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Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday

The aim of this paper is to show the links between the coincidence theory developed
by J. Mawhin (see [8]) and the results obtained by L. Cesari and R. Kannan in [2],
J. R. Ward, Jr. in [11], S. Ahmad in [1]. A result by J. Mawhin [9] is extended
to Banach lattices, and a surjectivity result closely related to that by S. Fugik [5]
is established.

1. SOME RESULTS ON LINEAR OPERATORS

Let (X, |*|x), (2, ]|2) be real Banach spaces with the property that X < Z and
there is an o > 0 such that

(1) |x|z < o|x|x forall xeX.

Hence (X, |*|x) Q(Z, |*]2).
Let L: D(L) = X — Z be a linear mapping which satisfies the following condition:
(Ly) Lis a Fredholm mapping of index zero, that is, (i) ker Lhas a finite dimension;
(ii) Im Lis closed and has a finite codimension such that Ind L = dim ker L —
— codim Im L = 0.

Then there exist continuous projectors P: X — X, Q: Z — Z such that

(2 ImP=kerL, kerQ =ImL
and
(3) X =kerL@kerP, Z=ImQ@®ImL

as topological direct sums. Consequently, the restriction L, of L to D(L) N ker P
is one-to-one and onto Im Lso that its algebraic inverse Kp: Im L— D{L) N ker P
is defined.

The properties of K will be determined by one of the following assumptions:
(L,) Kp: Im L = Z — X is continuous. '
(L3) There exists a continuous linear operator 4: X — Z such that L — A: D(L) <

< X — Z is one-to-one and onto and such that the inverse operator (L — A)™':
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Z - D(L) = X is continuous. This means that for some M > 0 and all y € Z,
(L= 47" ylx < M]ylz.

Lemma 1. If the conditions (L,), (L3) hold, then
(i) both operators L, Lp are closed,
(ii) the operator Kp is continuous, that is, there exists a A > 0 such that for each
xe D(L), x = X + X with Xeker L, X € ker P,

|%|x < A|Lx|, .

Proof. (1) Since the proof of closedness of L is similar to that of closedness of L,
we only prove that the operator L, is closed. Let %, be a sequence in D(L) N ker P
such that %, —» X e ker P in X and L%, — § in Z for n — o0. By (L3), A%, > AXin Z
and hence (L— A)%, > J — AX. Since (L— A)™' is continuous as a mapping
from Z to X, %, > (L— A)™"' (§ — A4%) and thus, ¥ = (L— A)~' (¥ — 4%)e D(L)
as wellas (L — A) & = j — AX which implies L% = §.

(ii) By the closed graph theorem, D(Kp) = Im Lis a closed subset of the Banach
space Z. Consequently, the continuity of K follows from the closedness of the
mapping Lp which is the inverse of Kp.

Denote by ||Kp| the norm of the operator Kp.

(L3) There exists a continuous linear operator A: X — Z such that L — 4: D(L) =
< X — Zis one-to-one and onto and such that the inverse operator (L — A4)~':
Z — D(L) = X is completely continuous.

(Ls) The operator Kp: Im L < Z — X is completely continuous.

Remark 1. By Lemma 1, (L,), (L;) imply the assumptions (L,), (L,). The con-
ditions (L,), (L) guarantee that (L,), (L) and (L) hold. In fact, if y,€Im L is
a bounded sequence and X, = Kpy,, then, by Lemma 1, X, is also bounded, and
(L— A)%, =y, — A%, is a bounded sequence. Hence, by (Lj), the sequence
%, =(L— A)"'(y, — A%,) contains a convergent subsequence and the implication
(L)), (&) = (L,), (L), (Ly) is proved.

Further, we will assume
(L) Im L ker L= {0}
or a stronger condition
(Ly) Z=ker L@ Im L.

A sufficient condition for (L,), (L3), (L) and (L}) will result from the following
theorem. I will mean the identity on Z, while ¢(4) and ¢(4) will denote the resolvent
set and the spectrum, respectively, of a linear operator A: D(4) = Z — Z.

e

Theorem 1. Let (Z, Ilz) be an infinitely dimensional real Banach space, let
L: D(L) = Z — Z be a linear mapping such that '
(Ho) for some 4 € (— oo, o) the operator L — I is one-to-one and onto Z, (L — AI)~*
is completely continuous on Z
and
(L,) Im L~ ker L= {0}.
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Denote by {2,} the sequence of all eigenvalues of (L — AI)™"' (it may be finite
or even void) and by {x,} the corresponding sequence of eigenvectors (of (L — AI)™"),
where each term A, occurs in the sequence {l,,} so many times as its multiplicity
indicates.

Then the following statements are true:

(i) The operator L is closed, its resolvent set o(L) is non void and for each A, € o(L)
the resolvent (L — A )™ " is a completely continuous operator defined everywhere
on Z.

(ii) The spectrum o(L) consists of the eigenvalues p, = A + 1/4, of L only,
and x, are the corresponding eigenvectors.

(iii) Lis a Fredholm mapping.

(iv) Z = ker L&® Im L.

Remark 2. By the Riesz-Schauder theory, [12], p. 284, ((L — AI)™") consists of
an at most countable set of points of the complex plane with at most one accumulation
point which may be 0. Clearly Oeo((L— AI)"'), but it is not an eigen-
value of (L — AI)~'. Each nonzero number of o((L— AI)™') is an eigenvalue of
(L — M)™! of finite multiplicity (there exist only finitely many linearly independent
eigenvectors of (L — AI)™! corresponding to a given eigenvalue).

Proof of the theorem. (i) By (H,), A€ ¢(L). Further, (H,) implies that (L— A)~*
is a closed operator and thus, L — AI is closed, too. The sum of a closed and of an
everywhere (on Z) continuous operator is closed and therefore L= (L — AI) + AI
is closed.

Let Ao € o(L). Then L — Aol is a closed operator, its inverse (L — AoI)™*! is con-
tinuous, hence, by Theorem 4.2-E in [10], p. 174, the range Im (L — 4,I) of L — A,
is a closed subset of Z. Since it is dense in Z, it is equal to Z. Therefore we can apply
the resolvent identity (Theorem 5.1-C in [10], p. 245)

(L=2) ' = (L=A)"" == A) (L= A)" o (L= A])
and again by (H,), (L — Z,I)”" is completely continuous.

(ii) Consider the operators (L — AI)~* and (L — AI). By (H,), 0 is not an eigenvalue
of (L— AI)™* and O € (L — AI). Further, 4, is an eigenvalue of (L — AI)™! and x,
is the corresponding eigenvector of this operator iff », = 1 /l,, is an eigenvalue of the
operator L — Al and x, is its eigenvector. Consequently, u, = 4 + 1/4, are eigen-
values of L, x, are the corresponding eigenvectors, and there are no other eigen-

values of L.
Let p = (A + v)e C, where v + 0, v * 1/A,. We can write

L-(A+v)I= EI - (L- /II)'I]OV(L— Al)

and since 1/v # 4,, the operator

Lo w—
v
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is one-to-one. Therefore
-1
[L—(+ 0] = @ 0[11 (- u)—l]
v v

and, by Theorem 5.5-F in [10], p. 266,

B I-(L- ;u)‘l]_l

is continuous on Z. Hence p € Q(L). The statement is proved.

(iii) If 0 e o(L), then by (i), Lis one-to-one, Im L= Z and hence (iii) and (iv)
are true. Thus we will consider the nontrivial case 0 € o(L).

Let 6,(L) be the extended spectrum of the operator L. If L were bounded, then so
would be L— Al,and I = (L — AI)o (L — AI)”" would be compact which contradicts
the fact that Z is an infinitely dimensional Banach space. Hence 6,(L) = o(L) U {0}.
Since 0 is an isolated point of 6,(L), the sets

o, ={0}, o, =0, (L) — o,

are two spectral sets of the operator L. Denote by E,.,E,, =1 — E, the cor-
responding projections and let Z;, = ImE,,, Z, = Im E,, be their ranges. Then
Z,, Z, are closed vector subspaces of Z and

(4) Z2=2,®2,.

Let Ly = L|puynz,> Lo = L|pynz,- Then L is reduced by the subspaces Z,, Z,
and by Theorem 5.4-A, [10], p. 256,

(5) D(L)=D(L,)® D{L,), ImL=ImL; ®ImL,
and
ImL,cZ,, ImL,cZ,.

Since Lhas only the point spectrum by Theorem 5.7-B, [10], p. 283, the operators
Ly, L, have the same property and o (L;) = 0, i = 1,2. As w0 ¢ oy, D(L,) = Z,
and L, is continuous on Z,, 0 is the unique eigenvalue of L,. The operator L, — Al:
Z, - Z, is also bounded, and (L, — AI)™" o (L; — AI) = I|;, is compact. Therefore

(6) Z, is a finitely dimensional vector subspace of Z .

As to the operator L, L,: D(L,) = Z, — Z,, we have 0 ¢ 6,(L,), hence 0 € o(L,).
Since the reduction of a closed operator to a closed vector subspace is again a closed
operator, L, is closed and the relation 0 € ¢(L,) implies that the inverse operator L3"
exists. Moreover, it is continuous and again by Theorem 4.2-E, [10], p. 174,Im L, =
= Z,. So we have

L,: D(L,) = Z, » Z,, L, is one-to-one and onto Z, ,
and
(7) Z=2,®ImL,.
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Two cases should be considered. If L;x = 0 for all x € Z,, then by (7),
(3) Z=%kerL, ®@ImL,.

Let Lx = 0. Then x = x, + x,, x, €ker L, x,eImL,, and Lx, = 0, which
implies L,x, = 0 and x, = 0. Thus ker L < ker L, = Z, and since ker L, < ker L
is obviously true, ker L= ker L;. By (5) we have Im L= Im L, and, by virtue
of (8), the last two equalities give

) ' Z=kerL®ImL.

Thus, Lis a Fredholm mapping of index zero.

Suppose now that ker L, # Z,. Then for an x € ker L we have L'x/¢" = 0 for any
¢ >0 and n = 1. Hence lim (L'x/¢") = 0 for each ¢ > 0. By Lemma 5.8-C, [10],

p. 292, this implies that x € Z, and thus ker L = Z,. In view of (6), this implies that
ker Lis finitely dimensional and Z, can be decomposed into the sum Z, = ker L®
® Z,, where L, = L1|Zlz is one-to-one and by virtue of (L,), Li,: Zy, = Zy,.
But Z,, is a finitely dimensional vector space and L,, is one-to-one. Hence L,
maps Z;, onto Zy,, Z,, =ImL;, =ImL, and we have Z, = ker L® Im L,.
By 4), (7). 5), Z=2,®Z, =ker LOImL, @ ImL, =ker L&® Im L. As (9)
is true, each class of the factor space ZI,mL isaset z, + Im Lwhere ze, ker L. Hence
dim ker L = dim Z],mL = codim Im L. Since ker L has a finite dimension and Im L
is closed, Lis a Fredholm mapping of index zero.

Remark 3. If we replace (H,y) by a stronger assumption (compare with [11],
p. 233)
(H,) for some Ae(—o0, o) the operator L — Al is one-to-one and onto Z,
(L — AI)~" is completely continuous as a mapping from Z into X;
then this condition implies (L3) and, in view of Theorem 1, (H,) and (L,) imply the
conditions (L,), (L), (L;) and (L}).

2. EXISTENCE STATEMENTS

Let F: X - Z be a mapping which is continuous and bounded, i.e., F maps
bounded sets into bounded sets. The existence statements for such a mapping will
be based on a lemma which follows from Theorem IV.3 and Proposition 11.18 in [8],
pp- 43 and 22.

Lemma 2. Let the following conditions be satisfied. X and Z are real normed
vector spaces, L: D(L) = X — Z is a Fredholm mapping of index zero, Q is an
open bounded subset of X such that 0 € Q, Q is symmetric with respect to 0. Further,
F:Q — Z is an L-compact mapping, G: Q — Z is an L-compact mapping which
is odd and such that 0¢ (L — G} (D{L) n 0Q) where Q is the closure of Q and 0Q
is the boundary of Q (with respect to X).

558



Further, let

ML—F)x + (1 = 2)(L— G)x 0 forall (x,2)e(D(L)naQ)x (0,1).

Then the equation
(10) Lx = Fx
has at least one root in D(L) 0 Q.

We recall that F: § — Z is L-compact iff Q o F is continuous, (Q o F) (@) is
bounded and Kp.o (I — Q) o F is compact, where Q and K, have the meaning as
above.

Theorem 2. Let L satisfy the conditions (L,), (Ls) and (L,) and let F fulfil the
following conditions:

(F,) There exist constants a, b > 0 such that
(11) a|Kp| <1
and
|Fx|z < a])?lx +b
for all x =X + % e D(L) with X € ker L, % € ker P;
(F,) Let e = £1 and denote R, = |Kp| b/(1 — |Kp| a). There exists an R, > 0

with the following property: for all x = X + ieD(L) and ke R such that
|%lx = Ra, [F]x < R,

and

(12) eF(X + %) + kxeIm L
one has

(13) k=0.

Then the problem (10) has at least one solution.

Proof. First of all we assert that F is L-completely continuous on X. This means
that F is L-compact on each bounded subset of X. The same is true for the mapping
G: X — Z which is defined by

1
Gx=sé — X, x=X+ X, xekerL, XekerP.

We see that G is odd and L-completely continuous.
Now we shall show that the set of all possible solutions of the family of equations

(14) Lx=(1-2)Gx + AFx, A€[0,1)

is a priori bounded independently of 1. Let 2 € [0, 1) and let x be a possible solution
of (14). Denote x = X + %, X e ker L, £ € D(L) n ker P. Then by (F,),

b x|, . .
Lx|, £ (1 — 2)— + A +b +b.
I XIZ = ( )21 + |5€_lz (a|xlx ) < alx!X
Hence (L) gives
(15) [%lx = K| [Lx]z < [Kp| al%|x + [Ke b,
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which yields

(16) [%[x < Ri-
R, does not depend on . (14) implies
(17) r-=2 aé b X + AF(X + X)eIm L.
21 + ||z
If 2 =0, then X € Im LN ker Land, by (L,), X = 0. For 0 < 2 < 1 we have
1
F(x+x)+ — 4 b——ermL.

Ao 21+ x|,
By (Fz),
|X|x <R, .

Now we choose Q ={xeX:x=2X+ X, XekerL, fekerP, |X|x <R,
|%|x < Ry}. Then we see that all assumptions of Lemma 2 are satisfied and hence
there is a solution of (10) in Q.

Remark 4. In [2], L. Cesari and R. Kannan have proved an existence theorem.
In that theorem X = Z = S and S is a real separable Hilbert space with the inner
product (-, +) and thenorm |- |s. Further,P = Q and the assumptions (L,), (L), (L3)
and (L}) are satisfied. The condition (F,) is supposed with a = 0 (F(S) is bounded)
and instead of (F,) the following assumption is used.

(F3) Let ¢ = +1 and denote R, = |Kp| b. Then there exists an R, > 0 such that
for all xe S, x = X + %, Xeker L, Xeker P, |X|s = R,, |%|s £ R, we have

(19 (6 F(x + 9,5 2 0.

We show that (F3) implies (F,) if P is an orthogonal projection. Indeed, the condition

(12) is equivalent to (e F(X + %) + kX, X) = 0, since PS = ker Land (I — P)S =

= Im L are orthogonal to each other (Theorem 1, [12], p. 82). Then (18) implies

(13). Hence Theorem 2 extends the result of the Cesari and Kannan theorem.

Remark 5. Theorem 2 still holds if the conditions (F,) and (F,) are replaced by
the conditions (F3), (F,) given below, from which (F5) is weaker than (F,), but (F,)
is stronger than (F,).

(F3) There exist constants a, b > 0 such that (11) holds and
|Fx|; < a|x|x + b
for all x = X + ¥ e D(L) with X € ker L, X € ker P.

(Fy) Lete = +1anddenote R, = |[Kp| b/(1 — |Kp| a),d = |Kp|.al(1 — |Kp]| a).
There exists an R, > 0 with the following property: for all x = X + X e D(L)
and k e R such that

IX|x = Ry, |%|x < d|X|x + R,
and (12) holds, the inequality (13) is true.
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Indeed, by (F5), for each solution x = X + £ of (14) we have instead of (15) the
inequality
[¥lx < K| alx]x + [Kp] &

Since Ix‘x < |)?[X + |>~c[x, this solution satisfies [ilx < dl)_clx + R;. Now either
|X|x < R, and we proceed similarly as in the proof of Theorem 2 or |X|yx = R,. By
(F4). the last case cannot arise as can be easily seen by inspecting (17).

Instead of (F;) and (F,) a couple of modified assumptions can be used. Thus the
following theorem is true.

Theorem 3. Let L satisfy the conditions (L,), (Ls) and (L,) and let F fulfil the
conditions
(F5) there exist constants a, b > 0 such that

|Fx|, < alx|x + b
for all x = X + %€ D(L) with X€ker L, % € ker P;

(Fg) let ¢ = +1 and d, > 0. The constant a in the assumption (Fs) satisfies

1 d
19 < LS
(19) [Kp| 1+ d,

There exists an R, > 0 with the following property: for all x = X + %€ D(L)
and k € R such that

5

flxz Ry, [3[x=d,
and (12) holds, the inequality (13) is true.
Then the problem (10) has at least one solution.
Proof. With respect to Remark 5 it suffices to show that (F;) and (F,) are satisfied.
Clearly (19) implies (11). Thus (F;) holds. Put R, = |Kp| b/(1 — |Kp| a), d =
= |Kp| a/(1 — ||Kp|| a). Then d <d, and since the inequality d|X|y + R, <
= dll)_clx holds for all sufficiently great I)?IX (F,) is satisfied as well.

Corollary 1. Let X = Z = S be a real Hilbert space with the inner product
(. *) and the norm |+|s = |*|x = |*|z. Let L satisfy the conditions (L,), (L;) and
(L4), let P: S — ker Lbe the orthogonal projection, and let F satisfy the conditions
(Fs), and
(F7) let ¢ = +1, and d; > 0. The constant a in the assumption (Fs) satisfies
(19) and there exists an R, >0 such that for all x =X + % eD(L) with X e ker L,
X eker P,

¥ls = Ry [¥]s = di[¥]s
(18) is true.
Then the problem (10) has at least one solution.
Proof. Similarly as in Remark 4 we get that (F) is satisfied.

With help of this corollary the following theorem on surjectivity can be proved
which is closely related to that in [5], p. 74, given by S. Fu&ik.
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Theorem 4. Let X, Z, S, L and P satisfy the same conditions as in Corollary 1
and let F satisfy the conditions (Fs),
(Fg) let ¢ = +1. There exists a dy > 0 satisfying the following condition: For
any K > 0 we have a tg > 0 such that

(20) (F{{y + 7).5) 2K
forallt 2 ty, |j|s = 1, yeker L, j e D(L) N ker P, |§|s < d,. The constant a
in the assumption (Fs) satisfies (19).
Then the equation
Lx = Fx + h
has a solution x € D(L) for each heS.

Proof. Let h € S be arbitrary but fixed. It is sufficient to show that the equation
Lx = Gx is solvable, where Gx = Fx + h for each x € S. Clearly G is continuous
and bounded. Further, |Gx|s < a|x|s + (b + |h|s) for each x € S. Thus G satisfies
(Fs). As to (F7), we proceed as follows. S is reflexive, therefore by the Eberlein-
Shmulyan theorem, there exist real numbers k,, k, such that

ky = min(h,y), k, = max(h,7).

yekerL yekerL

IPls=1 I7ls=1
Clearly k; <0, k, 2 0. Denote —K, = min (k,, —1), K, = max (k,, 1). Consider
the case ¢ = 1. Since K, > 0, by (Fy) there exists a tx, > 0 with the above mentioned
properties. Put R, = t;, and consider an arbitrary x = X + % € D(L) with X e ker L,
feker P, |X|s 2 R,, |%|s < d,|X|s. We denote |%|s = t and define 7, § by X = 15,
% =1tj. Clearly t > tg, |§|s = 1, yeker L, € D(L) N ker P, ||s < d,. Then (20)
yields

(G(X + %), %) = (G(«(F + 7)) 5) = [(F(«(F + 7)).5) + (h.7)] =
= ([(F((7 + 7).5) ~ K] 2 0

and hence (F,) is satisfied. In the case ¢ = —1 we put R, = tx, and proceed similarly.
For a suitable x = X + X we come to the inequality '

(e G(% + %), X) = t[o(F(«(7 + 7)), 5) + &(h, y)] =
= t[e(F(t(7 + 7)).7) + ¢K,] 2 0
and again (F7) holds. By Corollary 1 the theorem follows.
Theorem 5. Let L satisfy the conditions (L,), (Ls) and (L,). Let F satisfy the

condition
(Fo) Let & = *1. There exists an R > 0 with the following property: for all
x =X+ XeD(L), Xeker L, Xeker P such that |x|xy = R and (12) holds,
the inequality (13) is true.
Then the problem (10) has at least one solution in @ n D(L) where Q = {x € X:
|x|x < R}.
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Proof. Consider the mapping Gx = ¢k,x, k; >0, x =X + ¥e X, Xeker L,
Xeker P. G is odd and L-completely continuous on X. By (L,), the only solution
of Lx = Gx is x = 0. As to the solutions of (14) for 0 < 2 < 1, they satisfy eFx +
+ ((1 = 2)/2) k,X e Im Land, in view of (F,), they do not belong to the boundary
0Q of Q. By Lemma 2 the statement of the theorem follows.

Corollary 2. Let X, Z, S, L and P satisfy the same condition as in Corollary 1
and let F fulfil the condition:

(F10) Let ¢ = +1. There exists an R > 0 such that for all x =X + %e D{L),
xeker L, X e ker P with |x|x = R, (18) is true.

Then the problem (10) has at least one solution in @ n D(L) where Q is defined
above.

Proof. Similarly as in Remark 4, we get by (F,,) that the implication “(12)
implies (13)” is true and hence (F,) is satisfied.

Remark 6. In view of Remark 3 we see that Corollary 2 under the assumptions
(H,), (Ly) and (F,,) brings a result which is similar to that of Theorem 1 in [11],
p. 233.

3. EXISTENCE THEOREMS IN BANACH LATTICES

In this part we generalize a result given by J. Mawhin in [9]. Let (Z, ||z, =)
be a real partially ordered Banach space with the positive cone K = {z €Z:z = 0}.

Further, let (Z, |+|;, <) be a Banach lattice, that is, for each pair of elements x, y € Z
there exist

sup (x, y) = the Lu.b. of x,y
and

inf (x, y) = the g.lb. of x, y,

and for the modulus |x| of the element x € Z which is defined by the relation

|x| = sup (x, —x)
the statement

) [ < ] implies [x]; = s
is true. In particular,
(22) if |x| =]y, then x|z = ||z
Further, for each x € Z we define

x* =sup(x,0), x =sup(—x,0).
Since inf (x, 0) = —sup (—x, 0), by [12], pp. 364—356 wz have

(23) x=x"—x", x=x"+x".
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Further,

(24) |x|=0, and |x|=0 if x=0,

(25) |x + y| < |x| + |y|. |ex| =|c||x| foreach ceR.
Since

(26) x =0 implies |x| =x

and thus [(|x])| = |x]|, by (22) we have

@) [ = I

Remark 7. In view of (21), (26), the cone K of the Banach lattice Z is normal
by [3], p. 219, and by virtue of (23) it is reproducing. Of course, it is minihedral
as well.

Lemma 3. Let y: Z — R be a continuous, linear, strictly positive functional. Let
(28) |xly = w(|x|) foreach xeZ.
Then the following statements are true:

(1) ]l,,, is a norm defined on Z with the property

(29) [xlo = 191l Ix]2
where Hl//” is the norm of the functional \y and hence, (Z, HZ) is continuously
embedded into the linear normed space (Z, ]l,,,)

(ii) (2, |*]y) is a Banach space iff there is a k > 0 such that

(30) U(|x|) = k| |x| |z forall xeZ.

Proof. (i) By the strict positivity of the functional ¢ and by (24) it follows that
Y(|x|) 2 0, ¥(x|) =0 iff x = 0. Further, (25) implies that y(|x + y|) <
S u(|x| + ) = w(|x]) + wl|y]), wllex]) = ¥{|e| |x]) = || ¥(]x]). Hence the func-
tional ||, which is defined by (28) has all properties of the norm. Further, by (27),
xly = v(lxD) = [¥[ [ [x| [z = ¥ x|z which proves (29).

(ii) In view of (29), the identity mapping id: (Z, |*|;) - (Z,]|-|,) is continuous
as well as one-to-one. IF(Z, ] ‘,,,) is a Banach space, then by the Banach open mapping
theorem, the inverse mapping id~! is also continuous. This means that there is
a k > 0 such that
(31) |x|, = k|x|; forall xeZ,

which in view of (28), (29) can be written in the form (30).

Conversely, if (30) and hence (31) is true, then (29) and (31) imply that the norms
|*|2 ||, are equivalent to each other.

Remark 8. By (24) and (26), the inequality (30) means that y(x) = k|x|; for all
x € K and hence (Z, II,,,) is a Banach space iff ¢ is uniformly positive. Theorem 19.3
in [3], p. 222, asserts that a uniformly positive linear continuous functional on Z
exists iff K allows plastering. Let us recall that the cone K allows plastering if there
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exists a cone K, and a ¢ > 0 such that the closed ball B(x; c|[x[,) = {ve Z: |y — x|z <
< ¢|x|z} = K, for all xe K — {0}.

In addition to (1) and the conditions (L), (L}) which are always assumed in this
section, some of the conditions (L,), (L3), (L3), (L3) will be also used. Further, we
shall use some of the following conditions:

(Ls) ker L= span {%¢} with ¥ e D(L)n (K — {0});

(LG) there is a strictly positive, linear continuous functional ¥: Z — R such that

(32) ImL=kery, y(¢)=1;

(Lg) there is a uniformly positive, linear continuous functional : Z — R such that
(32) is true.

A sufficient condition for (L6) is given by the following lemma.

Lemma 4. Let the conditions (L,), (L) and (Ls) hold. Then y: Z - R is a linear,
continuous, strictly positive functional satisfying (32) iff

(33) Y(c€ + X) = ¢ foreach ceR, %elmL
and '
(34) ImLAK = {0} .

Moreover, if Y is uniformly positive, then K allows plastering and is strongly
minihedral (i.e., every subset of Z which is bounded from above has a supremum).

Proof. By (L}) and (L) each element x € Z has a unique representation in the
form x = ¢% + X, ce R, XeIm L. Hence the linear functional ¥ satisfying (32)
fulfils (33), and thus, if xeIm LA K, then y(x) = 0, and by the strict positivity
of ¥, x = 0 follows. Hence (34) is true. In the case that y is uniformly positive,
Remark 8 states that K allows plastering. Then by Proposition 19.2, [3], p. 220,
K is fully regular and hence regular as well. (K is regular if every increasing sequence
which is bounded from above is convergent.) Since y is strictly positive and conti-
nuous, by Theorem 6.1, [7], p. 46, K is strongly minihedral.

Conversely, suppose that (33) and (34) are true. Then the functional ¥ determined
by (33) is well defined. Its linearity follows directly from (33). Further, (33) implies
(32). Let x, =X, + X,€Z, X,ekerL, ¥,eIlmL, n=1,2,..., be a sequence
such that limx, = x = X + X, Xeker L, XeIm L. As the projector Q: Z —» Z is

continuous, Q(x,) = X, » 0(x) = X and hence X, = ¢, — ¢% as n — o0. But this
occurs iff ¢, — ¢ for n — oo. This implies that ¢, = Y(¢,% + £,) > ¢ = Y(c% + )
and the continuity of y is proved.

Let x =%+ XeK — {0}. If = ¢& # 0, then ¢ + 0 and Y(c€ + %) = ¢ + 0.
The case ¢ < 0 cannot occur, since otherwise % € K, (c(ta” + X)e K would imply
%€ K n Im Land hence, by (34), ¥ = 0 which would lead to —%, % € K, therefore
% = 0 (by a property of the cone) which contradicts ¢# =+ 0. Thus Y(c% + %) > 0.
In view of (34) the case X = 0 cannot occur and the proof of the lemma is complete.
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Remark 9. As the assumption (Ls) indicates, in this section we are concerned
with the case that the equation Lx = 0 has a one dimensional space of eigenfunctions
spanned over a nonnegative function 4. The problem when a strictly positive func-
tional is uniformly positive will be illustrated in the following example.

Example. Let I = [0, 1], Z = L'(I) with the usual norm |+|.and the usual or-
dering, y € L(I) such that y(t) > O a.e. inI. Then y(x) = [, x(t) y(t) dt is a conti-
nuous, linear, strictly positive functional in L'(I). Two cases may occur.

(i) There is a k > 0 such that
() 2 k ae. inl.

Then the norm
x|y = {1 |x(t)] ¥(r) dt for each x e L'(I)

satisfies the inequalities
s < ey = Wi s

and hence the norms |*|., ||, are equivalent on L'(I). This implies that the space
Ly(I) = (L'(I), |*]y) is a Banach space.

(ii) For each n natural and the set S, = {r e I: Y/(t) < 1/n}, the measure u(S,) > 0.
Then the sequence

0, tel —8S,,
w=1_L e,
(S

enjoys the properties

[Valer =1 but |y,|, 1 and hence y, — 0 in Ly(I).

S

Therefore the norms |+|.:, ||, are not equivalent. We show that L, need not be
complete. If 1/y/() ¢ L'(I), e.g. Y(t) = t, t €I, each term of the sequence

——1—, tel — S,,
z,(t) = { (1)
0,

teS,,
belongs to L'(I),
= .“Sn dr = /'L(Sn) .

©2) =,

Since [0,1] = §; = S, = ..., we have

z,(t)

u( ﬂ S,,) = lim x(S,)

n— o

and, by u( ﬂ S) = 0, we have lim u(S,) = 0. In view of (35), this implies that the

n—* oo
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sequence {z,} is fundamental, but not convergent in Lfﬁ. The space Lf,, is not a Banach
space. Of course it may be completed.

We shall consider two cases. In the first case we assume that the functional ¥
given by (33) is uniformly positive and hence the space (Z, |+|,) is a Banach space.

Theorem 6. Assume that L satisfies the conditions (L,), (L}), (Ls), (L), (Ls)
and (Lg) and that F satisfies the conditions:

(Fy;) there exists aueZ and ¢ = +1 such that
(36) IFxI <eFx +u forall xeX;
(Fy2) there exists 6 = +1 and ¢ > 0 such that

O[F(ct& +9)] £0

whenever ¢ £ —9 and lﬁlx < A]u],,,,

and B
S[F(c% + 7] 2 0
for every ¢ = ¢ and |17|x = AI“'W where ¥ € D(L) N Im L and A is given in
Lemma 1 in the space (Z, ||,,,) which will be denoted by Z.
Then the problem (10) has at least one solution.
Proof. Denote n = |u|,/|y/] and put
21 + |x|2)

Then G is odd, L-completely continuous and

(37) Gx- , xeX, x=X+%, XekerL, XelmL.

(38) oy 7.

Again we have to find an apriori bound for all possible solutions of (14). Let 4 € [0, 1)
and let x be a solution of (14). Then in view of (32) we have

(39) 0 = (1 — 2) Y(Gx) + A y(Fx)
and by virtue of (25), (28), the strict positivity of the functional ¢ and (F,,) we come

to the inequality
|Lx|, < (1 — 2) |Gx|, + Ae Y(Fx) + A y(u).

If we use (39), (29) and (38), we obtain

(40) Ly 5 (0= )M~ a1 = 2y y(60) + 2, 5

< (1= ) M (1= 2) 016+ Al 5 0= 2l + Al = [

In view of Lemma 3, the inequalities (29), (31) hold. Thus the conditions (L), (L)
and Lemma [ are true not only in the space Z, but also in Z. Hence, thereisa A4 > 0
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such that ||y < A|Lx|,. This together with (40) gives
(41) [¥lx = Alul, -
If we put ¥ = ¢%, then (41), (37) and the condition (F,) for ¢ £ —o imply

31 = 2)p(Gx) + 9P = (1 - 1) .p( L c(€> i

L+ ||,

+ 20 Y[F(c% + %)) < (1 ‘“% [1+ %] es —(1 - ;u)gp + %] te <0

so that (39) cannot hold. Similarly the assumption ¢ = ¢ leads to a contradiction
with (39). Hence we necessarily have |¢| < ¢ and this together with (41) gives
(42) [x|x < |c€|x + |X]|x < o|€|x + Alul, .
which completes the proof of the theorem.
Remark 10. The condition (Fy,) says that F.is either bounded from below (when

¢ = 1) or from above (if ¢ = —1). In fact, in the first case (36) implies that Fx <
< lFx] < Fx + u and hence u = 0 as well as — Fx < IFx] < Fx + u and

Fx = —% forall xeX.

In the case ¢ = —1 we get that u = 0 and

Fx S% forall xeX.

If the functional y given by (33) is only strictly positive and thus Z is not complete,
then instead of (L;) we have to assume a stronger condition:
(L%) There exists a continuous linear operator 4: X — Z such that L — A: D(L) =
< X — Z is one-to-one and onto, and the inverse operator (L — A)":
Z - D(L) = X is continuous. This means that for some M > 0 and all y € Z,

(43) I(L—A)" ylx < My, .

Lemma 5. If the conditions (L,),(L%) hold, then Kp: Im L < Z — X is continuous,
that is, there exists a A > 0 such that for each x € D(L), X = X + X with Xe ker L,
X € ker P we have

[y = AL,
Proof. Since Kp = Kp o[y, = Kpo (L — A) o (L — A)™ |41, We can write
(44) Kp=KpoLo(L— A) mr — Kpo Ao (L= A) i =

= =P)o(L—A) ime —KpoAdo(L— A) iz
First we remark that on the basis of(29), the inequality (43) implies that
(L= 4)" ylx = M[y| 5]

and hence (L3) is fulfilled. Therefore, by Lemma 1, K, is continuous as a mapping
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from Z into X. Since (L — A)~! is a continuous mapping from Z into X, I — P
continuously maps X into X and A is continuous as a mapping from X into Z,
(44) implies that K, continuously maps Im L < Z into D(L) NnkerP < X.

Theorem 7. Assume that L satisfies the assumptions (L,), (LY), (L), (L}), (Ls)
and (34). Further, let F satisfy the conditions (F,,) and (F,,). Then the problem
(10) has at least one solution.

Proof. We proceed in the same way as in the proof of Theorem 6, arriving at the
inequality (40). On the basis of Lemma 5, this inequality implies (41) which yields
(42). This completes the proof of the theorem.

Remark 11. Theorems 6 and 7 are extensions of Mawhin’s Theorem 1 in [9],
p- 408, to Banach lattices. They use the same idea of proof. Nonetheless, it is
useful to distinguish the case of a strictly positive functional  from the case of a
uniformly positive functional .

4. APPLICATION

Consider the existence of a solution to the boundary value problem
(45) x" + n’x = f(t,x),
(46) x(0) =0, x(n)=0,
where f e C([0, 7], R) and n is a natural number.

Let X = Z be the Banach space C([0, 7], R) with the sup-norm |- . Let D(L) =
= {x e X: x e C*([0, 7], R), x satisfies (46)}. Let the operators Land F be defined by

47) L:DL)c X > X, x+—x"+ n’x,

(48) F:X>X, x—f(-,x(+)).

Then the problem (45), (46) takes the form (10). A little calculation yields
(49) ker L= {xeX:x = csinnt, ce R}

and

(50) ImL={yeX: [§y(t)sinntdt =0} .

The projectors P: X — ker L,I — Q: X — Im Lare determined by the relations
(Px) (1) = 2 sin nt {§ x(t) sin nt dt ,
T

(0x)(t) = (Px)(t) foreach xeX and te[0,n].
Then
X =%kerL&®ImL

and thus, the assumption (L}) is satisfied.
Consider the operator Kp: Im L— D(L) n Im L, y > x, x is the unique solution
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of the problem (46), x” + n’x = y(t), which satisfies the condition x € Im L. x has
the form

x(t) = ¢sinnt + stn nt [6 cos ns y(s) ds — cos nt f& sin ns y(s) ds ,

where ¢ is determined by the condition [§ x(t) sin nt df = 0.

Since
. i 1.
[¥sin® ntdt = =|(m — s) + —sinnscosns |,
2 n
{Tsin ntcos ntdt = — isin2 ns, 0<s=<m,
2n
we have
c= L [—jg (m — s)cos ns y(s)ds — ! J5 sin ns y(s) ds].
nn n
Hence ’
(51) Kp y(t) = [§K(t,s) y(s)ds, 0<t<mn, yelmL
where
1 . [ 1. ] 1.
—sinnt|scoshs ——sinns | — —sinntcosns, 0Zt<s=<m,
(52) K(t,s) = i " "

IIA
IIA
a

. 1. 1 .

—sinnt| scosns — —sinns | — ~cosntsinns, 0=<s

nn n n
Theorem 8. Let 0 < d, < 1. Suppose that there exist constants a > 0, b > 0

such that

(53) [f(t,x)| < a|x| + b, te[0,n], xeR,

and a satisfies (19) where K, is the operator given by (51) (52). Suppose that

& = +1 and that there is an R, > 0 such that

(54) esgn A [§ f([t, Asinnt + %(t)] sinntdt = 0
for all A and %(t)e D(L) "\ Im Lsuch that
(53) [4] 2 Ry, 5] = dil4].

Then exists a solution of (45), (46).

Proof. By the above considerations, it follows that the operator L determined by
(47) satisfies (L,), (L) and (Lj). In view of (53), the operator F which is defined by
(48) fulfils (F5). On the basis of (49), (50), we have

eF(X + %) + kxeIm L iff esgnA [§f[t, Asinnt + X(1)].

.sin ntdt + k[A|g =
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Hence, by (54) and (19), the assumption (F) is satisfied as well. Then, by Theorem 3,
the result follows.
The following corollary gives a sufficient condition for (54) to be satisfied.

Corollary 3. Suppose that
(i) there exist numbers ¢ =2 0,0 < J < Tt/2n and ay > 0 such that for e = +1
(a) ef(t, x)sgn x = 0 for each te [0, ], |x| = ¢;
(b) there is a t*e[0,n) with the property ef(t, x)sgnx = a, for each te
e [t*, t* + 8] and each x, |x| = ¢;
(ii) there are numbers M > 0, b > 0 and numbers ¢y, K, d, and a > 0 which
are determined by the relations

(56)

ao=a1§sinné, K = max |f(t,x)|, d, = min 80————1———, 1sinn(E ,
6 6 0<t=n 27t(K+M) 2 6

Ix|=e
(19) <1 _d
[Kp| 1 + dy
where Kp is given by (51), (52), such that
(c) the function f(t, x) satisfies (53);

(d) |f(t. x)] £ M for each te(U [(In|n) — &, (In/n) + 8]) " [0, ] and each

x|x|ze. =0

Then there exists a solution of (45), (46).

Proof. Only the case ¢ = 1 will be proved. The case ¢ = —1 can be dealt with
in a similar way. In view of (56), 0 < d, < 1. Put R, = ¢/d, and consider the
function A sin nt + X(t) with X(t) € D(L) n Im Land such that (55) is true.

Let S, = {te [0, n]: |sin nt| = 2d,}. Then in view of (55), for t€ S; we have

|4 sin nt + X(t)] = 2|A4| d, — |%(t)] = |A] d, = ¢ and sgn [4 sin nt + X(1)] =
= sgn (A4 sin nt) = sgn A sgn sin nt, which by (a) implies that f|t, A sin nt + X(1)] .
.sin ntsign 4 2 0 and hence sgn Afs, f[¢, A sin nt + %(t)] sin nt dt = 0. Consider
the interval [t*, t* + 5]. As 6 < n/2n, the function sin nt has at most one zero in
this interval. Therefore one of the intervals [t*, t* + 18], [t* + 16, * + 5],
[t* + 36, t* + §], say [t*, t* + 18], contains no zero of sin nt, and each point of
that interval has the distance to the nearest zero point of sin nt greater than or equal
to 5. Hence for te[t*, t* + 18] we have |sinnt| = sinn 6 = 2d, and thus,
[t*, t* + 45] = S,. Moreover, (b) implies that sgn A [j,s s 157 f[2, A sin nt + X(1)] .
.sin nt dt = a, 30 sin n 45. This, with respect to (56}, means that

(57) sgn A [s, f[t, Asinnt + X(1)] sin nt dt = 2¢, .

Now we denote S, = {te [0,n] : [sin nt| < 2d}, S3 = {te S,:|Asinnt + X(t)] <
S0}, Sy={teS,:|Asinnt + X(1)] > o, sgn[Asinnt + ()] = sgn (4 sin n1)},
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Ss = {teS,:|Asinnt + (1) > o, sgn[4sinnt + X(t)] + sgn (4sin nt)}. Then
in view of (56) we have

(58) |sgn A4 [s, f[t, Asin nt + %(1)] sin nt dt] < p(S5) K 2d, .
The assumption (a) implies
(59) sgn A (s, f[t, Asinnt + %(t)] sinntdt 2 0.

which, on the basis of (d), implies
(60) |sgn A s, f[t, Asin nt + X(t)] sin nt dt| < p(Ss)2M d; .
Using the inequality p(S3) + p(Ss) < m and respecting (56), we get from (58), (60)
that |sgn A4 [g,,s, f[t, 4 sin nt + %(1)] sin nt dt < &,, which together with (57), (59)
gives that (54) is satisfied. Then Theorem 8 implies the corollary.

Remark 12. Theorems 34.2 and 34.5 in [6], pp. 270—275, give similar results

about the existence of a weak solution to the problem (46), x” + n’x = g(x) + f(¢).
Proposition 2 in [4], p. 290, is closely related to Theorem 8 and its corollary.

Again by (56), 2d, < sin nd, and therefore S, < (U [In/n — 6, In[n + &]) A [0, 7]
=0
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