly, ||f | F} (R,)[- All these spaces are
quasi-Banach spaces (Banach spaces if min (p, ¢) = 1) '

As above mentioned these two scales of function spaces include many well-known
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classical spaces. Equivalent quasi-norms for these spaces may be found in Triebel
[16, 17].

The spaces B;, (Q), F;, (), B} ,(02) and F;, (8Q). Let Q be a bounded C*-domain
with the boundary Q. Then one can introduce the spaces B}, (0Q) and F; (02)
by standard procedure via local charts, cf. Triebel [17,3.2.2.]. The spaces B} (Q)
and F;,q(Q) are defined as usually by the restriction method, cf. Triebel [17, 3.2.2.].

Let —0 <§ < 0,0<p=owand0 < g = 0. Then

® B (@) = 7| D@), 39 B (R,) with g | @ = 1},
(4) ”f! B;,q(Q)” = inf ”g | B;,q(Rn)H

where the infimum is taken over all g € B;, /(R,) in the sense of (3). Similarly one can
define the spaces F;, ().

Traces. Let Q be a bounded C*-domain in R, and let f(x) be a function defined
in Q belonging to some function spaces of the above type. R denotes the restriction
operator, given by Rf = f | 0Q. The following results are well-known. If 0 < p < oo,

0<g=< o and
s>(n—1)<——-1———1 +-1—
min (p, 1) p

then R is a linear and continuous mapping
Q) from B (Q) onto B, '/7(0Q).
If0<p<o,0<gq = 0 and

s>(n—1)<m_1>+%

then R is a linear and continuous mapping
(6) from F; (2) onto B;,'?(3Q),
cf. [2] and Triebel [17, 3.3.3.].
Imbeddings. Let Q be a bounded C®-domain in R,. In the sequel, we need the

following imbedding theorems. If 0 < p < oo (with p < oo in the case of the spaces
F; (9)),0 < g £ o0 and s > n/p, then

(7) B2 G C@) and F,(@)CC(Q).

Here “Q” denotes the continuous imbedding and C(Q) is the collection of all
complex-valued continuous functions on €. Furthermore,

(®) BY,1(2) G C(2) Q B.,,.(Q)
holds. If 0 < p < 0,0 < g £ 0, then
(9) B;.min(p,q)(Q) Q F;,q(g) Q B:,maX(p,q)(Q) .
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The following assertions may be found in Triebel [17, Theorem 3.3.1]. Let 0 <
<pp L0, 0<p =0, 0<gyg=s o 0<g;=00 and —o0 <s5; <55 < 0.
Then

" . n n
(10) B;%,QO(Q)G Bm,qo(g) if So —— = 8§ — —
Po P
and
S s . n n
(1 1) Bp%,qo(g) Q Bplx,qx(g) if So —— >8 ——.
Po Py

Let0 < pp < 0,0<p; <0,0<gyg<0,0<g; Swand —0 <s§; <85y <
< co. Then
(12) Fro@ G Fpa(@) i 50— 25 = =
Do Py

Admissibility of the spaces of type B, , and F, .. We use the notation ,,admissible”
in the sense of Klee [8], cf. also Riedrich [14] with respect to quasi-normed spaces.
Consequently, a quasi-normed space A4 is said to be admissible if for every compact
subset K = 4 and for every ¢ > 0 there exists a continuous mapping T: K — 4
such that T(K) is contained in a finite-dimensional subset of 4 and x € K implies
|Tx — x| A| < e In[4] it was proved that the spaces B (R,), B (), B (09),
F; [(R,), ..., etc. are admissible.

Remark 2. In the following, cf. also [4], we use essentially the fact that the spaces
considered here are admissible. Then it is possible (as in the case of Banach spaces)
to define the Leray-Schauder degree and to apply the Leray-Schauder theory (cf.
Riedrich [14]).

In [4, 3.2] the real part of the spaces B} (R,), etc. was introduced. We denote it
by B} (R,), etc. The above mentioned results hold also for these spaces.

2.2. Linear elliptic differential operators. As in the previous subsection, Q denotes
always a bounded C*-domain in R, with boundary dQ. We recall here some well-
known notations (for exact definitions see e.g. Triebel [17, 4.1.2]). Let 4,

(1) (4u) (x) = Mzi 2aa(x) D*u(x), xeQ, a,eC=(Q) if locl <2,

be a properly elliptic self-adjoint differential operator in €, and let B,
(2) (Bu)(y) = Y. by)D*u(y), yeo@, b,eC=(0Q) if |¢|sd=1,
la| =d

be a boundary operator such that {4, B} is regular elliptic. The corresponding
boundary value problem has the form
(3) (4u) (x) = f(x) if xeQ,
(Bu) (y) = 9(y) if yeoQ.
In [2], the following results were proved (see also Triebel [17, 4.3.3]). Let {4, B}
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be the above system such that (3) with u(x)e C*(2) has only the trivial solution
ux)=0if f=g=0.
(i) Let 0 < p< 0, 0<g= oo and
1
> 0= (o
Then {4, B} yields an isomorphic mapping
from B}"*(Q) onto B} (Q) x By 277V (0Q).

4

—1)+1+d-2.
p

(i) Let 0 < p < 0, 0 < g < o and

s>(n—1)<—7—-£~—-—1 +i+d—2.
min (p, 1) P

Then {4, B} yields an isomorphic mapping
from F5'%(Q) onto Fj (Q) x By (0Q).

P.q
In this paper, we consider the case where (3) has a finite-dimensional ker ({4, B}).
It follows from the known regularity theorems that
ker ({4, B}) = C*(Q).

(see, e.g. Necas [ 11, Théoreme 4.2.2] or Agmon, Douglis, Nirenberg [1]).

Using the results in [2] we obtain the following:

Let0 < p < 0,0 <q < 0,s>(n—1)1/(min(p,1)) — 1) + 1/p + d — 2 and
let {gy, ..., gy} be an orthonormal basis of ker ({4, B}). Then P defined by

M
4) Pz=1z-Yg;[qz7;dx
i=1
is a projection in B (). Furthermore, there exists a linear and bounded operator L

L: B} (@) - {zeB}'}(Q)| Bz = 0, [o2(x)7,(x)dx = 0}

p.q
with the property

ALz = Pz.
Then the problem
(5) Au=f, Bu=0
has a solution u € B}* *(Q) if
(6) Pf=f

holds. If (6) is satisfied then
M
g=Lf+Y 24, ,eC, j=1,..uM,
j=1 :
is the general solution of (5).

Remark 3. In 3.2 we apply P and P° =1 — P (projection onto ker ({4, B}) to
define a bifurcation system.
If 0 < p < oo then the above result holds in the case F} (<), too.
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2.3. Non-linear operators generated by C*-functions. In this subsection we list up
some results which may be found in [15, 5.4]. In the following, let Q be a bounded
C®-domain in R, and C° denotes as usual the classical Holder space if ¢ > 0 is not
an integer and the well-known Banach space of differentiable functions if ¢ > 0
is an integer. For real s we put s = [s]_ + {s},, [s]- integer, 0 < {s}, < 1.

Theorem 1. (i) Let 0 < p < 0,0 < g £ o0,
1
s>nf—— — 1},
(min (1) >
¢ > max(1,s) and @ e Cu(R,)). Then
@) |Fpqll = c|o()| L] +
Lol

o3 s [0 Ju | P | Ll +
+ o R u| Fpll lu] Lol +

, + @] R Ju] Fql)

|o@) | L, = [@] C'((R,))] [u | L, -
(i) Let 0 < p < 0, 0 < g < o0,

1
s>n|— -1),
(min (. 1) >
¢ > max (1, s) and ® € C%(u(R,)). Then
|#(u) | B[ = [(u) | L[ +
Lol
e S sup )] | 3 | o+

+ @[ R u | Byl | Lo~ +

+ o] @) u] B.ql)

|ow) | L] < |o| 'R v | L] -

The following result is a consequence of Theorem 1 and the fact that the imbeddings
F Q) CQ F;,[(2) and B,'H(Q)Q B (Q), ¢ > 0, are compact (cf. Triebel [19,

3.1. (30)]).

Corollary. Let ¢: R, - R, be a C®-function and let ¢ > 0. Then u — ®(u)
is a completely continuous mapping

(1) from B*Y(Q)n L,(Q) into B (Q)n [°(Q)
(from F3'H(Q) n L,(Q) into F (Q)n L(Q))

and
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if0<p=0(0<p<w),0<qgg ©and

1
> — = 1.
’ n(min (p, 1) )

Furthermore, there exists a function g, g: [0, ) = [0, ), which is independent
of u, such that
(2) |@(u) | Byl < 9(u | Lo]) [lu | Bl

(o) | F.o < 9w | Lo ) Ju | F;.dl) -
3. SOLVABILITY OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS

3.1. Introduction. Let Q = R, be a bounded C*-domain. We consider semilinear
Dirichlet problems
) —Au —du+ P(u)=f in Q,

u l 02=0

of the following types, where @ is a real C®-function on R;.

(i) Non-coercitive problems with constant asymptotics:

o(t)> Py if t— too.
(1) is solvable in certain Besov spaces if f satisfies the Landesman-Lazer condition:
D [ixeamin>o0y WX) % + P_ Jicpuen <oy W) dx < fo f(x) w(x) dx

for all 0 # we C®(Q) with —Aw — Aw = 0, w l 0Q = 0. If A is not an eigenvalue
of the corresponding Dirichlet problem

1 —Au — Au=0,
u169=0,

then (1) is solvable provided @ is bounded. Similar results hold for sublinear problems.
Details may be found in 3.2 and 3.3, respectively.

(ii) Results of Kazdan-Warner type. A typical example is
(2 —Au—Au+e'=f in Q,
ulog =0,

where A, is the first eigenvalue of the Dirichlet problem (1') with 2 = 4,. Let ¢ be
the unique positive solution of

—Ap=Xoin Q, ¢|loQ=0, H(plLZ(Q)H =1.
Then (2) is solvable if and only if
fof(x) o(x)dx > 0.

This is a special case of a general result, which is proved in Fugik [5, Chapter 34]
for Holder spaces and in 3.4 for Besov spaces.
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3.2. Results of Landesman-Lazer type, bounded non-linearities. Let
(1) Au(x) = Y a(x)D*u(x) in @, a,eC~(Q),
lal=2

B u(y) =|alzédb,(y) D*u(y)| 02,  b,eC~(0Q)

be a second order elliptic boundary value problem of type d + 1 < 2. We consider
the semilinear problem

) Au + ®(u)=f in Q,
Bu=0 on 09,
where @: (— o0, ©) » (— o0, o) is a real C*-function.

Theorem 1. Suppose that {A, B} is invertible and that ® is bounded.
() If0<p<oo, 0<qg=<o0,s>max(n/p,(1/p) +d), t>d—2, and fe
e F5 Q) n B, (), then (2) has a solution u e F} (Q).
({)If 0<p=< o, 0<g=o, s>max(n[p, (1/p)+d), t>d—2, and
fe B 2 (Q) A Bl o(Q), then (2) has a solution u € B} (Q).
Theorem 2. Let the following assumptions be satisfied:
(a) {4, B} is self-adjoint, i.e.,
fo (Au) (x) v(x) dx = [, u(x) A v(x)dx
if u,ve C*(Q), Bu = Bv = 0.
(b) &(t) > &, PreR, if t > +o0.
We formulate the condition
(L) @+ Jaeatwen>0) W(X) dx + P [ircopuim<oy W(x) dx > [o f(x) w(x) dx,
0 + weker ({4, B}).
Let s, t and q be the same as in Theorem 1.

(i) Let 0 < p < o0 and fe By }(Q) n B, ,(2). We suppose that the Landesman-
Lazer condition (L) is satisfied for all 0 % w € ker ({4, B}). Then (2) has a solution
ue B (Q).

(ii) If 0 < p < o0, feF;(Q) N B, o(Q) and if (L) is satisfied for all 0 +
+ weker ({4, B}), then (2) has a solution u € F} (Q).

We mention that the right-hand side of (L) makes sense: cf. [2, 6.1, Lemma 2 (iii)]
and 2.2.

In the following we prove Theorem 2, the (afterwards almost trivial) proof of
Theorem 1 is left to the reader.

Proof of Theorem 2. We prove (ii), the proof of (i) is almost the same.

Let P° denote the orthogonal projection from F_*(2) onto ker ({4, B}) and
P =1 — P° (I: identity). We mention that :

P:F, (@) > F, (Q) isboundedif t=s—2
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(cf. [2, 6.1, Lemma 2 (iv)]). We also refer to 2.2. There exists an unique continuous
linear operator (the so-called right inverse of A)

L:F;2(Q) » F, Q)
with

BLz = P’Lz=0 and ALz =Pz, zeF,}(Q).

Now we define a family of completely continuous mappings
T:F, (@ > F(Q), 0sA=<1,
with
(3) Ty = MPu — P[®(u) — f] + L(P[f — ®(u)])}.
{Ti}os <1 is a family of completely continuous mappings because of the properties
of L, P, P° and & and the compact imbedding from F2%%(Q) in F¢ (Q) if ¢ > 0
(cf. Triebel [19, 3.1 (30)]).
We consider the fixed point problem

(4) Tuu=u, 0SA=<1.

Foru e F5 (Q) we writeu = v + w, w € ker ({4, B}), ve ker ({4, B})*, i.e. Pu = w,
Pu = v. Applying P to (4) we get

(5) v =ALP[f — ®(v + w)]).
An application of P° to (4) yields
(6) w = Aw — AP [P(u) — f].

In particular, T,u = u is equivalent to (2). The system (5), (6) is usually called the
bifurcation system or the alternative system for the equation (2). Now we shall
study the solvability of (5), (6). For this purpose we use the Leray-Schauder theory.

Furthermore, there exists an [ with 2 > I > d such that fe Bl 2(Q). Since & is
bounded this assertion and (5) yield

o) o L] 5 Co.
Let 0 & w, € ker ({4, B}) then we get by (L)
(8) fa {P[@(0 + kwo) — 11} (x) wo(x) dx =

— a[9(0 + o) — 11 (3) P o) dx =
— [a[0(0 + o) — 71 (3) welx)dx > 0
for all v with [[v| L,,|| < C, if k is large enough. Let k(w,) be the smallest number

such that (8) holds for k > k(w,). Since w, — k(w,) is upper semicontinuous on
ker ({4, B}) N {0}, k(+) is bounded on the unit sphere of ker ({4, B}). In other words,

o) Ja (P00 + w) = £} (x) walx) dx > 0
if 0 + wo € ker ({4, B}) and
(10 o] Ll < Cor Iw]Lal > €.
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If u = v + wis a solution of (4), the following condition holds
(11) wlLa] < €4
Otherwise we would get by (6), (7), (9) and (10)
(12) w, whp, = Aw, wyp, — KP[B(v + w) — f], whp, < Aw, wdp,
where 0 < A1 £ 1.

Let 2 > ¢ > 0 be small enough such that s — ¢ > n[p. (7) and (11) yield
(13) |20 + w) | F554Q)] < ex(1 + o+ w | F(Q))-
Here we used the results from 2.3. Since ker ({4, B}) is finite-dimensional and con-
sists of C®-functions (11) shows

Iw| F5(@)] < ¢ -
Thus (5) and (13) imply
(14) lo| F. @) < (1 + 0| F Q)] -
Because of (7), the imbedding L,,(2) Q Fj,,(€) and the inequality
|G| Fog*=o(@)| = C|G | Fyp(@)° |G| Fr@)]'~°

0 < O < 1, we get from (14)

(15) lo| 5@ = cad + o] F (2)]°) -
We conclude

(16) lo| F5.{2)] < s

and

(17) Iw| F;(Q)] = Cs.

Now we apply the Leray-Schauder theory to prove that T u has a fixed point.
Let
K = {ueF; (Q)] |u| F; (@) <2(Cs + Co)}

where Cs and Cg4 has the meaning of (16) and (17), respectively. By the definition
of K, (4) has no solution on K. Now we can apply the Leray-Schauder theory in
the admissible quasi-Banach space F5 (Q), cf. 2.1. We have shown that there does
not exist an u € 0K and an A € [0, 1] such that T,u = u holds. Then by the properties
of the Leray-Schauder degree (for definition and properties see e.g. Fucik [5] or
Fucik, Kufner [6]) it follows that there exists a solution u € K such that Tyu = u
holds. Consequently, u is also a solution of (2). Our proof is finished.

Remark 1. Theorem 1 and 2 are results of the so-called ,,Fredholm alternative
for non-linear operators”. The Fredholm alternative for non-linear operators was
probably first formulated independently by Necas [10] and Pokhozhaev [13]. The
result is the following (cf. Zeidler [21, 28]). If the linear equation Lu = 0 has only
the trivial solution u = 0, then the non-linear equation Lu + Nu = f has at least
one solution for arbitrary right-hand side f if N is sublinear, cf. Fugik [5, Definition
7.4].
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If Lu = 0 has a nontrivial solution u = 0, then the equation Lu + Nu = f has
only a solution u, if f satisfies some conditions of solvability. Here we used a so-called
asymptote with respect to ker (L) (Theorems of Landesman-Lazer type).

Remark 2. Problems in this direction were considered by many authors. We refer
to Fugik [5] and the references given there. Results of the Landesman-Lazer type
may be found in Fugik [5], Hess [7], Landesman, Lazer [9], Williams [20] and
Zeidler [21].

Remark 3. If _ <0 < ®,, ¢_ < &(t) < P, then (L) is also necessary for the
solvability of (2): If u is a solution of (2) then
faf(x) w(x) dx = fo ®(u(x)) w(x) dx <
< ¢+ J.(xe!)lw(x)>0} w(x) dx + D_ j{xe!)]w(x)<0} W(X) dx .
Modifications and generalizations of the results given here in the framework of

Sobolev and Holder spaces may be found in Fu&ik [5, Chapter 11, 13, 18 and 23],
Fugik, Kufner [6, 34] and Zeidler [21, 28]. Examples are also contained in Ne&as

[12].
Remark 4. (L) shows that
fof(x) w(x) dx < @, f(xeapwin>o0y W(X) dx + D_ [ienimen <oy W(X) dx
for all 0 + w e ker ({4, B}). In the sense of Futik [5, Definition 11.1] the function
¥:w > fof(x) W(x) dx — @4 fixeapuim>0) W(%) 4% — @_ fixeapuen <o) W(x) dx
is an asymptote of the operator Su = ®(u) — f with respect to ker ({4, B}), cf. also
Fugik [5, 11.2].

Remark 5. If d = 0 in Theorem 1 and 2, respectively, then the condition of f is the
following:
feB (@), s>njp
and
feF52(Q), s>nlp,
respectively.

3.3. Results of Landesman-Lazer typ, sublinear non-linearities. In contrast to 3.2
we consider (3.2/2) where @ is a real sublinear C*-function. We formulate our result.

Let
(1) Au(x) = |¢|Z§zaa(x) D*u(x) in @, a,eC*(Q),

Bu(y) = |a12§aba(y) D*u(y)| 0@, b,eC(0Q)

be a second order elliptic boundary value problem of type d + 1 < 2 and let
(2 Au + Ou)=f in Q,
Bu =0 on 0Q,

633



where @: (— 0, ©0) = (— 00, 0) is a real C*-function related to the corresponding
semilinear problem.

Theorem 1. Let the following assumptions be satisfied:
(a) {4, B} is self-adjoint in the sense of Theorem 3.2]2.
(b) #(t) > oo if t > 0.
(c) There exists a monotone and positive function y with y(t)[t - 0 if t > co such
that

©) |2(0)] < (Je])
and there exist a positive number 6,0 < 6 < 1, and a t, > 0 such that

4 |o(t)| > 69(|t]) if |t| > to.
Let s > max (n/p,(1/p) + d),t >d — 2 and 0 < g £ oo.

(i) Let 0 < p < o0 and fe By }(Q) n B, (Q).
Then (2) has a solution u € B} (). : '

(ii) If 0 < p < o0 and fe F§ *(Q) n B, .(Q), then (2) has a solution u € F (Q).

Proof. We prove (ii), the proof of (i) is almost the same. The operators P, P°, L
and T,, 0 < 4 = 1, have the same meaning as in the proof of Theorem 3.2/2. Then
{T3}o<a<1 is a family of completely continuous mappings because of the properties

of L, P, P° and & and the compact imbedding from F2'%(Q) in F? (Q) if & > 0.
According to the proof of Theorem 3.2/2 we get

(5) v = AL(P[f — &(v + w)])
and
(6) w=Aw — AP[o(v + w) — f]

where for u € F (Q) we put
u=v+w, veker({4,B})", weker({4,B}).

Furthermore, there exists an I with 2 > I > d such that f e B, 2 (). Using (3) and
(5), we get for every & > 0 and suitable chosen &, = ¢(y) such that

() lo[Lall < et + 9o+ w]| Lol £ & + &(llo [ L] + [ | La])
hold.
For § < % we get
(8) lo] L]l = 22, + 28w L..|
This yields that for every ¢ > O there exists a ¢, = ¢,(y) such that
©) lo] |l < e+ glw]| La
holds.

In the following let w, € ker ({4, B}) with |w, | L,,| = 1 and v satisfies (9), such
that '
o] Lo| = €, + et
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Furthermore let ¢ < % and let t, be large enough such that &(a + t§) f > 0 holds,
if }ﬂl > 2¢,t > t,and locl = C, + et
Then we obtain
I = [o{P[®(v + two)]} (x) wo(x) dx =

= [o [D(v + two)] (x) wo(x) dx =

= [xeol twowi> 20y [2(0 + wo)] (x) wo(x) dx +

+ fixeol Iwocot 20 [P(0 + 1wo)] (%) wo(x) dx .
Hence we get for ¢ (large enough), i.e. t > t,,

[ixeat twoor1> 20y [P(0 + two)] (x) wo(x) dx >
> [ixeotwoen1> 172 [P(0 + two)] (x) wo(x) dx > ¢'dy(3t — C, — &t).
Here we used the properties of y, (4) and t > t,.
Furthermore, we get
Jixet womy 226y [B(0 + two)] (x) wo(x) dx < 2ec™y(C, + et + 2et) <
< 2ec”y(C, + 3et)
i.e.,
I > cy(3t — C, — et) — 2¢"ey(C, + 3st)
if t>t,
Now we choose ¢ < § such that ¢ > 2c¢”¢. Let t* > t, sufficiently large such that
for t > t° the following inequality holds. 4t — C, — ¢t > C, + 3et.
Then we obtain
I = [o[®(v + twg)] (x) wo(dx) > (¢ — 2¢"¢) (3t — C, — et) > K; >0,

where K, is an arbitrary positive number provided ¢ = #(K,) is large enough. Here
we used the properties of 7.
Therefore we get the following result:

(10) o {P[2(v + w) — f1} (x) w(x) dx = [o[@(v + W) — f] (x) w(x)dx > 0

for all v with |v| L, | < ¢, + ¢|w| L,,| and all w e ker ({4, B})if |w | L,,| > to(f).
By (9) and (10) we obtain the following estimate if u = v + wisasolution of T,u = u:

(11) [wlLoll = €y o] Lo] = C

Otherwise it would follow by (6), (9) and (10)

(12) <w, Wy, = Aw, whp, — AP D(v + w) — fl, whp, < Kw, wyyp,
where 0 £ A 2 1.

Now we can prove the assertion of Theorem in analogy to the proof of Theorem
3.2/2 (ii).

It holds also the following result:

Theorem 2. Suppose that {A, B} is invertible and &:(— o0, 00) - (— o0, o) is

a real C®-function with the following properties:

635



There exists a monotone and positive function y with y(f)[t - 0 if t - oo such
that

(13) |&(t)] < ¥(Jt)) -
Let s > max (n/p,(1/p) + d),t >d —2and 0 < g £ ©

(i) Let 0 < p < oo and fe B 2(Q)n B, (Q). Then (2) has a solution ue
e B (Q).

(i) If 0 < p < o0 and fe F; 2(Q) n B, ,(Q), then (2) has a solution u € F (Q).

Remark 1. Non-linearities of this type are usually denoted to be sublinear, cf.
Fucik [5, Definition 7.4]. (10) shows that

fa[®(v + w) — f] (x) wo(x)dx > 0.

In the sense of Fudik [5, Definition 11.1] every positive number N > 0 is a sub-
asymptote of the operator Su = ®(u) — f with respect to ker ({4, B}), cf. also
Fucik [5, Lemma 14.4].

Remark 2. An operator 4 + @, where A has the meaning of (1) and @ is of the
type described in 3.2 and 3.3, respectively, is said to be an asymptotic linear operator,
cf. Zeidler [21, 28]. The results obtained in 3.2 and 3.3 are examples of the so-called
,,Fredholm-alternative for non-linear operators”, cf. Remark 3.2/1.

Remark 3. Results in this direction in the framework of Sobolev spaces may
be found in Futik [5, 14].

Remark 4. In Fugik [5, 14] the following estimate for @ must be satisfied
|¢(t)| S el + ltl") , ¢>0, 6€(0,1).

Remark 5. If d = 0 in Theorem 1 and Theorem 2, respectively then f has only to
satisfy the following condition:
e B (Q), s>nlp,
and
feF2(Q), s>njp,

respectively.

3.4. Kazdan-Warner results. We present a generalization of S. Fugik [5, Chapter
34]. Let Q = R, be a bounded C*-domain and let A be a second order elliptic
operator:

1) A=- 3 aDr,

1s]als2
(2) a, e C*(Q) (i.e., the a, are real C*-functions),
(3) Zaa(x)yagcly|2>0’ yERni y*o'
la]=2
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Let A, > O be the smallest eigenvalue of the homogeneous Dirichlet problem
A| Bj o(9Q).
Denote by ¢* the (unique) positive eigenfunction to 4, with
(4) foo*(x)*dx =1,
(5) p*eC*(Q), o*(x)20 if xeQ, ¢*|0Q =0, Ap*=I0*.
Let fe L,(Q?), ge C*(@ x R). We consider the problem
(6) Au — dqu = f — g(-, u(*)),
uloQ =0.
The following conditions ensure the existence of u in the Holder-space theory:
(A,) There is a real number s, and a bounded C*-function h,: 2 x R — R such
that if ve C*(Q), v > s, ¢* in Q, then
(7)  f(x) = g(x, v(x)) £ hi(x,v(x)), xeQ
and
(8) o hi(x,v(x)) p*(x)dx = 0.
(A-) There is a real number s_ and a bounded C*-function h_: @ x R — R with
) 1(5) — gl o) = (. ()
and
(10)  foh_(x,v(x)) *(x)dx = 0 if ve C*(Q), v < s_¢* in Q.
The following conditions ensure the validity of 4, and A_:
(By) There exists a h, e C®(Q) with [gh,(x)¢*(x)dx <0 and f(x)—
— Tim g(x, t) < hy(x) uniformly in x.
t— o0

(B_) There exists a h_e C®(Q) with [oh_(x)@*(x)dx >0 and f(x)—
— lim g(x, t) > h_(x) uniformly in x.
1= — o

Theorem 1. Let 0 < p < 0, 0 < g < o, and n[p < s < .
() If fe B, 2(Q) n BL(Q) and if (A,) and (A_) are satisfied, then (6) has
a solution u e B}, (Q).
(i) If p < o0, feF5 2 (Q)n B,1(Q), and if (A,) and (A_) are both satisfied,
then (6) has a solution u € F}, (Q).
Examples. (cf. S. Fugik [5, 34.17]) Let h e C*(Q), h(x) = 0, h % 0. Then —Au —
— Au = f(x) — h(x)e“™in Q, u l 0Q = 0 is solvable if and only if
fof(x) p*(x)dx > 0.
In order to prove Theorem 1 we need some results about subsolutions and super-
solutions. We consider only F ,-spaces, the case of E;,q can be treated in a similar

manner.
A distribution f e D'(Q) is said to be non-negative if and only if f(¢) = 0 for any
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¢eC3(R) with ¢ = 0. The set of non-negative distributions is o(D'(2), C%(€2))-closed.
A function u € C(Q) is said to be a subsolution (supersolution) if (6) iff Au — A,u <
<f—g(,u(*)) (A4u — Au = f — g(-,u(+))) in the above sense and u|0Q = 0.
The following theorem is a generalization of S. Fucik [5, 34.7].

Theorem 2. Let u_ be a subsolution of (6) and u, be a supersolution of (6),
u_(x) Suu(x) in Q If 0<p<o, 0<gs=o, s>nlp, u,ek; (Q),
u_ekF; (Q), and fe F} *(Q). Then there exists a solution u of (6) withu_ < u <
< u, and ueF; (Q).

Proof. The above conditions yield ui e C(Q). Let w > A, and
0 - == (x 1)>0

if u_(x) <t < u,(x). Let T be the operator which assigns to each u e C(Q) the
unique solution ve U B, ,(Q) of

>0
(11) Av + (0 — Ay)v = (x)—g(xu(x))+wu , v[oQ=0.
We put uf”) = T*u, and u{™ = T*u_(T' = T, T**' = TT*). The following lemma
and the arguments in S. Fugik [5, 34.7] prove

(12) u_(x) £ uf7(x) S uf(x) £ .. 2 udP(x) S uiP(x) S ua(x).
Lemma 1. Let ve U B%, ,(Q) and 2 > 0.If v|0Q = 0 and Av + Zv 2 0 in the
e>0

distribution-sense (cf. the above remarks), then v(x) = 0.
From 2.2, 2.3, (11), and u € L, we deduce

(13) [ul® | Fy (@] < 4 + Blul™ | F()] -
An imbedding theorem and (12) yield
(14) | | Fo@)] = €.

(13), (14), and the well-known inequality ||f|F;. | < 5[|f|F o+ C,,HfIF;,;"
show

(13) |y | Fu(@)] = D + 1/2|]“(-i’ IFS q(Q)H-
If M > max (2D, |u, | F ()|, |u- | F},

(16) | ,,,,,(Q)H é M.
There exist u‘*) e L, with

(17) ult) 5y if k- oo pointwise .

Let S be the coretraction constructed in [3, 4.1]. We may suppose that supp Sf
is uniformly bounded for all f. The construction of S yields

(18) Sug™ - Su®) if k- oo

pointwise. Lebesgue’s theorem proves that (18) holds also for the weak o(S(R,),
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S'(R,))-topology. The Fatou-property [3,2.6] yields

(19) uBeFs ().

The u'® are continuous, for F; ; Q €, and Dini’s theorem proves that (17) holds
in (). Now it is not hard to check that u‘®) are solutions of (6).

Proof of Lemma 1. Let we B, 2(Q), ¢ > 0, be non-negative. If y € C*(Q),
Y| 0Q =0, then Y € BI (). If ¥ is non-negative, then the proof of Triebel [16,
3.4.3] proves that  can be approximated in B} 3°(®?) by non-negative C¢’-functions.
Thus Y(w) is well-defined (for the dual space of B} (@) is B, 2(2)) and non-
negative. Let

A* = — ¥ (=1) D%,.

1<jals2

If ¢ € C3(Q), then the unique solution ¥ of A*Y + (0 — A;) Y = ¢, Y |0Q =0

is non-negative if ¢ is. For, if a e 63°(Q) is non-negative, then there exists a non-

negative b e C*(Q) with b | 0Q = 0, Ab + (o — ;) b = a(cf. Futik [5, 34.2]). Now
fav(x)a(x)dx = [ ¢(x) b(x)dx = 0

proves the above statement.

Let v be the same as in the formulation of Lemma 1. Let ¢ be non-negative,
0eC3(Q), ¢ = A% + (0 — A) ¥, Y C*(Q), ¥ |02 = 0, and ¥ non-negative.
Then an easy limiting argument proves

Ja 0(3) e(x) dx = [o (4% + 0 — 1) Y} o(x) dx =
= [oY(Av + (0 — A;)v)dx 2 0,
which completes the proof of Lemma 1.

Proof of Theorem 1. Without loosing generality we suppose s_ < s,. We
prove the existence of a subsolution u_ and of a supersolution u, of (6) with u_ <
<s_¢* and u, = s, ¢* in Q. Then an application of Theorem 2 completes the
proof.

We prove the existence of u,, the other part of the proof being almost the same.
Let T be the operator assigning to u € () the unique solution v of

Av — A = f — hy(x,u(x)) — o*<o*, [ — ho(x, u(x))y,,
<U, (p*>Lz =0 s
v|oQ =0.

Then | Tu | C'(@)| < M (for h. is bounded and f € B },(®)), where M is independent
of u. Therefore there exists a ¢ with Tu + co* = 0 for all u (Fucik [5, 34.12]). We put

(20) T = (s+ +1)o* + ATu + co*), 0SA=1.
Since h, is a bounded C*®-function, there exist constants with

(1) [T [ E(@)] < 4
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ifo<i<1and

(22) : | T | F5. (@) = Blu| F5(2)]
if ueF; (Q)and ||u| (Q)| < 24. Similar as in the proof of Theorem 2 we deduce
(23) | T | F ()] = D+ 1)2]u | 3 (2)] -

Let G = {ueF; (Q)||u|F; (2] < 3D, |u| C(Q)| <24, u > s,o* in Q}.
G is an open bounded subset of F; (), and T; is a compact homotopy. If u e G
and 0 < 1 £ 1, then
T 2 (sy +1)o* in Q,

T | 6@)] < 4,
and
T | P (@)] < 25D.

Thus T;u € G, T; has not fixed point on 0G.

Now an elementary Leray-Schauder argum‘ent (see 3.2) shows that T; has a fixed
point # on G. Hence u is a supzrsolution of (6) and it holds u = s, ¢* in Q. The
proof is complete.
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