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EQUIVALENCE PROBLEM FOR LAGRANGIANS

Arois Svic, Brno

(Received June 9, 1986)

The equivalence problem for Lagrangians was solved by E. Cartan by his own
methods. Recently, a solution in the same spirit was presented by R. B. Gardner,
see [1] Here, I present another approach to .the same problem which seems to me
to be simpler and more effective. I restrict myself just to the cases of order one and
two; in order two, I get as the special case Lagrangians of the form (2.17).

I am grateful to Prof. I. KoldF for several interesting discussions.

1. FIRST ORDER LAGRANGIANS

Let a fibred manifold #: M — N be given such that dim N = 1,dim M = 2; let J'(M)
be its first jet prolongation and e J'(M). On J'(M), let us choose local fibre
coordinates (&, 7, {) such that &, o(&, 1, ) = (&, 1), #(¢&, n) = € and i = (0, 0, 0).

Further, let a fibred manifold n: M — N be given suchthatdim N = 1, dim M = 2;
let J'(M) be its first jet prolongation. On J*(M), let us introduce fibre coordinates
(x,y,2z) = (x,y, ) in a similar way. Let fo: M — M be a (local) bundle isomor-
phism, f = j'(fo): J'(M) —» J'(M) its prolongation, and let m = f(m) =
= (X0, Yo» 2o) € J'(M). The (local) isomorphism f is given by

dx\~'/ay dy
(1.1 = , = 1), =[— — 4+ =],
(1 *=A0, y=oew), 2 (df‘:) (65 o C)
and we have
-1
(1.2) xo = x(0), yo =y(0,0), z, = (99) ?Xg}é—q}
It is easy to check that
i dx(0)\ " ay(0,0) o
1.3 ar [ = ) = (=2 ALY Y
{13) f(t%ﬁ.) (d€> on 0zl
df(i >= 20,0 0| (95@)‘%(0, 02
ar’ m arl ay m df aé ar’ 62 m
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df(i )= dx(0) @ 2y(0,0) @
(4™ dé¢  ox|, & oyl
+ { - (fi_@) 42x(0) 2y(0.0) | (dx(0)\ "' 2%(0,0)) &
d¢ de? 0¢ dé o2 az|,,
Let us write
2
(14) D:: dx_(o)’ C:= M’ AZ: D_lay(O,O)
d¢ an & on
B:= —D2 d?x(0) 0y(0, 0) + D! _6_2y(0,g).
gz a¢ g
Notice that
(15) DC +0,
f being a (local) isomorphism; from (1.25),
(1.6) w0.0 _, p.
0¢

Thus the differential df: T(J'(M)) — T,(J'(M)) maps the vectors 8/d(, d/dn, 8/d¢
at m to the vectors

]
(1.7) v, = CD™ 1 —| 02=CE+A_6_, vy = i_;_zi +B£
0z dy 0z Jx ay 0z

at m. Each triple of vectors {v;, v,, v3}, v; € T,,(J'(M)), of the form (1.7) is called
a frame of J'(M) at m.

On J'(M), let a Lagrangian
(1.8) A=flx,y.z)dx, ff.+0
be given; here, f, = 0f/dz etc. A frame {v,, vy, v3} of J'(M) at m will be called a
A-frame if
(1.9) Avg) = 1
at m; from (1.73), we get f(xo, yo, o) D = 1. Now, let us consider, on J'(M),
a field of A-frames

0
(1.10) Dl:cfé;’ vZ=C§+A£, 1)3=f'1(46-—|-:/:—a—>+Bi

y ox  dy oz’
A, B and C being functions on J'(M). Let functions ck: J'(M) — R be defined by
3
(111) [Ui, Uj] = Z cl;jvk; i,j= 1, .27 3 5
k=1

[0, v;] being the Lie bracket of the vector fields v;, v;. Let us try to exhibit special
fields of A-frames by imposing suitable conditions on the functions c',fj.

We get [vy, v3] = ci;v; + v, — f:Cvs, and the condition
(1.12) el =—1
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implies

(1.13) c=f1.
Further, :
[02’03] = 6;31)1 + {f_lsz +f‘1fz_1(fxz + nyz) +fz_1fzzB} Uy —

‘f—l(fyfz_l +sz) U3 -

The condition

(1.14) 33=0

yields

(1.15) A= —ff*

and .
(116) c§3=f'1fz_l(fxz+nyz_fY)+fz_ fZZB'

Proposition 1.1. Let the Lagrangian A (1.8) satisfy f.. # 0. Then there is, on J'(M),
exactly one field of i-frames {v,, v,, v} such that we have, in (L1.11), ¢35 = —1,
¢33 = ¢33 = 0 (this implying ci; = 1). This field is given by

1 0 _, 0 _, 0
117 A S
( ) vl ffz aZ > U2 fz ay f."f 62

P AR o
U3—f 1(6_);“{"26)’) f fzz (fxz+zfyz fy)az~

Now, let f,, = 0, i.e.,

(1.18) fGx,y,2) = a(x,y) + b(x,y)z.
Let us suppose (1.12) and (1.14), i.e., (1.13) and (1.15). Then
(1.19) [v2, v3] = ¢330y + Fv, with

F=f""(fe+ 2fy. = f,) = 'b7(bx — ay).
Further, [v,, v3] = ¢];v; + v, — 03, ie.,
(1.20) [, [v2> 3]] = 32301 + (03F — F? — ¢33) v2 + chav3,
the functions ¢j,;: J'(M) - R being given by
(1.21) [v;, [ vi]] =i§_:1cj.k,v,- .

The condition

(1.22) c33 + ¢33 =0
reads
v;F — F* =f"'(F, 4+ zF,) + BF, - F> =0,
ie.,
(1.23) (b, — a,) B =f(§— + zai) (f~'b~1(b, — a,)) = £ 'b" (b, — a,)? .-
x y

Proposition 1.2. Let the Lagrangian 1 be of the form (1.18) with b, # a,. Then
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there is, on J'(M), exactly one field of i-frames {vy, v,, v3} such that we have

i3 = —1, ¢33 = ¢y + 353 = O; these A-frames are given by (1.10) with (1.13),
(1.15) and (1.23).

Finally, let us suppose (1.18) with b, = a,. Then there is a function ¢ such that
we may write

(1.24) fx,y.2) =c,+ ¢z, ¢=cx,).

On J'(M), introduce new fibre coordinates (x, Y, Z) with Y = ¢(x, y). Then Z =
= ¢, + ¢,z, and we have the following

Proposition 1.3. Let the Lagrangian 1 be of the form (1.18) with b, = a,. Then
there are, on J'(M), new bundle coordinates (x, Y, Z) such that ) = Z dx.
Let us remark that the coframe dual to the frame

-y 0 1 0 Y ] 0 0
(1'25) Uy :fle_..’ vZ"f 1——fyfz > U3:f 1('—‘+Z"_ +B——
0z 0x dy 0z

is given by the 1-forms
(1.26) o'= —f"'f,Bdx + f7'f(dy — zdx) + f'f.dz,
2=f(dy —zdx), ©’=]=fdx.

On J'(M), let a Lagrangian 4 (1.8) with f,, # 0 be given. The corresponding Euler
equation is

(127) E(;")Efy_(;i_xfz=fy_fxz_fyzy’_fzzy":()-

Let y be a critical section of A given by y = y(x). Then j'y is given by y = y(x),
z = y'(x), and its tangent vector at each point is

0 d _ 0
(128) —+z— +fzzl(fy —fxz —fyzz)—_:fv3’
0x dy 0z

v3 being exactly the vector (1.173).
2. SECOND ORDER LAGRANGIANS
Let #: M — N be a fibred manifold with dim N = 1, dim M = 2. On J*(I1), let

a point 1 and fibre coordinates (&, 7,(,7) be given such that i = (0,0, 0, 0).
Analogously, let 7: M — N be a fibred manifold with fibre coordinates (x, y, z, t) =

(X ¥, ¥, ) on J¥(M). The prolongation f : = j%(f,) of a (local bundle isomorphism
fo: M - M is given by (1.1) and

(2.1) -3 42 P dx\~2 /92 2 2
t = (E d%x ay.l._yc).*_(_x.) (z_y+2ayc+a_:xgl+.6_)_)-;‘
d¢ dfz & On dé 02 o€ on on? on
A set of vectors vy, vy, 03, V4 € T,(J*(M)) is called a frame of JX(M) at m =
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= (x, y, z, 1) if they are images of the vectors 9/ot, 0/d(, d/on, 8/d¢ € Ty(J*(M))
under the mapping df: T(J*(M)) > T, (J3(M)), fo: M — M being an arbitrary
(local) bundle isomorphism such that f(si) = m. It is easy to check

-2
(2.2) b, = dx 6y (’3
) on Bt
(&) 22, (w@_y L&) 2
27 \ae) ooz dé)  de* on d¢)  aconf o’
-1 2 2 2 -2 3
by = 5y6+dx _6_y_(z+ )dxa +(g)_c o3y ﬁ’
ondy \d&) o¢an oz de2 ocon  \de)  oe? onf ot
) _g;_ca ﬁy(? (d_ _Zdzx(?y "62_)1 i_*_
* T dE ox T ay d¢)  de o: de)  ae2f oz
(G (G- (&) e () ey
d¢ dé) o¢ d de® o¢ d¢ d§2 362
() ey ()
dé) der oz \d¢) o o’
all the derivatives being calculated at 1 = (0,0,0,0). From (1.1) and (2.1), we obtain
-1 -3 32 -2 12
(2.3) z L A L A
dé o’ d¢) dezee  \dg) o2

again at . From (2.3), we calculate 8)(0, 0)/0&, 6?y(0, 0)/0&? and substitute them
into (2.2). Thus we see that the most general frame at m € J*(M) is given by

(24) vl=F‘2Ai, v2=F“Ai+B£, u3_A£+C~—+D2
ot Jz ot dy 0z ot
D4=F£+zi+t—a~ +E£
Ox dy 0z at

A, ..., F being arbitrary real numbers,
On J*(M), let a Lagrangian
(2.5) A=f(x,y,z,t)dx, ff, 0
be given. A frame {v,, v, v3, v,} is called a A-frame if A(vy) = 1. The most general

A-frame is

(2.6) vl=f2A—a~, vz=fA_a_+B_a., ~A£.+c£+pé
ot 0z ot ay 0z ot

0
vy =f1 _+z_91+tﬁ_ +E£; A,..,EeR.
0x dy 0z ot

Consider a field of A-frames (2.6) on J¥(M), A, ..., E being real-valued functions
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on J3(M). We have

(2.7) di =f,dy A dx +f,dz A dx + f,dt A dx
and
(2-8) dll(”h ”4) =ff4, d/l(vz’ U4) =fA+f"f.B,

dA(v3, v) = f7Y(f,4 + f.C + f,D).
Lemma. There are fields of A-frames satisfying
(2.9) dA(vy, vg) = 1, dA(vy, 04) = dA(vs,v,) = 0.
A general field of A-frames satisfying (2.9) is given by

0 0 0
2.10 v, = —1—’ v, = -1 7 _ z _2__,
( ) 1 ffr 8t 2 ft 62 ff! 6t
_4 0 _, 0 0 0
V. = -1 1Y _ r-1 2—+C —1___2—2_,
3 f f! ay fyft 6t ft(fr az fft 6t>

U4=f_l i+zﬁ_+ti +Ei.
dx dy 0z ot

Consider the vector fields
@11) A TR R -y
W3 =f“(f7‘%—fyff2§t>, Wa =f“(% + Za% + téa;);
thus the general A-frames satisfying (2.9) are
(2.12) v, =W, Uy =W,, 03 =w;+ Rw,, v,=ws+ Sw,
R, S: JA(M) — R being arbitrary functions. By a direct calculation,
(2-]3) [Wp Wz] = —ff,_zf,,wz > [Wl» Wa] = "(1 +ffr_2fn) W3,
[ wel = {7 + faa + 2 + 1) =
=7 fe + 2y )} Wi+ wa = s,
[woo wsl = F7' 7 e = L7 ) Wa + (Fuf T3 = 1722 w3
[Wa wa] = adaw; + a3aw, + ws,
0o =S (faa + 2 + e + 1) = ST + 2 + s + 1)
W = e + 2y + e = 12)
[Ws, W4] = “§4W1 + ot§4w2 + “§4W3 ,
By = =N Ba =S 2y + 1) TS 2+ 1)
From this,

(2.14) [v2,0,] = Coaby + €540y + vy, [03,04] = €340y + B4, + c34vs
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with
(215)  Ga =77 (fae + 2fye + foe = o) + ff7 S — R,
e =F2fx + 2y + 1) + ST Fa + 2y + 1) +
+(L+ /7)) S+ R.

Proposition 2.1. On J*(M), let the Lagrangian (2.5) be given which does not satisfy
(2.16) 1+ 2ff %, =0.
Then there is, on J*(M), a unique field of A-frames satisfying (2.9) and ¢34, = ¢3, =
=0 in (2.14).

Proof. From (2.15) with ¢3, = ¢3, = 0, we may calculate R and S, and our
field of A-frames is given by (2.12) and (2.11). QED.

The special case is thus formed by Lagrangians with (2.16), i.e., by Lagrangians
(2.17) A ={a(x, y, z) + b(x, y, z) 1}*1* dx .
The coframe dual to (2.12) is given by
(218)  @'= =Sfdx + f7'f(dy — zdx) + f7f(dz — tdx) + [T, dt,
?* = —Rff(dy — zdx) + f(dz — tdx),
o = ff(dy — zdx), o*=21=fdx.
Especially, the forms
(219)  o* =ff(dy — zdx), w® A @® =ff}dz — tdx) A (dy — zdx),

o' A 02 A @ Aot =ff2dx Ady Adz A de

are invariant in all cases.
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