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In this paper we deal with a system of generalized differential equations of the form
(0.1) do =zdR, dz =v0vdP

which is closely connected to the classical Sturm-Liouville equation of the second
order. For a more detailed description and motivation see [7] and [5]. In the case
of the generalized differential equations of the form (0.1) the solutions in general
exhibit discontinuities, and by (0.1) systems with strong impulses can be described
in the sense of K. Kreith (see [5]).

The main goal in [7] was to derive some generalized version of the Sturmian
comparison theorem. To this aim a certain identity was derived and we obtained
a comparison theorem in which the distribution of “zeroes” of a solution was
described for two equations of the form(0.1) with the same coefficient R and different
coefficients P; and P,. The method used in [7] was of “variational” nature and,
moreover, the proof of the results was based on intcgration without mentioning
anything which would correspond to differentiation.

Here we will derive a more general and complete result for systems of the form
(0.1). First we derive a Sturm type comparison theorem for classical systems of the
form

x=r(s)y, y=p(s)x

with locally integrable coefficients r, p such that r = 0 almost everywhere in the
interval of definition of the system. The second part of the paper is devoted to the
concept of prolongation of a function (of bounded variation) along a given increasing
function. This concept then enables us to transfer results for classical systems of
ordinary differential equations to systems of the form (0.1); this technique is also
used for deriving the desired comparison theorem in the last part of the present
paper.

The method of prolongation of a function along an increasing function seems to
be useful for studying generalized differential equations in the-sense of J. Kurzweil
also from a general point of view. The corresponding results will be given in the paper
[2] which is under preparation.
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1. A COMPARISON RESULT FOR CLASSICAL STURM-LIOUVILLE SYSTEMS

1.1. Lemma. Assume that functions r, p: (a, B) = R satisfy

(1.1) r, p € Lio(e, B)
and
(1.2) r(s) = 0 for almost all se(a,p).
If the pair (x,y) is a solution of the system of ordinary differential equations
(1.3) x=r{s)y, y=nps)x

on an interval [y, 8] <= («, B) then the set
N = {se[y,6]; x(s) = 0}
consists of a finite number of connected components in [y, §].

Proof. The solution (x, y) is assumed to be nontrivial, otherwise we have N =
= [y, 6] and N consists of only one component. Since x: [y, 8] — R is continuous,
every component of N is either a closed interval in [y, 8] or an isolated point. Assume
that we have a non-trivial solution (x, y) of (1.3) and that the number of components
of N is infinite. Then a sequence [s;, s;], s, < s k = 1,2, ... of components of N
can be found such that s; < sp;q, S — S, — 0 and s; = s, € [, 6] for k > . By
the continuity of x in [y, 6] we have x(s,) = 0 because x(s;) = 0 and y(s,) + 0
since the solution (x, y) of (1.3) is not trivial. Hence by the continuity of y at s,
there is a § > 0 such that, e.g., y(s) > 0 for se s, — &, sy + ] N [y, 5] and there
exists a ko € N such that [s;,.s;,] < [so — 8, so + 8] N [7,8]. By the definition
of a solution we have

Jso 1(e) y(o) do = x(so) — x(s;,) = 0

because x(so) = x(s,) = 0. Hence necessarily r(s) = 0 for almost all se[s, so] and,
consequently,
x(s) = x(s,) + [5, 7{(0) ¥(0) do = x(s5, ) = 0
for all s € [5,, so ] This means that the interval [Sks> 0] is @ part of some component
of N and this component contains all intervals [s,, s;] for k = ko. Hence we get
a contradiction since [s,, s;] are components of the set N.
For the system (1.3) it is convenient to use the well-known Priifer transform (see

[4]), ie.

(1.4) o =(x*+y?), ¢ = Arctg(x/y).

This means that ¢ and ¢ are such continuous functions that

(1.5) x(s) = o(s)sin o(s), y(s) = o(s) cos @(s), se(x f).
Under this transformation the system (1.3) has the form

(1.6) ¢ = r(s) cos® ¢ — p(s)sin® ¢ = r(s) — (r(s) + p(s)) sin® @
(1.7) 6 = (r(s) + p(s)) esinpcos ¢ .
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1.2. Lemma. Suppose that r, p: (a, ) > R satisfy (1.1) and (1.2). Let (x, y) be
a nontrivial solution of the system (1.3) on the interval [y, 8] < («, B) such that
N = {se[y,68]; x(s) = 0} = N°UN!
where

k
= U [s; 5]
ji=1

with y <s; <51 <5, sy <...<s8,=5, <6 and N° = [s9,50] is the com-
ponent of N containing 7y = s,. (If y¢ N then N° = 0 and we set s, = y in this
case.) Further let us suppose that the functions ¢, g: 2 8] — R are given by the
Priifer transform (1.4) and that 0 < ¢(y) < n. Then

(1.8) o(s) =jn for sels;s], j=12,...k
(1.8) jn<o(s) <(j+ 1)n for se(s) sjq),
j=0,1,....k where s, =6.

Proof. Let us set A = [2|r(s) + p(s)| ds = 0. For se [y, 5] we have ofs) > 0
since the solution (x, y) is nontrivial. Since (1.5) implies x(s) = (s} sin @{s) we
obtain
(1.9) x(s) = 0 ifand only if ¢(s) = 0 (mod ).

Since ¢ is continuous and ¢(s) = 0 (mod n) for se N we obtain that on every
component [s;, sj] of N the function ¢ is constant and assumes a value which is
a multiple of , i.e., we have ¢(s) = In for se[s;, s;], [ € N. Assume that ¢(s) > Ir
for s < s;. By (1.6) we have

0 < o(s) — ofs;) = ¢fs) — In =
=[5, r(0) do — 3, (r(0) + p(0)) sin® ¢(0) do <
< [¥ |r(o) + p(o)| (@(0) — In)* do .
Since ¢ is continuous there exists A > 0 such that
(1.10) A(p(s) — In) < 1
for se[y,s;] n[s; — 4 s;] =1 and there is an s’ €I such that ¢(s') = max o(s)

and consequently (¢(c) — In)* < (¢(s') — In)? for oel. By (1.9) for every sel
we have
0 < ¢s) — In £ [¥ |r(0) + p(o)| (@(s') — In)* do = (p(s') — Im)* A
This inequality holds also for s = s’ € I and consequently, we get
o(s) — In < (o(s') — In)* A
and also 1 < (¢(s’) — In) A because ¢(s’) — In > 0. But this evidently contradicts

(1.10). Hence ¢(s) < In for s < s; and ¢(s) < In for s € (sj_y,s;).
Similarly we can show that ¢(s) > In for s € (5}, 5,4 ,) provided ¢(s;) = Ir. Assume
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that ¢(s) < In for s > sj. By (1.6) we get for s > s}
(1.11) 0> ofs) — In = @(s) — o(s)) =

= {5, r(e)do — {5 (r(c) + p(0))sin® ¢(c) do =
z = [3 [r(o) + p(0)| (¢(0) — Im)* do .
The continuity of ¢ implies the existence of a A > 0 such that
(1.12) 0= A(ln — o(s)) <1, selspo]nlshsj+A]=1,

and also the existence of 5" €I such that ¢(s') = max ¢(s). Hence by (1.11)
sel

0> o(s') — In 2 —A(o(s') — In)*,
and also A(Ir — ¢(s')) = 1 for s’ e I. This contradicts (1.12) and proves that for
s € (s}, s;44) we have It < ¢(s).

Using the continuity of ¢ and the properties -of the set N we obtain in this way
the following statement:

(A) If ¢(s) = In for se[s;,s7], [eN then (I — 1)1 < ¢(s) < In for se(sj_y,s))
and In < ¢(s) < (I + 1) for se (s}, s;: ).

By assumption we have 0 < ¢(y) < m; hence ¢(s) > 0 on (so, s;). By the con-
tinuity of ¢ we have either ¢(s,) = 0 or ¢(s;) = . By (A) the first possibility can
be excluded because in this case we would have ¢(s) < 0 for se(sy, s;) and also
¢(y) < 0. Hence ¢(s;) = © and also ¢(s) = = for se[sy,si]. By (A) we get & <
< ¢(s) < 2n for s € (s}, s,) and again the possibility ¢(s,) = m can be excluded and
we obtain ¢(s) = 2n for s € [s,, s3] In this way it can be proved step by step that
(1.8) holds.

Now we prove a statement which corresponds to the first Sturmian comparison
theorem for second order linear differential equations in the form stated in the
monograph [4]. Our result concerns systems of the form

(1.13); X=ry, y=px, j=12."

1.3. Theorem. Assume that the functions r;, p;: (a, B) > R, j = 1,2 satisfy (1.1)
and (1.2) and that, moreover,

(1.14)  ry(s) S rals), pa(s) = pa(s) for almost all se[y, 5] = (« f).
Let (x4, y;) be a nontrivial solution of the system (1.13), on [y, 8] sich that for
k

N = N°U N' given in Lemma 1.2 we have N' = U [s;, sj] with y <s; <57 <
i=1

<5, <5y < ... <5 = s, <0 (N° is the component of the set of zeroes of x,
in [y, 8] which contains the point y, or N® = 0 if y ¢ N.)
Let (x,, y,) be a solution of (1,13), on [y, 5] such that

21(1) 5 ¥2(0)
(1.15) xi(y)  xy(9)

534



holds. (If x,(y) = 0, x5(7) = 0 then we set y,(y)[x((y) = 0, ya(y)x2(y) = o0,
respectively.)

Then

M = {se[y, s]; xa(s) =0} = M° U M*

where M° is again the component of M containing y or M® = 0 and the set M'
consists of at least k components.

If in addition the inequality in (1.15) is strict or there is a nondegenerate interval
J < [y, si] such that either

pi(s) > pa(s) for almost all seJ and [,r(c)do >0
or
ri(s) < ry(s) for almost all seJ and {;p,(c)do + 0
then
M=MuM UM
where M', M" are the components of M containing the points y, s, respectively
(or empty sets), and M consists of at least k components.
Proof. Using the Priifer transform for the system (].13)j, j =1,2 we obtain
the equation for the polar angle
(1.16); ¢ =rys)cos> @ — pfs)sin ¢ .
The functions ¢(s) = Arctg (x{s)[y(s)), j = 1.2 are solutions of (1.16); on
[7, 6]. Assume that @4(y), @2(y) € [0, 7). Sincz (1.15) is satisfied we get
(1.17) 0= 0i(y) £ @ay) <.

Let us prove ¢,(s) < ¢,(s) for all s € [y, 6]. To this aim we consider the sequence
of initial value problems, n e N,

(1.18) W = ry(s) cos® Y — py(s) sin® ¢ + (1n) |r,(s) + po(s)] . W) = 2(7) -
If y,(s) is a solution of (1.18) defined for s = y then the continuous dependence
theorem for n — oo can be used for obtaining that

(1.19) lim ¥,(s) = ¢,(s) uniformly on [y, 3d].

Let n e N be fixed. Assume that there is a value s, € (y, 6] such that y,(s,) < ¢4(s;).
Let us set

s, = inf {o €[y, s,]; ¥us) < @(s) for se[o,s,]} .
Since the functions ¥,, ¢ are continuous we have ¥,(s,) = ¢,(s,) and ¥,(s) < ¢4(s)
for s € (s,, s;]. Moreover, such a point s; € (s,, 5, ] can be found that

|sin? @,(s) — sin® y,(s)| < (1[n) for se[sy s3].
Using this and (1.14) we obtain
0 < @y(s3) — ¥ulss) =
= [5; [r1(5) cos® @(s) — py(s) sin® @,(s) — (r5(s) cos? Y, (s) — pa(s) sin® P, (s)] ds —
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= (1n) [ [r2ls) + po(s)| ds =
= [ [(r1(s) = 7a(s)) cos® 9(s) = (pu(s) — pals)) sin® @4(s)] ds +
+ [£[(ras) (cos?® @y4(s) — cos? ,(s)) + pa(s) (sin® Y,(s) — sin® @4(s)) —
= (1/n) [ra(s) + po(s)|] ds =
= [5[(ri(s) = rafs)) cos? @4(s) = (p(s) — pa(s)) sin® @y(s)] ds +
+ [ (ra(s) + pa(s)) (sin? ¥,(s) — sin? @y(s)) ds — (1/n) [ [ra(s) + pa(s)| ds =
= [ (ra(s) + pa(s)) (sin® Y (s) — sin @y(s)) ds — (1/n) [33 |ra(s) + pa(s)] ds <
< (Un) [2|ra(s) + pa(s)| ds — (1/n) [ |ra(s) + pa(s)|ds = 0.
This inequality is a contradiction which shows that the assumption of the existence
of a value s; € (y, 6] with ,(s;) < @4(s,) is false. Hence

@4(s) £ Y(s) forall se[y, 6] and neN.
Consequently, by (1.19) we obtain also
(1.20) ¢1(s) < @ys) forall se[y,d].

By Lemma 1.2 we have ¢,(s,) = kn and the above inequality yields ¢,(s,) = kn.
Again by the results of Lemma 1.2 this inequality indicates that the set M consists
of at least k components because 0 < (pz(y) < 7. In this way the first part of the
theorem is proved.

Let us assume that the assumptions of the second part of the statement are satisfied.
If the inequality in (1.15) is strict, then by (1.4) also ¢4(7) < @,(y). Let ¥(s) be
a solution of the equation (1.16), such that y(y) = ¢,(7). Then using the first part
of the theorem proved above we have ¢4(s) < y(s) for s € [y, &] by (1.20). Since the
solutions of (1.16), are uniquely determined by the initial conditions and Y(y) < ¢,(7)
we have Y(s) < ¢,(s) for s e[y, §]. Hence

1(s) = ¥(s) < @afs), se[9]

and consequently kn = ¢4(s,) < @,(s;). The inequality ¢,(s,) > kn shows that the
number of components of M’ is necessarily greater than k, and this proves the
statement.

Let us now assume that (1.15) holds with the equality sign and that the assertion
is not valid. In this case the results proved above can be used to state that ¢(s) =
= @,(s) for s € [y, s]. Then also

2(s) = 94(s) = (2(s) = ra(s)) cos? @s(s) — (pas) = pu(s)) sin® @4(s) = 0
for almost all s € [y, 5] and since (1.14) holds we conclude that
(r.21) (ra(s) — r1(s)) cos® @4(s) = 0,
(1.22) (p2(s) — pu(s)) sin? @4(s) = 0

for almost all s € [y, ;]
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Let now J < [y, 5] be a nondegenerate interval such that p,(s) > p,(s) a.e. in J
and [, r,(0)do > 0. Then by (1.22) we have sin ¢,(s) = 0 for se J and by (L.5)
also x,(s) = 0, s € J. Hence y, = 0 almost everywhere in J, and y,, being absolutely
continuous, is equal to a constant ¢ & 0 on J. (The value of y, is nonzero in J,
otherwise the solution (xl, yl) would be trivial.) Hence for every s, s’ € J we have,
by the definition of a solution,

0 = x,(s') — x,(s) = ¥ r,(0) ys(0) do = ¢ [} r,(0) do

and consequently [, r,(c)do = 0 — a contradiction.

If, on the other hand, J < [y, 5] is a nondegenerate interval such that r,(s) < r,(s)
for almost all se J and [, p,(¢) do + 0 then by (1.21) cos ¢,(s) = 0 for se J and
by (1.5) we have y,(s) = 0 for seJ. Hence X,(s) = 0 for almost all seJ and
x4(s) = ¢ in J where ¢ # 0 is a constant. This constant is nonzero since for s e J
we have sin ¢,(s) # 0. Hence by the definition of a solution we have

yi(s) = vi(s) = |3 ps(0) x4(c)do = ¢ [$ py(s)do = 0.

Hence [, pi(c) do = 0, again a contradiction.

Since in both cases we reached contradictions, there is necessarily a value §e
€ (7, 5] such that ¢,(5) < @,(5) which yields also ¢,(s,) = kn < @,(s,) and shows
that the assertion of the second part of the theorem is true.

2. PROLONGATION OF A FUNCTION

2.1. Definition. A function z: (a, b) - R" is called regulated if for every t € (a, b)
the onesided limits
lim z(s) = z(t—), lim z(s) = z(t+)
s=t+

s t—

exist and are finite.

Remark. The class of regulated functions defined on an interval is well known and
commonly used. For more details see e.g. [1], [3].

In our considerations of generalized differential equations the following concept
of the prolongation of a function along an increasing function will be useful.

2.2. Definition. Given a regulated function z: (a, b) » R" and an increasing
function w: (a, b) > R we say that the function Z: [w(c), w(d)] — R" is the pro-
longation of the function z:[c,d] - R", [c,d] < (a, b) along w if for te[c,d]
we have Z(w(f)) = z() and on every interval of the type [w(t—), w(t)], [w(z), w(t+)],
te [¢, d] the function Z is linear.

More precisely, if w(t+) > w(t) for some ¢ € [c, d) then for s e [w(t), w(t+)] we
set

2(s) = 2(1) + _"I—W(—’)—t) (z(1+) - =(1)

w(t+) — w(
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and similarly, if w(t—) < w(t) for some t € (c, d] then for s e [w(t—), w(t)] we set

L w(t) — s N ot s—wlt=)
o) = () + =B le-) = o0) = o) 4L -y,

Remark. It is clear that when an increasing w: (a, b) — R is fixed then the prolonga-
tion of an arbitrary z:(a, b) > R" along w can be defined in the same manner
provided at every point of the left- or right- discontinuity of w the corresponding
onesided limits of z exist.

Further, since w: (a, b) — R is increasing, for every closed interval [c, d] < (a, b)
the interval [w(c), w(d)] is closed and bounded. Nevertheless, since the continuity
of w is not required, the image of a closed interval [¢, d] = (a, b) need not be the
whole interval [w(c), w(d)]. It should be also noted that the set of points of discon-
tinuity of the function w in every interval [¢, d] < (a, b) is at most countable.

If an increasing function w: (a, b) » R is given then for [c, d] <= (a, b) it is useful
to have a function defined on the whole interval [w(c), w(d)] which plays the role
of the “inverse” function to w: [c, d] — R also in the case when w has discontinuity
points in [¢, d]. Therefore we introduce the following definition.

2.3. Definitior. Let w:[c,d] - R be an increasing function. Define w_;:
wic), w — R as follows:

( d foll

if se[w(c), w(d)] and s = w(r) for some 1€ [c,d] then w_y(s) = t, and if se
e [w(t—), w(t)) U (w(t), w(t+)] for some te [c,d] then w_y(s) = 1.

Remark. Let us mention that if w: [¢, d] —» R from the definition is continuous
then the function w_: [w(c), w{d}] - R coincides with the usual inverse function
tow.

2.4. Lemma. If w: [c, d] — R is increasing then the function w_,: [w(c), w(d)] —
— R given by Definition 2.3 is nondecreasing and continuous on [w(c), w(d)],
and w_,(w(c)) = ¢, w_,(w(d)) = d.

Proof. If 5,5, € [w(c), w(d)], s; <, then s;e[w(t;—), w(t;+)], i = 1,2 and
evidently t; < t,. Hence w_,(s;) = t; £ w_,(s,) = t, and w_, is nondecreasing.
The continuity of w_, easily follows from the fact that w_, maps [w(c), w(d)] onto
the whole interval [c, d] and that w_, is monotone.

2.5. Lemma. If z:(a, b) > R" is regulated and w: (a, b) > R is increasing and
if, moreover,

21 l=(t2) = 2(t)] = K(wlt2) = w(t)), K20

for ¢ £ t; £ t, < d where [c, d] = (a, b) then the prolongation z: [w(c), w(d)] >
— R" of z along w satisfies

(2:2) |2(s2) = 2(s1)] < Kls, — s,
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for sy, s, € [w(c), w(d)], i.e., the function Z is Lipschitzian with the constant K
in [w(c), w(d)].
Proof. If s; = w(t;) where t; € [¢, d], i = 1,2, then by definition Z(s;) = z(1;) and
|2(s2) = Z(s0)| = ||2(t2) = =(1,)]| = K|w{tz) = w(t))] = Dls; = s,/ .
Ifeg. s, = wity), 1, € ¢, d] and s, € [w(t,), w(t, +)], t, € [¢, d), t; < t, then
_ _ — t
[2(s2) = 2(s0)]| = =(12) + %*w(—zl— (2(t24) = 2(t2) = z{ty) =
wit,+) — wit,
|2(t24) — 2(ta)] _
wity+) — w(ty) —
< K(w(ty) — w(ty)) + K(s; — w(t,)) = K(s, — w(ty)) = K(s; — s,)
because

< =) = 2(t)] + (52 - W(’Z))J

|=(t2 + 0) — =(t:)]| = K(w(r, + ) — w{1,))
for every sufficiently small 6 > 0.

For all the other possible cases the same reasoning can be used to show (2.2) for
arbitrary s,, s, € [w{c), w(d)].

Remark. Let us mention that if (2.1) is satisfied then every point ¢ € [¢, d] which is
a point of discontinuity of the function z is necessarily also a point of discontinuity
of the function w. Moreover, Lemma 2.5 yields that if (2.1) is satisfied then the pro-
longation Z: [w(c), w(d)] — RB" of z along w is an absolutely continuous function
on [w(c), w(d)].

In the sequel we pay attention to real valucd functions which are locally of bounded
variation on the interval (a, b). Such functions are of course regulated and the con-
cept of the prolongation along an increasing function w can be used for them.

If g: [¢, d] - R is of bounded variation on [c, d] (g € BV([c, d])) then
(2.3) g{t) = g (1) + g,(1), te[c, d]
where g, is continuous on [¢, d] and g, is a break function on [c, d] (the Jordan
decomposition of g).

Using Dzfinition 2.2 we can easily show that the prolongation ol g € BV([¢, d])
along an increasing function w: [¢, d] — R satisfies

gis) = 3s) + @(s), se[wic),wid)].
It is also obvious that if g € BV{[c, d]) and w: [c, d] - R is increasing then the
prolongation g: [w(c), w(dj] - R of g along w fulfils g e BV([w(c), w(d)]) and also
g(w-1(s)) € BV([w(c), w(d)])-

For a given increasing w: [¢,d] > R, —o0 < ¢ < d < + 00 we denote

(2.49) D, = {te(c, d]; wit—) < wit)}
and
(2.5) Dy = {te[c,d); w(t) < w(t+)}.

539



The set D, (D, ) is the set of all points in (c, d] ([¢, d)) at which the function w has
a discontinuity from the left (right). Evidently, D,, and D;} are at most countable, i.e.
D, ={17,13,...}, Dy ={tf,13,...},

and so is also the set
D, = D; u D}
of all points of discontinuity of the function w.
Given a function g € BV([¢c, d]) we denote for 7 € (c, d]

(2.6) g (1) =0 if telec1),
g: (t) = g(r) — g(x—) if te[r,d],
and similarly for t € [c, d) we set
g7 (1) =0 if tele 1],
g;(t) = g(c+) — g(7) if te(r,d].
The functions g, , g, are the simple jump functions describing the discontinuity

of g at the point 7 € [¢, d] from the left or right, respectively. The break part of the
function g € BV([¢, d]) is given by the expression
g() = Y /() + ¥ 9:(1).
te[c,d) e(c,d]
In connection with a given increasing function w: [c, d] — R we define the following
functions, te[c, d]:

23) ()= 3 a0,

€Dy

g* ()= ¥ 9/().

€Dy,

g*, 9~ €BV([c, d]) are evidently break functions describing all the simple jumps
of g from the right and left, which are at the same time also discontinuities of the
function w from the right and left, respectively.

Using the notation from (2.8) we set
(1) = 9(1) = 97(1) = ¢7()-
Then we have a certain decomposition of g of the form
(29) 9(1) = ¢:() + 97() + 97(1)

where g, € BV([c, d]) is the part of g from which all the discontinuities of g occurring
at the discontinuity points of the function w are eliminated.

Using Definition 2.2 and the properties of the function w_y: [w(c), w(d)] » R
given by Definition 2.3 we can easily see that for s € [w(c), w(d)] the equality

(2.10) 91(s) = g:(w-4(s))

holds.
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Let us mention that for s e [w(c), w(d)] we have
(2.11) gr(woi(s) =0 if s <w(t—),
07w (5)) = 9(2) — 9le=) T 5 2 w(x—),
and similarly also
(2.12) gf(w_y(s)) =0 if s < wr+),
gi(w_y(s)) = g(t+) — g(x) if s> wr+).
For the prolongations g; and g} of the simple jump functions g and g} the
following identities hold by definition.
If 7€(c, d] then
(2.13) g (s) =0 if se[w(c),w(t—)),
- s — w(t—) .
() = ————"=(g9(r) — g9(r—)) if se[w(rt—), w(r)),
370 = =) (o)~ a(e-) i1 se[o(e-)w(o)
g:(s) = g(r) — g(r—) if se[w(x), w(d)],

and similarly, if t € [c, d) then

(2.14) gl (s) =0 if se[wl), w)],
_+S=LM— t+) — g(t)) if se(w(r), w(t
50 = = (oes) = o) i s o],

95(s) = g(t+) — g(r) if se(wr+), w(d)].
Using (2.8) we have

(2.15) g (woi(s) = X _g,“(w_l(s)) )

€Dy,

g7 (w-a(s) = 3 g5 (w-i(9)-

Similarly, for the prolongations we also have

(2.16) 76 = 3 7

tzeD,,

770 = ¥ 50

teD,,

and
(217)  varyB g (w_y(s)) = varnid §7(s) = EDZ‘]g(r) —g(t-)| < o,
(2.18)  vary@ gt (w_y(s)) = vary® 5%(s) = ;*]g(r +)—g(t)| < .

For the considerations concerning generalized differential equations the following
“substitution” result for the Perron-Stieltjes integrals will be useful.

2.6. Proposition. Assume that —oc0 < ¢ < d < +,f, g€ BV([c,d]), w: [c, d] -
— R is increasing. Denote by f,g:[w(c), w(d)] = R the prolongation of f,g
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along w, respectively. Then both integrals

; fwie 7(s) dg(s) . Jes(r) da(1)
exist an
(1.19) fwter 7(s) dg(s) = [e£(r) dg(t)
+1 Z (f(z+) = () (9(z+) - 9(’6 ) -

—1 Z () = f(z=)) (9(x) = 9(=-)) -

Proof. Since all functions involved are of bounded variation, both integrals
evidently exist (see e.g. 1.23 in [6]). Using 1.24 and 1.25 from [6] we have
(220)  [2/(0) dg(t) = [uzithie) (1) dg(t) = [u& f(w-1(s)) dg(w-(s))
where w_,: [w(c), w(d)] > R is the nondecreasing continuous function given by
Definition 2.3.
To prove (2.19) we consider the difference
(221) Jol® 765 4a(s) — 1240 dalt) =
— JB7(5)dgts) — 28 F(v-1(5) dalw () =
= [0 7(5)dgu(s) — [u& f(w-i(s) dgi(w-.(s)) +
+ [ue f(s)dg~(s) — Ix}’i%f(w_l(s) dg(w-.(s)) +
+ [uie J(5) dg*(s) — e S(w-1(s)) dg ™ (w—i(s)) -
Using the properties of g,: [w(c), w(d)] — R (see (2.9)) we obtain
(2.22) gi(oy) — gy(oy) =0 if oy, 0 € [ Wz —), w(t+)],
and we have also by definition

(2.23) J(s) = f(w_y(s)) for se[w(c), wd)] \rgw[w(r—), w(t+)]

Assume ¢ > 0 is given. Let us define a function d,: [w(c), w(d)] = (0, +0) as
follows:

If se(wr—),w(t+)), t€D, then let &,(s) > 0 be such that [s — J,(s),
s+ 64(5)] = (wr—), wz+));

if s=wty), treD, (s=wr), tfeD;) thenlet d,(s) >0
be such that
(2.24) |9:(@) = Gu(s)] < &f2"1(|F(s) = f(w-a(s))] + 1)
if ael[s— 6,(s), s + ,(s)]

and

0,(s) =1 if se[w(c), w(d)] \tgw[w(‘r—), wit+)].

The possibility of finding such a function J, is an evident consequence of the fact
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that for t € D,, the interval (w(t—), w{t+)) is open and that the function g, is con-
tinuous at the points w(t—), te D, and w(t+), 1€ Dy.
From (2.10) we further obtain

(2.25) @ 7(5) dgs(s) = [i& S(w=1(5)) dga(w-,(s)) =
= IS’EQ ((s) = f(w-1(s)) dg(s) -

All integrals in (2.25) exist since the functions occurring here are of bounded variation

on [w(c), w(d)].

Let now & > 0 be given and let &: [w(c), w(d)] — )0, + ) be a gauge such that

(2.26) 8(s) < 84(s), se[wlc), w(d)].

If
A= {0y, 04, % o a,, 0,
05 915 Lgs voes Up—15 Opys Uy

is an arbitrary d-fine partition of [w(c), w(d)], i.e.
wie) =op <oy <...<a,=wd),
-y S0, =0, [a-q, 0] [0, —68c;), 0;+8c;)], j=1,2,...,m,

then the corresponding integral sum for the integral on the right hand side of (2.25) is
(2.27) Zl(f_("j) — f(w-1())) (G1(2)) = Ga(2-1)) -
j=

If 6;€(w(t—), w(t+)) for some e D, then [a;_;, a;] = (w(t—), wr+)) and by
(2.22) we have

(2.28) (f(o) = f(w-1(0:) (3:(2)) = Gs(2;-1)) = 0.
If o;e[w(c), w(d)] \:eLD} [w(t—), w(t+)] then by (2.23), the equality (2.28) again

holds. Hence the integral sum (2.27) consists only of such terms for which either
o; =w(ty), ty €D, or o; = w(t), t; € D;. Since the partition A is -fine and
(2.26) holds we can use (2.24) for the estimate

|20 = S00-1(0) @) = 311-1)] <
< 3 17(@) = 10v-so)] (56 = 7.0 +

+19i0) = i) < Sof2t = e,
which yields
v (J(5) = f(w-1(5)) dgs(s) = 0,
and by (2.25) also
(2:29) [wi@ J(5) dgs(s) =[S f(w-1(s)) dgs(w-4(s)) -
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Since we have (see (2.11), (2.13))

vary(3 g (w 1(9) = lg(z) = 9(=—)].
vary(@ g: (s) = |g(z) — g(z—)|

for 7€ D, and (2.17) holds, for any & > 0 there exists a finite set K~ < D such
that

) T 6 ) < 0 + 1)
and
(2:31) vars (. WZ 3: (s)) < ¢g/(M + 1)

where M > 0 is such a constant that |f(s)) < M and |f(w_,(s))| < M for all
s € [w(c), w(d)]. Such a constant evidently exists because f(s) and f (w_l(s)) are of
bounded variation in [w(c), w(d)]. (In fact we can set M = |f(c)| + varlf.)

Hence using the obvious estimates for the Perron -Stieltjes integrals (see e.g. 1.19
in [6]) we have by (2.30)

wBId Y G () sM.ovan@( Y go(s)
teD,, " \K~ “\K-

teD,,

and finally, also
RG16)85760) = 3 87045 ().
For similar reasons the equality
fu@ f(w-1(s)) dg~(w-i(s)) = Z 3fﬂ§f(w 1(5) gz (w-4(s))
holds. Hence
(2.32) fu(& 7(s) dg ~(s) = 1@ f(w-1(s)) dg~(w-y(s)) =
= 2 (67 dg:(s) = Fu@ S(w-1(5) g7 (w-4(s)) -

€Dy~

Using the definition of the prolongation of a function along w we have for 7€ D,

(233) M8 7(s)dgc (s) =

- 2, (f(f )+ S (g1y e ))d%‘”())w(r) - o) -

T)—TT
- % [ﬂr—) (4(9) = w(z=)) +
((?) S >@(W(T»z $(n(e =) — wle=) (w(s) - w(r—))] -

= (9(v) - g(f )) (=) + 3/(x) = 4/(z-)) =
= X/(2) = f(z=)) (9(x) - g(z-)).
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Further, from Definition 2.3 and (2.11) we obtain for every 7 € [w(c), w(t—))
wior S(w=1(5)) 4G (w-1(s)) = 77 S (w-1(s)) dg7 (w-4(s))
and consequently, (see e.g. 1.13 and 1.14 in [6])
o S(w-1(s) dg7 (w-y(s)) = fim 77 (w-1(s)) dgs (w-s(s)) =
n->w(t

= lim  f(w_s(w(z=)) (g5 (w-r(w(z=))) = g (Wi (w(z=) = m)) =

n-w(z=)-
= (085 ) (0 (- (e ) = g (- (=) —) =
= /(1) (9(0) = 9(z-)).
Using this equality and (2.33) we have
o 7(s) dg . (s) = [ S(w-i(s)) dgz (w-s(s)) =
= [l(f(r) = fle=) = 7)) (9(x) — a(z-)) =
= =3(/(0) = (=) (9(x) — 9(z—))

and by (2.32) also
(234) - foie 7(s)dg=(s) = [u@S(w-1(s) dg~(w-1(s)) =
= -1 ¥ (i) = f(z=))(9(x) = 9(z—)) -

1€Dy, "~

A completely analogous computation leads to the equality
fu@ (s)dg ™ (s) = [u@ S(w-1(s)) dg " (w-s(s)) =
=1 2 (fr+) = S (9 +) ~ ¢(7) -
which together with (2.34), (2.29) and (2.21) yields the equality (2.19).

2.7. Corollary. If, in addition to the assumptions of Proposition 2.6, at every
point Tt € D, one of the functions f and g is continuous from the left and the other

from the right, then jw(d) f(s) a(s) = ﬁf('f) dg(r).

w(c)

3. STURMIAN THEOREM FOR GENERALIZED STURM-LIOUVILLE SYSTEMS

Assume that —o0 < a < b £ + o and that R, P: (a, b) — R satisfy the following

assumptions:

(3.1) R,PeBV,(a,b),
(3.2) R s increasing in (a,b),
(3:3) R(t—) =R(t), P{t+)=P{), te(a,b).
Further we assume that w: (a, b) —» R is an increasing function such that
(34) R(t;) — R(ty) < wity) — wity),

[P(1;) — P(ty)] < w(t;) — w(t,) for a<t, <t,<b.
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It should be noticed that if (3.1) and (3.2) are satisfied then there always exists
an increasing function w: (a, b) > R for which (3.4) is satisfied. Indeed, it is suf-
ficient in this case to take

w(t) = R(t) + var, P, te(a,b)

for some fixed ¢ € (a, b) with the usual convention that for ¢ < ¢ we take var, P =
= —var; P.

Let [¢, d] < (a, b) be a given closed interval. According to Definition 2.2 we denote
by R, P:[w(c), w(d)] > R the prolongations of the functions R, P along the in-
creasing function w.

Since (3.4) is assumed, by Lemma 2.5 the functions R, P are absolutely continuous
on [w(c), w(d)]. This yields also that the derivatives

(3.5) ad;ﬁ(s) = r(s), % P(s) = p(s)

exist almost everywhere in [w(c), wd)] and r, p are Lebesgue integrable in
[w(c), w(d)].

Since (3.2) holds, the function R:[w(c), w(d)] —» R is evidently nondecreasing
(compare Definition 2.2), and consequently the derivative r from (3.5) is nonnegative
a.e. in [w(c), w(d)].

Let us now consider the generalized differential equation

(3.6) dv=zdR, dz =0vdP
and the generalized differential equation
(3.7) dx = ydR, dy = xdP

under the assumptions (3.1), (3.2), (3.3) and (3.4), where w: (a, b) - R is a given

increasing function. Since R and P are functions defined on (a, b), the prolongations

R,P can be defined on the open interval (w(a+), w(b—))(w(a+) = lim w(z),
t—=a+

w(b—) = lim w(t)). Hence (w(a+), w(b—)) is the interval in which the coefficients
b~
of the system (3.7) are defined and in which this system can be considered.

From Definition 2.2 of the prolongation of a function along w and by the assump-
tion (3.3) we have the following assertion:

if t€(a, b) then

(3-8) R(s) = R(t) = R(t—) for se[wi—),w(t)],
P(s) = P(t) = P(t+) for se[w(t), w(t+)].

3.1. Proposition. Let (3.1), (3.2), (3.3) and (3.4) be satisfied and let (v, z): [c, d] -
— R* be a solution of (3.6) on an interval [c, d] = (a, b). Denote by (x, y):
[w(c), w(d)] - R? the prolongation of (v, z) along the function w.

Then (x, y) is a solution of (3.7) on [w(c), w(d)].
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Proof. By the definition of a solution of (3.6) we have
(3.9) o(ty) — o{ty) = [ z(r) dR(z) ,
2(ts) = =(t,) = [i} v7) dP(7)

for 1y, 1, € [c, d]. The integral used here is the Perron-Stieltjes integral in the senss
of J. Kurzweil, see [7]. For the functions v, z we have

(3.10-) o(t=) = ot),
2(t=) = 2(t) = AP (1) = (1) — (P(1) = P(t=)) o(1)

te (c, a']
and

(3.10+)  v(t+) = o(t) + ATR(t) z(1) = o(t) + (R(t+) — R(t)) z(1) ,
z(t+) = =(1),
tele, d).
Hence by Definition 2.2 the prolongations x, y satisfy
(3.11) x(s) = v{t) = v(t=), se[wi—=),wt)], te(ed],
ws) = z(t) = z(t+), se[wi),wit+)], telcd).

Assume that s, s, € [w(c), w(d)] and that e.g. s, < s,. Then there exist t,, t, € ¢, d]
such that t; < 1, and s, € [w(t, —), w(t, +)], s, € [w{t,—), w(t, +)]. Assume further
that e.g. s, € [w(t,—), w(1,)] and s, € [w(t,), w(t,+)]. Then

(3.12) x(s5) = x(s;) = x(s;) — x(w(t2)) + x(w(ty)) — x(w(t,)) +
+ x(wity)) — x(sy) .
By Definition 2.2 we have (cf. (2.10+))

(3.13) x(s5) — x(w(ts)) = o{ts) + 7?2:‘)—‘”_-\%'( otz +) = o{ts)) — o(t;) =

_ Sz wlt) _ sam ) S(1) =
- w(ta+) — W(tz)( 12 t) = o)) = w(t,+) —\ w(t,) (R(t2+) = R(12)) 2(t2)

= (R(s2) = R(w{12)) 2(12) = [eny dR(x) 2(t2) = [ites) ¥(0) dR(0)

'since by (3.11) we have y(o) = z(t,) for every o e [w(t,), w(t,+)]. Using the first
relation in (3.11) we have (cf. (3.8))

(3.14) x(w(ty)) = x(s;) = 0 = [ y(o) dR(o)
and Proposition 2.6 implies
(3.15) x(w(t5)) — x(w(ty)) = vity) — v(ty) =

= Jii 2(v) dR(z) = [N vio) dR(0)
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because by (3.10) and (3.3) we have
(z(t+) = z(t)) (R(t+) — R(1)) =0, te[e, d),
(z(t) = z(t—=)) (R(t) = R(t=)) =0, te(c,d].
Using (3.13)—(3.15) we obtain by (3.12)
(3.16) X(s2) = x(s1) = [ ¥(0) dR(0) + [103) (o) dR(0) +
+ [ »(0) dR(0) = 5} y(0) dR(0) .
Analogously it can be shown that also the relation
(3.17) y{s3) = ¥(s;) = [32 x(o) dP(0)
holds. By a similar argument we can conclude that (3.16) and (3.17) hold for arbitrary

positions of sy, s, € [w(c), w(d)] and this is nothing else than the fact that the function
(x. y): [w(c), w(d)] - R* is a solution of the generalized differential equation (3.7).

3.2. Proposition. Let (3.1)—(3.4) be satisfied and let (x, y}: [, B] - R* be a solu-
tion of (3.7) on the interval [a, B] = (w(a+), w(b—)). Then there exists a solution
(v, z) of (3.6) such that (x, y) is a prolongation of (v, z) along the function w.

Proof. Since w{a+) <o < f < wb—) there exist ¢,de(a,b), ¢ <d such
that o e [w(c—), w(c+)]. Be[w(d—), wd+)]. Given t€ [c, d] define

ot) = x(w(t)), z(1) = y(w(r))
and set v(c—) = v{c), z(c—) = z(c) — A" P{c) v{c), v(d+) = v(d) + A*R(d) z(d),
z(d+) = z(d).
By the definition of a solution we have
X(s2) = x(s1) = [} ¥(0) dR(0) . ¥(s2) = ¥(s1) = [ x(c) dP(0)
for every sy, s, € [«, f]. Using these equations we can show that in the intervals of
the form [w(t—), w(t)], [w(t), w(t+)] the functions x and y are linear. For example,
if se[w(t—), w(t)], te[c, d] then R(s) = R(t). Consequently,
x(s) = x(w(t)) + [ ¥(0) dR(0) = x(w(1)) = v(1)
for se[w(t—), w(t)] and
¥s) = y(w)) + o x(0) dP(0) = y(w(t)) + x(w(1)) (P(s) — P(w(1)) =

ﬂ@ﬂM%ﬁ@wﬂWﬂ~Mh
=+ (Bl(e) = PO < () =

= z(t) + ;v#(i(ﬁj wity ) x(0) dP(o) =

=) 4 O i) ol = 20+ (o) - )




since the onesided limit w(t—) exists and therefore y(w(t—)) = z(t—) and y(w(t)) =
= z(t) by definition.
Similarly, for s € [w{t), w(t+)] it can be shown that

— o) 4 S _
) = 1) + S ) = 1)
and
s) = yw(t) = =(1).
Hence the functions x, y are the prolongations of the functions v, z, respectively.
Taking arbitrary ¢y, t, € [¢, d] we have by Proposition 2.6
o(tz) = vlty) = x(w(tz)) — x(w{ty)) = [ (o) dR(0) = [} =(r) dR(x)
since R(t—) = R(t) by (3.3) and z(r+) = y(w(t+)) = y(w(t)) = z(1). Similarly we
have also
2(t2) — 2() = [i} v7) dP(7)
and these equalities mean that (v, z) is a solution of (3.6) on [c, d].

Let us now mention that the “prolongated” system (3.7) of generalized differential
equations is closely connected with a certain system of classical diffecrential equations.
This connection follows from the general result on the equivalence of Carathéodory
differential equations and generalized differential equations as was explained in [6],
Theorem 4A.1.

If we take y € (w(a+), w(b—)) then (3.5) implies

R(s) - RG) = J; rlo)do . Ps) = Py) = J; plo) do
(wa-+). w(b-))

and these relations together with the results from [6] mentioned above yield the
following assertion.

3.3. Proposition. Le (3.1)—(3.4) be satisfied. The couple of functions (x, y):
[o, B] = R, [, B] = (w(a+), w(b—)) is a solution of the generalized differential
equation (3.7) on [a, B] if and only if it is a solution of the classical Carathéodory
system of differential equations

(3.18) x=r(t)y, y=plx
on [a, f].

3.4. Remark. The result of Proposition 3.3 can be used in connection with Proposi-
tion 3.1 to state that under the assumptions of Proposition 3.1 the prolongation of
any solution (v, z): [¢, d] » R* of the system (3.6) along the increasing function w
is a solution of the system of equations (3.18) in the sense of Carathéodory.

Let us now recall the concept of a zero of a nontrivial solution of the system of
generalized differential equations (3.6). This concept was introduced in [7].

3.5. Definition. If (v, z) is a maximal nontrivial solution of (3.6) defined on (a, b)
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then we say that the point t* € (a, b) is a zero of the solution (v, z) if 0 belongs to
the interval with the endpoints v(r*) and v(t*+) = v(r*) + A*R(t*) z(r*).

3.6. Remark. A maximal solution of (3.6) can be defined quite analogously to the
corresponding definition of a maximal solution of a system of ordinary differential
equations. As in the classical case the linearity of (3.6) implies that any maximal
solution is defined on the whole interval (a, b) on which the coefficients R and P
are defined.

Assume that 1* € [c. d] < (a, b) and that the function x: [w(c), w(d)] - R is the
prolongation of v along w where v is the first component of a maximal nontrivial
solution of the system (3.6). Then * is a zero of (v, z) if and only if there is a point
s* e [w(r*), w(t*+)] such that x(s*) = 0. This statement is clear if the interval with
the endpoints v{t*), o(t*+) is degenerate, i.e. if v(t*) = v(r*+). If in this case w(t*) <
< w(t*+) then the prolongation x of v along w is zero on the whole interval
[w(t*), w(t*+)]. If the interval with the endpoints v(t*), v(t*+) is nondegenerate,
then A*R(¢*) > 0 and by (3.4) the interval [w(t*), w(t*+)] is also nondegenerate;
the statement then easily follows from the linearity of the prolongation x on the
interval [w(t*), w(t*+)], and from x(w(t*)) = vo(t*), x(w(t*+)) = v(t* +).

Further, the following assertion holds: If t* € (a, b) is a zero of the nontrivial
solution (v, z) of (3.6) then z(¢*) + 0.

Indeed, if z(¢*) = O then also

o(t*+) — o(t*) = ATR(t*) z(t*) = 0
and consequently, by the definition of a zero, v(t*) = v(t*+) = 0. Hence we have
o{t*) = z(t*) = 0 and consequently the solution (v, z) would be trivial.
Now we turn our attention to two systems of the form (3.6), i.e. to

(3.19); dv =zdR;, dz=0dP;, i=1,2

with the aim of deriving a comparison theorem of Sturm type. The corresponding
result reads as follows.

3.7. Theorem. Assume that —o0 < a < b < +o0 and that R;, P;:(a, b) - R,
j = 1,2 are given such that for j = 1,2 we have

(3.20) R;, P;eBV,(a,b),
(3.21) R; is increasing ,
(3.22) Ri(t—) = Ry(t), Pjt+)=Pft), te(a,b).

Suppose that
(3.23) R, — R, and P, — P, are nondecreasing on [c,d] < (a,b)
and that the couple (v, z,) is a nontrivial solution of the equation (3.19), on [c, d]
which has exactly k zeroes

c<t; <t...<t, =d
in the interval (c, d].
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Further assume that (v,, z,) is a solution of (3.19), on [¢, d] and that
(324) Zl(c) > ZZ(C)
vi(e)  va(c)
(if vi(c) = 0 or vy(c) = 0 then we set z,(c)[v,(c) = 0, z5(c)[v,(c) = o0, respectively).
Then the solution (v,, z,) has at least k zeros in (c, t,].
Proof. Let us take
w(t) = Ry(t) + R,(t) + var, P, + var, P,, te(a,b)
for some c € (a, b). Then by (3.21), w: (a, b) > R is evidently increasing and
(3.25) R{(ty) — Ri(ty) = w(ty) — w(t,),
[P(t;) — Pi(ty)] < w(ty) — w(t,)
fora<t, =t, <b, i=12
Let R;, P; be the prolongations of R;, P; along w for i = 1, 2. Since (3.25) is
satisfied, by Lemma 2.5 the functions R;, P; are Lipschitzian (with the constant 1)

on (w(a+), w(b)) and therefore they are also locally absolutely continuous in this
interval.

By (3.21) and (3.23) we can easily see that the functions R, i = 1,2, R, — R,
and P, — P, are nondecreasing on [w(c), w(d)]. Hence in the same way as in (3.5)
the derivatives

rs) = 4 R(s), pis) = d P(s), i=1,2
ds ds

exist a.e. in [w(c), w(d)] and we have

(3.26) rs) =0, i=12 ae in [wc), wd)]
and
(3.27) ri(s) S rals),  pu(s) = pa(s) ae. in [w(c), w(d)] .

Denote further by (x;, y;), i = 1, 2 the prolongation of (v;, z;) along w. As we have
shown (see Propositions 3.1, 3.3 and Remark 3.4) the couple of functions (x;, y;)
is a nontrivial solution of the classical system of ordinary differential equations

(3.28); X=r()y. y=pit)x
for i = 1,2 on the interval [w(c), w(d)]. '
Since the solution (vy, z;) has exactly k zeroes ty, ..., t, in (¢, d] the set of zeroes
N = {se [w(0) w(d]: x(5) = 0}
has exactly k components and possibly one component more, namely the com-

ponent N° of N which contains the point w(c) in the case when w(c)eN. Using
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(3.24) and the definition of the prolongation (Def. 2.2) we obtain
yi(#(e)) _ zi(¢) o z2(e) _ ya(#(0))

xi(w(e)  vi(e) T vae)  xa(wl(e))
and this inequality corresponds to (1.15) from Theorem 1.3.
Let us denote by s, € (w(c), w(d)] the right endpoint of the component of N which
contains the zero of x, located in [w(t,), w(t,+)]. Since all the assumptions of
Theorem 1.3 are satisfied we obtain by this theorem that the set

M = {se[w(c), s]; xs(s) = 0}
is the union of at least k components and possibly of the component containing w(c).
This means that at least k components of the set of zeroes of the function x, lie in
the interval (w(c), s¢]- From Remark 3.6 it is now-apparent that for every component
of M which is contained in (w(c), 5,) there is a corresponding zero of the solution

(v2, z5) of (3.19), in (c, t,]. It is also evident that to different components of M there
correspond different zeroes of (v,, z,), and this concludes the proof of the theorem.

Remark. Theorem 3.7 is a Sturm type comparison theorem for the generalized
linear differential equations of the form (3.19);, i = 1, 2. If we set R; = R, then this
theorem can be used for deriving the existence of at least one zero of the solution
of the equation (3.19), between two consecutive zeroes of the equation (3.19), in the
form given by Theorem 1 in [7].

It should be also noted that the methods used in [7] and in the present paper are
different. In [7] the approach was based purely on integration without mentioning
the classical differential equations and even any derivative. Here we use the concept
of the prolongation of solutions of (3.19); along a function w satisfying (3.25) in
order to connect (3.19); with the classical system (3.28);. We obtained a comparison
theorem which is more general than the result given in [7]. The result of the first
part of Theorem 1.3 was used. It should be mentioned that also the second statement
of Theorem 1.3 can be used for the systems (3.19),., i = 1, 2 if finer results are needed.
This is only a question of translating the assumptions of Theorem 1.3 back into the
assumptions on the coefficients of (3.19),. For example, the existence of a non-
degenerate interval [o, 8] = [w(c), s,] such that py(s) > p,(s) a.e. in [a, ] and
{# r(o) do > 0, which is one of the requirements of Theorem 1.3 for the system
(3.28);, can be “translated” to function R;, P;, i = 1, 2 so that we require that there
be a nondegenerate interval [y, 8] < [c, #,| such that P, — P, strictly increases
in [y, 6], and R; is continuous in [, §]. Then for the interval [o, §] = [(w(y), w(5)]
and for the derivatives r;, p; of the prolongations R;, P; on [a, 8] the corresponding
requirement of Theorem 1.3 is satisfied.

The method used here provides also a certain instructive model showing the way
how to transfer generalized differential equations with discontinuous solutions .of
bounded variation back to classical differential equations with absolutely continuous
solutions. In a more general setting these questions will be dealt with in the paper [2].
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