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1. Introduction and preliminaries. Following [5, 6] we define J ¢, as the class
of all operatos S such that the r'* tensor power of S is continuous as an operator
from e- to m-tensor products. ‘

In [7] we observed that the product of 13 operators from the class J esx; has
absolutely summable eigenvalues. By a result of Pietsch [9] we then have

(1) (:7—6%3)13 c 2,,

where 2, denotes the ideal of absolutely p-summing operators equipped with the
norm P,. Nevertheless, it is possible to establish the relation of the class I ez; to
the ideal of absolutely (p, q)-summing operators without passing through the eigen-
value estimates. In this paper we show that

@) (Tens) = LGjt1-1),0 >

where the Schatten class £ based on Weyl numbers is intimately connected with
the ideal of absolutely (p, 2)-summing operators. In particular, from (2) we get

(3) (T en3)’ = 2,

which is better then (1).

The proof of (2) uses an estimate of Weyl numbers by Hilbert numbers due to
B. Carl

5(5) = ([T n(s))"

(cf. also Pietsch [10]). We are grateful to Bernd Carl for allowing us to bring here
his proof and a remark on a certain optimality of this estimate.

Parallelly we also give the corresponding results for  es,, but we have not been
able to get non-trivial results for 7 ¢», where r > 4 (cf. Remark 16).

Definition. Let S: E —» F be an operator between Banach spaces E, F. Let the
operator .

T=TRT® ... 9T:ER®,EQ®, ... QE->F®,F®, ... ®,F

r—times r—times r—times
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be continuous. We will denote
Ten (T) = (||®" T[)"".
Furthermore, let us denote by 7 es,(E, F) the class of all operators T such that ®" T
is continuous. As usual we put
T en, = U fen,.(E, F) .
E,F

If o/, # are classes of operators then the class &/ o % is formed by all possible com-
positions A o B, where A € B, where A € &/ and B € 4. Furthermore, we put &% =
= o o and A"*! = ", of for all integers n.

If p,g > 0 and a = (a;) is a sequence of numbers then the quasi-norms [, , are
defined as usual by

La) = lpfa:) = (X iq/p_llail*q)”q if g<o0
i=1
and
lp,(@) = lp,(@;) = sup i''7]a]*,

where ]ai|* is the nonincreasing rearrangement of lail. Further, for a sequence (x;)
of elements of a Banach space E we put
wp,q(xi) = sup {lp,q(<a’ x,~>); ack, ”“H = 1} .
If Te Z(E, F) is an arbitrary (continuous) operator, p, g, r positive numbers
and n a natural number then we put
PE:),q,r)(T) =infC,
where the infimum is over all constants C such that for all (x, ..., x,) = E and all
(»%, ..., y,) e F' we have
LT, yidi=1) £ Cw(xi)i=1) wl(vi)i-1) -
Evidently we have the absolutely (p, g, r)-summing quasi-norm P, , ,) = sup P{y, ...
By a,,c, and x, we denote respectively the approximation, Gelfand and Weyl
numbers of an operator S: E — F (cf. e.g. [10]). Thus ¢,(S) = inf {||S/M|; M < E,
codim M < n} and
x,(S) = sup {a,(SX); X e Z(I,, E); | X| = 1} .
If x is the Weyl s-function then, as usual, we denote by .S’g’f; the class of operators

which are of x-type I, ,, i.e., the operators S such that (x,(S)) € I, ..
The following lemma is implicitly contained in [7].

Lemma 1. Let S; € £(E,, F),i=1,...,1be contjm)ous operators, let Y; = X,
for i =1,....,1 — 1 so that the composition S = S, o... o S, exists. Then for any
p >0, g > 0 and every natural number n we have

1
a) max (k' x(S)) < a,,, [T max (k' x(S)) < a,,, [TP() 5(S5),
k=n i=1 ksn i=1 - .
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b) max (k!4=(/2 x,(S)) 5 bqumaX (K1 x(S7) = b:,qHPuq 2(5%);
where ayp, by, are numerical constants depending only on I, p and 1, q, respectively
(a,,p é (l + l)l/p, bl,q é a,,qe”q).

Proof. a) The multiplicativity of the Weyl numbers gives

1
xkl—l+1(S) = xk(sl) xk(l—l)—1+2(sl-1 °...0 Sx) =...= _l:[lxk(si) .

This in turn implies (for ! fixed):
max (kl“’x (8)) = max (kI + 1) x;_144(S) <

I-1+1=n

s+ 1)”” max k‘/”ka(S) <

H I+1=n i=1

s+ 1)1“’1_[ max k' x(S)) <

i=1k<[(n—1)/11+1
1 .
< (I + 1)M7 [T max k' x,(S) .
i=1 k<n
The second inequality in a) is an immediate consequence of the general inequality
holding for all p > 0 and for an arbitrary continuous operator S:
max (k'/? x,(S)) < P{),)(S) for all integers n = 1.
k=n
(Cf. [7, Prop. 3], which is in fact [10, Lemma 8].)
b) From (17) and the complete symmetry of the Hilbert numbers we have
max (k172 x,(S)) < e'/4 max (k'/9 hy(S)) =
k< k<n

= e'/"max (k1 h(S")) < e'/?max (k' x,(S} ... S1)) .
k=n k=n
Application of a) now yields b).
As in [7] we use a result from [6]:

Lemma 2. Let r = 2 be an integer. Then for every operator S and every natural
number n we have

]_[P(1  eiro(S) < n""!(Ten,(S)), where 0<p;, ¢, <

1/Pi =.le/‘1i =

and

it

i

2. The Weyl numbers of operators from (.T m,)’.

Theorem 1.
a) (7@%3)' < 3’(6721—1),00’
b) (ﬂ.en‘;)' [ 351.721—1),00'
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Proof. a) We will use Lemma 1 in the form
(P(2,0)(S))? P(s,1)(S) < n* Ten3(S)

i.e., because P, < P,

1) (P 2)(S))* P55)(S') < n® Ten3(S) forall SeTens.
By Lemma 1 a), b) we have for S = S;o...0 S,
1
() (110 x,(S))* nt7C2 x,(S) = .01 [T (PG 2)(S0)* Pl 2(S7) -
Now if S; € J en;3 and if
€)) Ip=1, Ilg=2

then (1) yields

1

1
[1(Pi7.2(S0)” Pl2(S0) = n* [ Teni(Sy).

i=

Together with (2) this implies that for every natural n we have
(x(S))° n2/r1a=1220 < 3 T Tend(S)).
Evidently 2/p + 1/q — 2] = 1/2 [ and thus finally -
x,(S)n'"1% < c,,,q,ll_l[‘ Ten,(S;)

b) is proved similarly; (1), (2) and (3) are substituted by

1) (P(P5)(S) PP ,)(S)? < n® Teny(S) forall SeTen,,
1

@) ) R (5) 5 & ] P (5) PR(S),

(3) Ip=Ilg=1.

This finally yields
1
(x,(S))* n2/p+2/a=1=3L < g4 TT Teny(S,)
i=1
or .
x,(S)n'~* < d ] Teny(S)) -
i=1
Remark 1. a) The multicativity of the Weyl numbers implies (cf. [10]) that
(£6%) = L)
and thus the special case of a) (for I = 2) gives
(T ens)* = (£60) © Lo »
which is worse than the result a).
b) L$l-1). is (strictly) contained in £§),_, - This is in accordance with the

inclusion J en, = T eny. Generally we have T es, 1 © 7 en, and wWe may expect
better results with increasing r. Nevertheless, the method does not yield better
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estimates for r>4. (The reason is that (1) must be replaced by an inequality where
absolutely P{},-summing norms (q > 2) occur. Weyl numbers of such operators

n)

are not better then those of absolutely P{}, -summing ones.) Thus we have only
(fen,)’ c (76/@)1 c fﬁ{‘,z,_l)’w for r=4.

¢) The method applied for r = 2 yields only that the Weyl numbers of operators
from (7 ex,)" are bounded, which is automatically always the case. This is in ac-
cordance with the example of the Pisier’s space E such that Idz € T es,.

3. The eigenvalues of operators from (7 ¢s,). By a result of Pietsch [10] the
eigenvalues of operators from ,Sf’;",; are of the same order, i.e. belong to [, ,. Thus
Theorem 1 immediately implies that the eigenvalues of an operator S e (7 ens)"
belong to lg;— - Similarly for (fem)'. Here we prove a slightly better result. The
reason is that the eigenvalues of Riesz operators S and S’ coincide and we need not use
Lemma 1 b) where 1]2 in the exponent was lost.

Theorem 2. a) The eigenvalues of 0perator§ S € (T ens)' belong to lg)y ., if | 2 2.
b) The eigenvalues of operators Se(T eny)! belong to 1, , if 1 2 1.

Proof. The proof of a) is almost the same as in [7], only instead of starting from
the inequality (2) in [7] we start now from our inequality (1). We show that any
operator S € (7 ex3)' is of Weyl type lg 1, (cf. [9]). This means that if S e (T en3)"
(E\,Ei4,) and Le Z(E,4,, E,) then LS is a Riesz operator and its eigenvalues 1;
belong to the Lorentz sequence space lg;,o,-

Thus let S;€ T eny(Ei, Eryq) for i =1,...,1, let Le #(E;,,, E;) and put S =
= Sy0...08;. If | = 2 then by [7, Proposition 2] T = LS and T" = S’'L are Riesz
operators. Let us denote by {4,(T)} the sequence of all non-zero eigenvalues of T,
every eigenvalue counted according to its algebraic multiplicity. Moreover, we may
suppose that [A,(T)| 2 |4,(T)| = .... We know (cf. [8]) that
(4) A= |4(T)| = |A(T]).

Now let us choose a natural number n. We may suppose that 4, + 0. According
to [10, Lemma 12] there exists an n-dimensional T-invariant subspace L, < E,

such that the operator T, € #(L,, L,) induced in L, by the operator T has the eigen-
values 1((T), ... 2,(T), i.e.

(5) |2(T)| = |4(T)] = 24 for k=1,...n.
Let us write 4,(T,) = 0 for all m > n. By [10, Lemmas 1 and 13] we know that
(6) Lo 2(4(S)) = ¢plp,(x(S))

for any Riesz operator S, where the numerical constant ¢, depends only on p.
Combining (6) with Lemma 1 a) for the operator T, in L,, we obtain

™) max (k!7 2(T,)) £ ¢, max (k7 x(T,)) =

1
< ¢, max (k"7 x(T)) £ c,a,,|L| TT P3),2)(S) -
i=1

ksn

606



Here we used the fact that by injectivity of the Weyl numbers
x(T,: L, = L,) = x(T,: L, = E;) = x{(T1,) < x(T),

(7) and (5) now imply

(8) nt'rp,

IIA

1
cptti,p|L] 1;11 P(i}.2,(S4) -
Similarly, using (4) we get
1
0 01, 5 g 1 11 P59,
If we choose p, g as in (3) then (8), (9) and (1) yield

1
(10) (n7P2,)* (n190,) < ep 4| L] ,EII(PE?;.z)(Si))Z P(i,2(S) £

1
< il o T Teni(5).
ie.
1
Tan2lertia2t < e o |L]* T] Ten3(S))
i=1
or
1
Aan'® < e, o l|L Hx Ten,(S;) .
Thus A,€lg;;,, if S;€ T en;.

To show b) we again replace (1) by (1), (3) by (3’) and thus (10) is replaced by

!
(nllp/l”)z (n”ql,,)z < f:,q.ln““L“‘t I_—[lTe“i(Si)

1
an®P=30 < £ |l L|* T] Ten3(S;)
i=1
or

A < £, o L] T Tens(s)

Remark 2. Note that by [7, Remark 1] every Te F ex, is a Riesz operator and
thus b) holds even for [ = 1, i.e. we have that every operator Te J en, is of Weyl
type I, .. In the case a) we do not know whether the operators Te J ¢x; are Riesz
operators. The eigenvalues in the statement a) in the case I = 1 should then be
understood as eigenvalues {4,(T)} lying in the Riesz part of the spectra of T (cf. [12]).

4. An inequality between Weyl and Hilbert numbers. A. Pietsch has shown that
for Se 4(E, F),

Xn-1(S) = ”llz(kljxhk(s))”" .
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This is sufficient to deduce (17), which we used in the proof of Lemma 1 b). The
following unpublished result of B. Carl is slightly better:

Theorem 3. (Carl, unpublished). Let S € Z(E, F). Then
(11) x(S) = n'2([] h(S))"".
k=1

Proof. First we show the inequality (14) below, contained in [10, Lemma 10].
We follow the proof of [10, Lemma 10]. Given ¢ > 0, we inductively choose
X, X3,...€ E and by, by, ... € F' such that |x;| < 1, |b;]| 1, {Sx;,b;> = 0 for
i >j, and (L + &) [<Sxy, bey| 2 ci(S). (See also [1, Lemma 6 (ii)] for explicit
formulation.)

Now we define operators X, € #(I3, E) and B, € Z(F, I3) by

X,(&) =i;lfixi and B,y = (<, bj>)'

Factoring the operator B, through I, and using the fact that P,(I: I’y - I5) =+/n
(cf. [8, 22.4.9]) we get

(12) I8, < Pi(B) < n'".
Similarly we have
(13) Py(X)) < n'/?

Since B,SX,: I3 — I3 is generated by the triangle matrix ({Sx;, b;»), it follows from
[10, Lemma 4] that

TT1<Sx0 ] = [det (B,SX,)| = [T m(B,SX,) .

Thus we have

n n

(14) [Teds:E~ F) < (1 + o) [] (B, 5X,).

k=1
For the next step we will suppose that S e Z(I,, F). Since then X,, B,S, B,SX,
are operators between Hilbert spaces, we have (cf. [3])

(15) 11 h(B,SX,) = T h(B,8) TT h(X,)
Now the inequality between the geometric and algebraic mean and (13) yield
n n/2
n z hl?(X" 2 n/2
(16) H hk(Xn) R (L=t < (1_32_(2(1)> <1.
k=1 n n

Here we use the well known fact that for an operator X, in a Hilbert space we have
(cf. e.g. [8])

YH(X,) = PYX,) = PY(X,).
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From (12), (14), (15) and (16) we get
[TedS: 1, » F) (1 + &) n"? ] hy(S: 1, > F).
k=1

k=1

Letting ¢ - 0 we obtain
(St 1, = F) < (T]e(S: 1 » F))'™ < nt2([] hy(S: I, — F))" .
k=1 k=1

Finally, let us consider a general operator S € Z(E, F)and X € (I, E), | X| = 1.
Then by what we have just shown we have

a,(SX) = ¢,(SX) < n'?(T] h(SX))'" < n'2([] hi(S))"" .
k=1 k=1
The definition of the Weyl numbers now yields (11).

Corollary (cf. [10]). Let S e (E, F) and let « > 0. Then
(17) sup k*712 x(S) < €* sup k* hy(S)

1<k=n 1<kszn

for all natural numbers n.
The proof follows that of [10, Lemma 1, Case (3)]. We will supply it here for the
convenience of the reader. (11) implies that
k
k12 x(S) < k(] h(S))'* forall k.
i=1

The inequality e* > k*[k! gives k < e(k!)"/* and thus if k < n we obtain

k
k=12 x,(S) < ([ i* hi(S))"* < e* sup i* hy(S) < e sup i* h(S),
i=1 1<isk

<is 1<ign

which proves (17).
The estimate (11) is optimal in the following sense.

Remark 3 (Carl, unpublished). Let « > 0 and ¢ > 0 be such that

1 5(5) = on'( [ ()"

for all n, all S e $(E, F) and all Banach spaces E and F. Then a = 1/2.

Indeed, cornsider E = [, F = ¢, and S = the identity imbedding I: [, — ¢,.
Then we show below that
(19) a(I:l, > co) =1,

(20) h(I: 1y > cg) = =12
Substitution into (18) implies

1 1/2n
1 = X,,(I) é Qna (__'> é QCI/Zna—l/Z ,
n!
because n"[n! < ¢". This is possible for all n only if « — 1/2 = 0.
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To show (19) we observe that using [8, 11.11.3] we have
a1y > co) S |1, = cof a(I: 1, > 1) £ 1.

On the other hand, evidently a,(I) = ¢,(I) = 1. To show (20) we observe that
by [10, Lemma 8] we have n'/? x,(S) < P,(S) and thus

(21) x,(I: 1, > 1) S n "2 Py(I: 1, > I,) < n 12

because P,(I: 1, — I,) = 1. ([8]).
The complete symmetry of the Hilbert numbers and (21) yield

(22) h(I: 1, > co) = h(I: 1, > 1) S x,(I: 1y > 1) S n~ Y2,

Let us now consider the following canonical factorization of the identity I,: I3 — I5:
IL=(Qul-> L)l > L) (I 1> L) 15 - 1Y),

where I is the identity and Q, the canonical projection. We have

L=nh(L) S |15 > 1| |J: 1 = 1| | Qi = B Ry(I: 1, = 1) .
However,

—~

ho =y oand U] =) =1.
Thus h,(I: 1; - I,) = n~"/2. This together with {22) yields (20).
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