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(Received August 11, 1986)

In this paper sequential convergences in Boolean algedras are investigated which
are compatible with the Boolean operations. Analogous questions for lattice ordered
groups were studied by M. Harminc [1], [2], [3] and the author [4].

Several types of sequential convergences in abelian lattice ordered groups and
in Boolean algebras were dealt with by F. Papangclou [8]; for convergences in
Boolean algebras cf. also H. Lowig [5] Some questions on sequential convergences
in o-fields of sets were investigated by J. Novdk a M. Novotny [7].

1. CONVERGENCES AND 0-CONVERGENCES

Let B be a Boolean algebra. In this section the notion of sequential convergence
in B will be introduced. It will be proved that a sequential convergence is uniquely
determined by the system of all sequences which converge to the zero element of B.

We denote by S the system of all sequences of elements of B. Let a be a subset
of S x B.If((x,), x) € «, then we shall write x, =, x. Let N be the set of all positive
integers. If there exists a € B such that x, = a for each n € N, then we write (x,) =
= const a.

1.1. Definition. A subset « of S x B is said to be a convergence in B, if the fol-
lowing conditions are satisfied:

(i) If x, >, x and (y,) is a subsequence of (x,), then y, —, x.

(ii) If (x,) € S and if for each subsequence (y,) of (x,) there exists a subseqeunce
(z,) of (y,) such that z, -, x, then x, -, x.

(iii) For each x € B, const x —, x.

(iv) If x, =, x and x, >, y, then x = y.

(v) If x,»>,x and y,—,y, then X, A y, 2, X A y, X, V y, >,x v y and
X 2 X',

(vi) If x, < y, < z, is valid for each n e N, and if x,, =, X, z, =, X, then y, =, x.

The system of all convergences on B will be denoted by Conv B. Let « be a fixed
element of Conv B.

1.2. Lemma. The following conditions are equivalent:
(a) x, =4 x.
(b) x, A x >, x and x, v x =, X.
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Proof. In view of (iii) and (v) we have (a) = (b). According to (vi), the relation
(b) = (a) is valid.

1.3. Lemma. The condition (a) from 1.2 is equivalent to the following condition:

(¢) x, A X" =,0 and x, A x —,0.

Proof. Let (a) be valid. Then in view of (iii) and (v) the condition (c) holds.
Conversely, let (c) be satisfied. Then we have

(xp AX') v x—o,x and (x, A Xx)V X =,x,
hence x, vV x =, x and x, v x' =, x". In view of (v), x, A x = (x; vV x) >, x.
Thus by applying 1.2 we obtain that (a) holds.

Let us denote by «, the set of all (x,) € S such that x, —, 0. From 1.3 we infer:

1.4. Corollary. The set o, uniquely determines the convergence o.
A natural problem arises, to characterize those subsets T of S for which there
exists o € Conv B such that T = «,.

1.5. Lemma. Let T be a nonempty subset of S. There exists a € Conv B with
T = a, if and only if the following conditions are satisfied:

(iy) If (x,) € T, then each subsequence of (x,) belongs to T.

(iiy) If (x,) €S and if for each subsequence (y,) of (x,) there exists a sub-
sequence (z,) of (y,) such that (z,) € T, then (x,) € T.

(itiy) For a € B we have const a € Tif and only if a = 0.

(ivy) If (x,) and (y,) belong to T, then (x, v y,) also belongs to T.

(vq) If (x,) belongs to T and if (y,) €S, y, < x, for all ne N, then (y,) e T.

Proof. If there is « € Conv G such that T = «a,, then from 1.1 we immediately
obtain that the conditions (i,)—(v,) are satisfied.

Conversely, suppose that T = S is such that (i;)—(v,) hold. For (x,) € S and x € B
we put x, =, x if (x, A x')e Tand (x, A x)e T.

First we observe that the relation

(x,,) eT<+x,—>,0

is valid for each (x,) € S.

Indeed, let (x,)e T. We have (x,) = (x, A 0')e T and const0 = (x, A 0)e T,
whence x, —, 0. Conversely, let x, —, 0. Then (x, A 0') e T, whence (x,) € T.

Now we have to verify that the conditions (i)—(vi) from 1.1 are satisfied.

The conditions (i), (ii) and (iii) are consequences of (i, ), (ii;) and (iii, ), respectively.

(v): Let x, =, x and y, -, y. In view of the first relation we have (x, A x')e T
and (x, A x)e T, whence x, -, x'. Denote z, = X, vV y,, z = x v y. Then

Za A2 = (X% VYAV Y)Y =(x, V) A Ay)=
=l A Ay v A Ay)].

According to (vy), both (x, A (x' A y')) and (ya A (x' A y')) belong to T; hence
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in view of (ivy), (2, A z') belongs to T. Similarly we obtain that (z, A z) belongs
to T. Thus z, =« 2.
Next, let v, = X, A y,,v = x A y. Then

AV =X, Ap)AXAY =(xAp) A VY)=
=[(xy A ya) AXTV (%0 A ya) A Y]

By applying (v;) and (iv,) we obtain that (v, A v')e T. Similarly, (v, A v)eT.
Thus v, —, v.

(vi): Let x, =, x, z, —, x and suppose that x, < y, < z, is valid for each n e N.

Hence the sequences (x, A x) and (z, A x) belong to T. Then according to (v,)
we have y, A x€ Tand y, A x’ € T, therefore y, —, x.

(iv): First we shall verify that if (a,) = const 0 and if a, >,a then a = 0. In
fact, in view of the assumption we have a, A a € T, hence const a € T. Thus according
to (iiil), a = 0. Now assume that x, —, x and x, —, y. Hence x,, —, " and therefore
X, A Xy =, X A y'. Since (x,, A x,) = const 0, we infer that x A y’ = 0 and hence
x £ y. Similarly we obtain that y < x. Hence y = x. The proof is complete.

Denote Convy B = {a,: o € Conv B}. The elements of Conv, B are said to be
0O-convergences in B. For o, f € Conv B we put o« < f if, whenever (x,)€ S, xeB
and x, —, x, then x, =, x. Further, we put oy < f, if « is a subset of f,. Then we
have

xS Beag = Py

Let (x,) € S, x € B. We put x, —, x if there is m € N such that x, = x foreach ne N
with n > m. The following assertion is easy to verify.

1.6. Lemma. d € Conv B and for each o€ Conv B we have d

IIA
R

1.7. Corollary. d, is the least element of Conv, B.

2. REGULAR SETS OF SEQUENCES

A nonempty subset A of S x B will be called regular if there exists « € Conv B
such that 4 < a. A set A is regular if and only if 4 U {(const 0, 0)} is regular.

Analogously, a nonempty subset T of S will be said to be regular if there exists
@, € Conv, B such that T < «,. The set C is regular if and only if C U {const 0}
is regular.

Let 0 + A = S x B. Denote

Ay = {(xy A %) :((x,), x) € 4},
Ay = {(xn A x):((xa)s x) €A}, A3 =AU A4,.
Let 9 = C = S. We put
Cy = {((xn): x) : (x4 A X') € C and (x, A x)eC}.
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In view of the results of Section 1 we have

2.1. Lemma. (i) Let (const 0,0) € A = S x B. Then A is regular if and only if A
is regular.

(ii) Let const0e C < S. Then C is regular if and only if C, is regular.

Thus it suffices to investigate the regularity of subsets C of S such that const 0 e C.

Let (x,) and (y,) be elements of S. We put (x,) A (y,) = (X, A y,), (x,) V (z,) =
= (%, v ¥u), (x,)’ = (x},). Then S turns out to be a Boolean algebra.

Let A be a nonempty subset of S. We denote by

0A — the set of all subsequences of sequences belonging to A4;

A* — the set of all (x,) € S such that for each subsequence (,) of (x,) there exists
a subsequence (z,) of (y,) which belongs to 4;

[4] — the ideal of the Boolean algebra S generated by the set 4.

The following assertions 2.2 —2.4 are easy to verify; the proofs will be omitted.
2.2. Lemma. Let b e B. Then const b € A if and only if const b € 4*.

2.3. Lemma. 6[A] = [44].

2.4. Lemma. §(A*) < (64)* and [A*] < [A]*

2.5. Corollary. Put C = [0A]*. Then C = 6C = [C] = C*.

From 1.5 and 2.5 we infer:

2.6. Corollary. [6A]* belongs to Conv, B if and only if for each nonzero element b
of B we have const b ¢ [0A4]*.

2.7. Proposition. A nonempty subset A of S is regular if and only if for each
nonzero element b of B we have const b ¢ [6A4].

Proof. This is a consequence of 2.6 and 2.2.

2.8. Proposition. Let A be a regular subset of S. Let « € Convy B, A < a. Then
[64]* < o '

Proof. This is an immediate consequence of 1.5.

In view of 2.5 and 2.8, for a regular subset A of S the O-convergence [6A]* will
be said to be generated by the set A. If A = {(x,)} and A is regular, then A4 is said
to be generated by (x,); in such a case [64]* is called principal.

If 0 & A < S, then [A] is the set of all (x,) € S which have the following property:
there exist (y,), (¥2),....,(yy) in A4 such that (x,) < (y3) v (2) v ... v ().
From 2.7 we obtain:

2.9. Proposition. Let ) &+ A = S. Then the following conditions are equivalent:

(i) A is regular.

(ii) If (), (¥2), ... (¥¥) are elements of 3A and if b is an element of B such
thatb < yr'vyiv..v ya is valid for each ne N, then b = 0.
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2.10. Lemma. Let I + 0 and for each il let of € Conv, B. Put A = Ui o
Then the following conditions are equivalent:

(i) A is regular.

(ii) If iy, iy, ..., i,, are distinct elements of I and if (y%) € af for each k € {iy, iz, ...
crimpbEB, b < yy vV y2 v ... v y¥ foreachneN,thenb = 0.

Proof. This follows from 2.9 and from the fact that daf = of = [«f] for each
iel.

2.11. Lemma. Let I, o® and A be as in 2.10. Assume that A is reqular. Put o =

= [A]*. Then
(i) ae Conv, B;

(ii) of < & for each iel;

(iii) if B° € Convy B and of < B° for each iel, then a < f°.

Proof. Because o € Conv, B for each i €I, we have dof = «?, whence 64 = A.
Hence [0A4]* = «. According to 2.6 and 2.8, € Conv, B. The assertions (i) and
(iii) are obvious.

A sequence (x,,) in S is said to be decreasing if x, = x,4 for each n e N.

2.12. Lemma. Let (x,) be a decreasing sequence in B and let A = {(x,)}. Then A
is regular if and only if Ax, = 0.

Proof. If A s regular, then in view of 2.7 we must have Ax, = 0. Conversely,
assume that Ax, = 0. Let (y;), (y7), ..., (vi') be subsequences of (x,). Let b € B and
suppose that b < y! v y2 v ... v y" is valid for each ne N. We have ! < x,
fork =1,2,...,m, whence b < x, for each n € N. Therefore b = 0. Thus according
to 2.9, A is regular.

3. THE PARTIALLY ORDERED SET Conv, B

As we already remarked in Section 1, the set Conv, B is considered to be partially
ordered by inclusion. Each nonempty subset of Conv, B is partially ordered by the
induced partial order. Let Conv, B be the set of all principal elements of Conv, B.

Let I # 0 and for each i eI let af € Conv, B. If the set {af},.; has the infimum or
the supremum in Conv, B, then these elements will be denoted by Acr a? or Ajero?,
respectively.

3.1. Lemma. Let {«},.; be a nonempty subset of Convy B. Then Aer o = ey o -

Proof. This is a consequence of the fact that (;c; «. satisfies the conditions from
1.5.

3.2. Corollary. Let «° € Conv, B. Then the interval [d, a®] of Conv, B is a com-
plete lattice. Convy B is a A-semilattice. '

In Section 4 it will be shown that Conv, B need not be a lattice.
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3.3. Lemma. Let {o{},; be a nonempty subset of ConvyB. Put A = ;g of.
Then the following conditions are equivalent:

(i) A is regular.

(ii) [4]* = Vier -

Proof. The implication (i) = (ii) is a consequence of 2.11. The implication (ii) = (i)
is obvious.

3.4. Lemma. The following conditions are equivalent:

(i) Conv, B has no greatest element.

(ii) There are B3, B3 € Conv, B such that the set {BY, B3} is not upper bounded
in Conv, B.

Proof. The implication (ii) = (i) is trivial. Assume that (i) holds. Let Conv, B =
= {o}}jes- Put A = Ujey of. In view of 3.3, A fails to be regular. Hence according
to 2.10 there exists a positive integer m, elements jy, j,, ..., j. € J, sequences (y,f) €
eaj,....(y7)ea), and an element b % 0 in B such that b < y, v y? v ... v y&
is valid for each ne N.

Let m be the least positive integer having the just mentioned property. We must
have m = 2. Assume that m > 2. In view of this assumption, the set ({y7), (y3), ..
...» (¥} is regular. From this we infer that the one-lement set {(yz v y3 v ...

. v y")} ={(z,)} is regular as well. Since b < y, v z, holds for each neN,
by virtue of the relation m > 2 we have b = 0, which is a contradiction. Hence we
have m = 2. Both the sets 4; = {(ys)}, 4, = {(z,)} are regular, hence f} = [64,]*
and B3 = [64,]* belong to Conv, B. But the set {(y,), (z,)} is not regular. Thus
the set {B7, B3} fails to be upper bounded in Conv, B.

3.5. Lemma. Let o and o be principal elements of Conv, B generated by the
sequences (x,) and (x}), respectively. Assume that the set {a3, a3} is upper bounded
in Convy B. Then of v af is principal and it is generated by (x,f Y% x,f)

Proof. In view of 3.2, a) v a3 does exist in Conv, B. Hence the one-element set
A= {(x,f \ x,zl)} is regular. Thus there exists f° € Conv, G such that f° is generated
by A. Clearly B° < «f v o isnce x, v x5 —,0, where y = of v aJ. On the other
aand, from [6{(xs)}] < [6{(xs v x2)}] we obtain that «f < B°; similarly we have
h$ < p°. Thus B° = o v a.

From 3.2, 3.4 and 3.5 we infer:

3.6. Theorem. Let B be a Boolean algebra. The following conditions are equi-
valent:
(i) Conv, B has the greatest element.
(ii) Conv, B is a V-semilattice.
(iii) Convg B is a lattice.
(iv) Conv, B is a complete lattice.

For a related result concerning lattice ordered groups cf. [3].
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Let us remark that if o) and «J are as in 3.5, then the element «f A o) = af N o)
of Conv, B need not be generated by the sequence (x, A y,). Also, if f e Conv, B
such that § < B9, then B need not be principal.

4. COMPLETE DISTRIBUTIVITY

In this section the following result will be proved:

4.1. Theorem. Let B be a Boolean algebra. Assume that B is completely distri-
tive. Then Convy B has the greatest element.

Next it will be shown that there exists a Boolean algebra B such that Conv, B
has no greatest element.

Proof of 4.1. Since B is completely distributive, there exists a set I such that
there is an isomorphism ¢ of B into a complete ficld C of subsets of I such that,
whenever Ay x; = x is valid in B, then N, ¢(x;) = ¢(x) is valid (and dually).
Without loss of generality we can assume that (p(O) = (0 and (p(l) = [. Let A be the
set of all (x,) € S which have the following property: for each i € I there exists a posi-
tive integer n(i) such that i ¢ ¢(x,) whenever n > n(i). Then we clearly have [4]* =
= A.Let (yp), (»2), .-, (¥i)€ A, be B and suppose that b < y, v yz v ... v )i is
valid for each n e N. Assume that b > 0. Then there exists i €/ such that i e cp(b).
On the other hand, there exists ny e N such that for each n = n, and each ke
€{1,2,....m} we have i¢@(yi). Thus i¢o(y, v yr v ... v yr) for n = ng,
which is a contradiction. Therefore in view of 2.9, A is regular. Hence 4 € Conv, B.

If « e Conv, B, (x,} € a, then {(x,)} is regular and therefore for each iel there
is nyeN such that i¢ ¢(x,) whenever n = n,. Hence (x,) € A4 and thus A is the
greatest element of Conv, B.

An analogous result for convergences in archimedean lattice ordered groups was
established in [4].

The following example shows that Conv, B nzed not have the greatest elcment.

4.2. Example. Let Q be the sct of all rational numbers and let e be a fixed irrational
number. Put Q; = {xe Q:e < x < e + 1}. Let B be the set of all mappings f of Q,
into the set {O, 1} having the property that there are irrational numbers a, < a; < ...

. < a, (depending on f), ay = e, a, = e + 1 such that, whenever j€{0,1,2, ...,
n — 1}, then f is a constant on the set {x € Q: a; < x < a;,,}. The set B is point-
wise partially ordered; then B is a Boolean algebra. Let (S{n)) and (T(n)) be as in [1],
Saction 5. From 2.7 and from the results of [1], Section 5 (cf. also [3], Section 7.6)
it follows that the sets (S(n)) and (T\n)) are regular (with respect to B), but the set
{(S(n)), (T(n))} fails to be upper bounded in Conv, B. Hence Conv, B has no
greatest element.
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5. DISJOINT SYSTEMS AND CHAINS IN Conv, B

For any partially ordered set P with the least element 0, we define a subset P, of P
to be disjoint if p > Op for each pe P, and p A ¢ = 0, Whenever p and q are distinct
elements of P,. Denote

D(P) = sup {card A;: A;e o/},

where &/ is the system of all disjoint subsets of P.
Now let &, be the set of all linearly ordered subsets of a partially ordered set P.
Put
L(P) = sup {card A;: A;e o/ ;} .

Let B be a Boolean algebra. The cardinals D(B) and L(B) were dealt with in several
papers, cf., e.g., Pierce [9] and Monk [6].
In the present section it will be proved that for each infinite Boolean algebra B
the relations
D(B) £ D(Convy B), D(B) < L(Conv, B)

are valid. Also it will be shown that Conv, B has no atom.

Throughout this section we assume that B is an infinite Boolean algebra. A sequence
(x,) in B is said to be disjoint if x, > 0 for each n € N and x, A x,, = 0 whenever m
n are distinct positive integers.

5.1. Lemma. Let A = {(x})},c; be a system of sequences in B such that x;\) A

A xp3) = 0 whenever (n(1),i(1)) and (n(2),i(2)) are distinct elements of the set
N x I. Then the set A is regular.

Proof. By way of contradiction, assume that A4 fails to be regular. Hence in view
of 2.9 there are elements i(1), i(2), ..., i(m), subsequences (y5) of (xy”) (1=1,2,..., m)
and an element 0 < b € B such that

b<ys VysVv ...V
is valid for each n € N.
In particular, we have

m

b<ylvylv...vyr.
There exists n € N such that for each te{1,2,...,m} and for each iel we have
¥4 A xL = 0. Let n have the just mentioned property. Then y; A y'*) = 0 for each t,
((1)e{1,2,..., m}. Hence
b=bA(m AYiA...AY)E
SUIAYIA A AGnAYEA.AY)=0,

which is a contradiction.

From 5.1, 2.6 and 2.8 we obtain:

5.2. Corollary. For each disjoint sequence (x,) in B there existsax,) € Conv, B
such that ofx,) is generated by (x,).

In the sequel, the notation ofx,) from 5.2 will be applied whenever the set {(x,)}
will be regular.
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5.3. Lemma. Let (x,) and (y,) be disjoint sequences in B such that x, A y, = 0
for each m, ne N. Then o(x,) A ofy,) = d.

Proof. By way of contradiction, assume that there exists (s,) € o(x,) A «(y,)
such that (s,) ¢ d. Then without loss of generality we can assume that s,>0 for each
neN.

From (s,) € a(x,) we infer that there is a subsequence (s}) of (s,) with () € [5(x,)]-
Hence there are subsequences (x}), (x2), ..., (x§) of (x,) such that

(1) st <x!vax2v..vxl foreach neN.

We have (s,f) € ofy,). Hence by an analogous reasoning we deduce that there are
subsequences (y)), (yZ), ..., (V) of (v,) and a subsequence (s7) of (s) such that

(2 s2<ylvy2v..vy" foreach neN.

In view of (1) and (2) the relation s> = 0 is valid for each n € N, which is a contra-
diction.

Since B is infinite, there exists an infinite disjoint subset of B.

5.4. Theorem. Let B be a Boolean algebra. Let X be an infinite disjoint subset
of B, card X = x. Then there exists a system S; = {0f},r in Convy B such that

(i) the system S is disjoint and card S; = x;

(ii) for each iel, the O-convergence o is generated by a disjoint sequence.

Proof. Without loss of generality we can assume that we have X = {x}}.cs nen»
card] = %, and that xw1) * xi3) whenever (i(1), n(1)) # (i(2), n(2)). For each
iel we putof = afx;). In view of 5.2, a € Conv, B for each i € I. According to 5.3,
the system S, is disjoint in Conv, B.

We clearly have card S; = x. Thus we obtain:

5.5. Corollary. Let B be an infinite Boolean algebra. Then D(B) < D(Conv, B).

5.6. Lemma. Let (x,) be a disjoint sequence in B. Assume that y, = V5, X,
is valid for each n € N. Then (y,) is decreasing and Ay, = 0.

Proof. Let ze B, z £ y, for each ne N. First suppose that there exists ne N
suchthat0 < z; = z A x,. Thereexists z, € Bsuchthatz; A z, = 0andz, vz, =
= z. Then z; A x,, =0 for each me N\ {n} and hence z; A y, = 0 for each
m > n. Hence for m > n we have z A y,, = z, A y,, < z, which is a contradiction.
Hence z A x, =0 for each neN. Thus z=z Ay, =2z A (V,,,Z,,xm) =
= Vpmza(z A x,) = 0 and therefore Ay, = 0. It is obvious that (y,) is decreasing.

5.7. Theorem. Let B be a complete Boolean algebra. Let X be an infinite disjoint
subset of B, card X = x. Then there exists a system S, = {B?},.; in Conv, B such
that

(i) the system S, is disjoint and card S, = x;
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(ii) for each i€l, the 0-convergence BY is generated by a decreasing sequence.

Proof. Let X bz as in the proof of 5.4. For each i eI and each ne N put y! =
= Vmzn Xp,. Then for each i € I, {yi} is a decreasing sequence and A, y; = 0 (cf. 5.6).
Hence according to 2.12 there exists { = «(y;) in Conv, B. From the fact that X
is a disjoint system and from 5.3 we infer that the system S, is disjoint. Clearly
card S, = %.

5.8. Remark. The question whether the assumption of completeness of B can be
cancelled in 5.7 remains open.

5.9. Theorem. Let B be a Boolean algebra. Let X be an infinite disjoint subset
of B, card X = x. Then there exists a system Sy = {B}}.c; in Conv, B such that Sy
is a chain and card S; = x.

Proof. Let X be expressed as in the proof of 5.4. Without loss of generality we
may suppose that the set I is linearly ordered. For each i € I put

A ={(x}):jel, j<i}.

Then for each i€l, the set A; is regular. Moreover, if i(1) and i(2) are elements
of I such that i(1) < i(2), then a(A;;)) = a(A;)). (We denote a(A;qy) = [64;1]*%,
and similarly for 4,,,.) Hence the system S3 = {a(A4;)}; is a chain and card S; = x.

5.10. Corollary. Let B be an infinite Boolean algebra. Then D(B) < L(Conv, B).

5.11. Theorem. Let B be an infinite Boolean algebra. Then the partially ordered
set Convy B has no atom.

Proof. Let A € Conv, B. Then for each (x,) € 4, the set {(x,)} is regular, hence
a(x,) € Conv, B and a(x,) < A. If «(x,) = d is valid for each (x,) € A, then A = d.

Thus it suffices to verify that no principal element of Conv, B is an atom of
Conv, B.

To each sequence (x,) such that {(x,)} is regular and «{x,) & d we shall assign
in a constructive way a sequence (z,) such that {(z,)} is regular and d < a(z,) < o(x,).

The construction proceeds as follows. Let (x,,) have the above mentioned properties.
We denote by n(1) the first positive integer n with x, # 0. Since {(x,)} is regular,
there exists n e N such that n > n(1), x, + 0 and x, % x,.1); let n(2) be the least
positive integer having this property. Then x,;, A X,2) < Xu(1)- Let y; be the relative
complement of X,y A X,(2) in the interval [0, x,;,]. We have 0 < y; < x,¢, and
Vi A Xy = 0.

There exists n€ N such that n > n(2), x, % 0 and x, ¥ x,¢); let n(3) be the
least n having this property. We construct y, by means of x,.;) and x,, in the same
way as we did y; by means of x,; and x,(;). Then 0 < y, = X,y and y, A X,y =
= 0. We have also y; A y, = 0.

We proceed by the obvious induction, obtaining a disjoint sequence (y,) in B
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such that y; < x,q), ¥ < Xu2),.... Hence ofy,) < alx,). For each neN let
Z, = Y, and t, = yy,4¢. Then {(z,)} is regular and d < (z,) < «(x,). Moreover,
(t.) € (x,), but (1,) does not belong to «!z,). Thus a(z,) < a(x,).
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