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In [4], I have shown that the bounded elliptic surfaces M in the equiaffine 3-space
satisfying the relation ¢(H, K) = 0 with &}, + 4H®,®, + 4K®; > 0 and umbilical
boundary are affine spheres. Here, I am going to study analogous problems.

1. Let M <= A3 be an elliptic surface in the equiaffine 3-dimensional space. With
each point m € M, let us associate a frame {m; v, v,, v3}; we have the fundamental
equations
(1) dm = w'v; + 0?0,, dv; = oy,
with o] + w3 + w3 = 0 and the usual integrability conditions. It is possible, see
[4], to choose the frames in such a way that
(2) o] =o', 0 =o0?;

3) o} = —ico' + 1bo?, 0] =o' - }bo?, ] =0,
o] + 0} = bo' + cow?.

The form w being defined by

(4) o= o] - 0}),

we have

(5) 0w} = 1bo! + lecw? + 0, ol =1lbo! + tecw? — w
and

(6) do' = —0? A0, do’*=0"Aro.

The integrability conditions of (3) are
(7 (de + 3bo — 20%) A @! — (db — 3cw) A @* =0,
(de + 3bw) A ©' — (db — 3co — 203) A @? =0,
(db — 3cow + w3) A o' + (de + 3bw + 03) A @* =0.
From (7, ,), w3 A o' + w3 A ©? =0 follows, and we get the existence of functions
a, B, y such that '
(®) 0l = ao' + pw?, w3 = o’ + yo?.
We get the following invariant forms (see [3]): the metric form
) ds? = (0')? + (0?)?,
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and the form of the lines of the affine curvature

(10) € = p@')? + (x = y) 0'w? - o).

Further, we consider the following invariants

(11) J=14b*+c*), H=-Ha+7y), K=ay—p*, x=J+H,

i.e., the Pick invariant, the mean and affine curvature and the Gauss curvature
resp.

Theorem 1. Let M = A3 be an elliptic real analytic surface which is a bounded
simply connected domain. Let D = R? be a domain such that, for each meM,
(H(m), K(m)) e D. On D, let a real analytic function F(u, v) be given such that

(12) <6—F)2+4u—a£a—F+4v (§E>2>O in D.
Ou Ou ov v

Let us suppose: (i) We have

(13) J(m) = F(H(m), K(m)) foreach meM .

(ii) There is an arcy = M such that

(14) J(m)=0, €(m)=0 foreach mey.

Then M is a part of an elliptic quadratic surface.
Proof. We may substitute (8) into (7) and differentiate (8); we get
(15) (de + 3bw) A @' — (db — 3cw) A @ = —2Bw’ A ©?,
(db — 3cw) A ©' + (dc + 3bw) A 0* = (7 — Q) @' A ©?,
(da — 2Bw) A @' + (dB + (2 — y) @) A @? = {4b{e — y) + cf} ©' A 0?,
(dB + (2 — y) @) A @' + (dy + 2Bw) A @* = {$e(x — ) — BB} w! A w?.
Thus there are functions by, ..., y, such that
(16) db — 3cw = byw' + b,w?, dc+ 3bw = c,0' + c,0?;
do — 2Bw = qy0' + a,0%, df + (2 —y) 0 = B0 + pw?,
dy + 2fw = y,0" + 7,0
with
(17) by+e =28, ¢, —by=y—-a;
ﬁ1‘"°‘2=%b(°"‘)’)+cﬁ, V1*ﬁ2=%'c(“*7)*bﬁ~
On M, introduce coordinates (x, y) such that
(18) o'=rdx, w*=rdy; r=r(xy)>0.

Then, from (6),
(19) o= —r"'r,dx +r'r.dy;
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here, r, = 0r(x, y)[ox, etc. Substituting into (16), we get
(20) rby = b, + 3r7're, rby=b, - 3rtrec, rep=c, — 3r7 b,
re, = ¢, + 3r b ;
roy = o, +2r 'r B, roay < a, — 2r v g,
By = B rra =)0 By = Byt ru — ),
M= = 27 InBL T =0y 2 p

The conditions (17) may be rewritten as

(21) by + ¢, +3r 'rb + 3r-tre = 2rB,
e — b, = 3r7'rb + 3r7re = r(y - %) ;
(22) Be — oy — 17 (o — y) + 27 = rb(e — y) + rep,

Yo — By — 2r ' — r7 (o — y) = dre(a — 7) — rbB.
The supposition (13) reads
(23) Y07 + ) = (=4 +9), 0 = )
with the differential consequences
(24) 2bb, + 2cc, + (F, — 2yF,) o, + (F, — 20F,)y, + 4BF,B. =0,
2bb, + 2cc, + (F, — 2yF,) o, + (F, — 20F,) y, + 4BF,B, = 0.

Let us use the following notation: A = B means A = B + linear combination of
b, ¢, o« — y, . Then, using (22), (24) may be rewritten as
(25) 2bb, + 2cc, + (F, — 2yF,) (¢ — y), +

+ 2(F,— (x+y)F,) B, + 4pF B, =0,

2bb, + 2cc, — (F, — 20F,) (2 — y), +

+ 2(F, — (x + y) F,) B« + 4BF B, = 0.

Consider the R*-valued function

(26) u=(bc,a—7B8";
we get, from (21) and (25),
(27) Au, + Bu, + Cu =0
with 10 o 0
0 1 0 0
(28) A=12p 2¢ F, — 2F, 4BF, ’
00 0 2Fu—(x+7y)F,
0 1 0 0
s_|-1 0 0 0
1 oo 0 2F, —(x+19)F)|"
2b 2¢ —(F, — 2aF.) 4BF,
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The symbol of the system (27) is defined as

(29) o(&,n) = AL+ Bn; (En)eR™.
It is easy to see that
(30) det o(¢, n) = 2(F, + 2HF,) (& + n*) (&, n) with

®(E, 1) = (F, — 29F,) & + 4BF,&n + (F, — 20F ) n* .

The discriminant 4 of the form ®(¢, ) being equal to F2 + 4HF,F, + 4KF>, the
supposition (12) implies that ®(&, n) is definite. Further, F, + 2HF, # 0. Indeed,
F, = —2HF, implies 4 = —4(H*> — K) F2 < 0, a contradiction to (12). Thus the
symbol (&, 1) is an invertible matrix for each real pair (¢, 7) # (0, 0), and the system
(27) is elliptic; see [6], p. 76. Now, let us apply Theorem 5.4.1 of [6] which claims
that the zeros of any non-trivial solution of an elliptic system with real analytic
coefficients are isolated and of finite order. This provides the uniqueness of the Cauchy
problem, and we have u = 0 on M. But this means J = 0 on M, and we are finished.

Remark. For F(u,v) = —u + const., the condition (13) turns out to be x =
= const., and we get a version of the x-Theorem; compare with [2] and [3].

2. The affine normals of a surface in the equiaffine 3-space 4° coincide with its
projective normals if and only if the Pick invariant J of the surface is constant;
see [1], p. 111. In this connection, I am going to prove the following

Theorem 2. The only compact elliptic surfaces M = A® without boundary with
equal affine and projective normals are the ellipsoids.

Proof. Let (M, ds*> = §,;0'w’) be a Riemannian manifold, F,; a tensor on M,
F .1 its covariant derivatives with respect to the coframes {w'}. Let the [-form ¢ on
M be defined by

31 @ = 6l gk(F, F. o — Fi G F ) o
112 J1J2K;5 112 JiJj2t;

Theorem 1.1 of [5] says that the form d * ¢ does not contain the second covariant
derivatives of Fj.

1

Let us apply this result to the invariant form (see [4])

(32) F =F oot = -24 = ((0')’ - 3b(0')? @ = 3co'(0?)? + b(w?)*.

The covariant derivatives F,j;,; being defined by

(33) dFijk - Frjk(P? - Firkq)']" - Fijrq);c = Fijk;lwl >
pl=—pri=0, ¢;=0;=0;

we get, from (16, ,),
(34) Fiiip= ¢y Fiup= ¢, Fyan=—b, Fy,=—b,,

F122;1=*C1, F122;2="C2’ F222;1= bu F222;2= b, .
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The exterior differentiation of (16, ,) yields
(35) {db, — (by + 3c;) 0} A @' + {db, + (b; — 3¢;) ) A w? = 3xcw' A @,
{de; — (c; = 3by) @} A @' + {de; + (¢; + 3by) @} A w2 = =3xbo' A »?,
and we get the existence of functions b, 4, ..., ¢,, such that
(36) db; — (b, + 3¢;) @ = by, 0" + b0,
db, + (by; — 3¢c;) @ = by 0" + by,0?,
de; — (¢, — 3b)) @

dey + (c; + 3by) 0 = ¢,0" + ¢,0% ;

1 2
C11@° + ¢H07,

(37) by, — by, = 3xc, ¢y — ¢y = —3ub .
Considering the form (31), we have

(38) Y= —%x¢p = (cby — bey) o' + (cb, — be,) w?
and

(39) dy = 2(bye; — bycy + 3xJ) o' A 0?.

Now, let us suppose J = const. > 0. From (11,) and (16, ,), bb, + cc, = bb, +
+ cc, = 0, which implies byc; — byc, = 0. Thus

(40) 0=fm¥ = [ndy =6J [yxo' A 0,
ie., [y xw' A ®® = 0. This means y(M) = 0, and M should be a torus. But this is
impossible because of the ellipticity of M. Thus J = 0 on M, and we are finished.
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