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In what follows, I am going to prove the infinitesimal rigidity of bounded simply
connected domains on elliptic surfaces of the equiaffine 3-space with respect to the
induced equiaffine metric. In the proof, I show that the problem may be trans-
formed into the Cauchy problem for the system (49) or (53) resp.; for such systems,
I simply use the results as presented in [4]. For more detailed exposition of the theory
of surfaces, see [2] and [3]. Theorem 1 stands in close relation to the result of § 90
in [1].

Let M < A3 be a surface in the equiaffine 3-space 43. With each of its points me M,
associate a frame {m; v,, v,, v3} such that v, v, € T,(M); we may write

(1) dm = 0'v; + @*v,, do; = olv; (i,j =1,2,3)
with
(2 o+ 0 +0d=0

and the integrability conditions
3) do' = o’ A 0}, do] =of A o],

where, of course, w® = 0. Let us restrict ourselves to elliptic surfaces. Then it is
possible, see [3] to choose the frames in such a way that

@) 0} =o', 0} =ow*;

(5) 0} = —jco' + $b0*, 0} = jeo' — b0’ @] =0,
o] = $bo' + fc0’ + 0, o) =1bo' + ko’ - w;

(6) 0} = ao' + fo?, oF = fo’ +y0’

with

(7) o= Ho] — 0}).

The conditions (3,) reduce then to

(8) do!'= —0?> A 0w, do®* =o' A 0.
We get the following invariant forms: the metric quadratic form
9) ds? = (0')* + (0?)?;
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the forms (see [2])
(10) o = —He(w") - 3b(w')? 0* - 3cw'(7) + b(w?)’},
B = —0'n) — 0*0] = —{a(w')? + 2pw'w? + yw?)*} ;

the form of the lines of affine curvature

(11) %= B(w")? + (¢ — y) 0'@* — p(w?)*.
Further, we get the fundamental invariants: the Pick invariant
(12) J =3b* + 2,

the mean curvature and the affine curvature

(13) H=—4a+y), K=oay—fp
resp., and the Gauss curvature

(14) x=3b>+c*—a—y)=J+H

of the metric form (9) defined by
(15) do = —xo' A ©*.

Consider a 1-parametric family M(t), t € (—e, ¢) of surfaces such that M(0) = M.
Foreach te(—¢, ¢), let an isometry ¢,: M — M(t) be given. With each surface M(t), let

us associate a field of frames o(r) = {m(t), v,(1), v,(t), v5(r)} such that m(r) = ¢(m),
vy(t) = dey(vy), va(t) = de(v3). Then we may write, for each ¢,

(16) dm(t) = o' v,(1) + @? vy(t), doft) = wi(t)v,(r)
with
(17) wi(t) + o3(t) + w3{t) =0

and w{(0) = w]. Further, let the frames o(t) be chosen in such a way that we have,

for each ¢,

(18) wi(t) = o', o)(t)=0*, o})=0.

Define

(19) @l = (dol{t)/dt),= ;

of course, (18) and (17) imply

(20) Pi=ei=093=0, 9] +93=0.

Taking into account (18), the integrability conditions of (16) are, for ¢ fixed,
(21) do!' = o' A 0}(t) + 0 A (1),

do? = o' A 0f(t) + @* A w)(1),

doi(t) = oi(t) A 0)(t) + @' A wi(1),

dol(t) = wi(t) A 0}(t) + ©* A 03(1),

0 = oi(t) A 0" + @i(t) A ©*,

doi(t) = (1) A (03(1) — 0i(1)) + o' A ©3(1),
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do!

Il

—o' A of(f) + 0}(1) A 0?,
do® = —0? A (1) + 0)(t) A @',
dowj(1) = (1) A (0}(t) — 03(1)) + ©* A w)(1),
dol(1) = (1) A wl(t) + 03(t) A wi(1),
dwi(t) = @3(1) A 03(1) + 03(1) A wi(1).
Applying (d/dt),_, to the equations (21) and taking into account (20), we get
(22) =l Ao F ol A@?, 0=09%A 0 — ¢! A0?,
dpi = 91 A 03 + 07 A @) + 0" A ¢,
—dei = ¢ A Of + 0 A 9] + O A @,
0=03 A0 + 050,
dof = 97 A (03 — 0) = 20} A 9] + @' A 93,
O=gplrno' + 02 A0®, 0=09) A0 —¢! Ao,
des = 93 A (0] — 03) + 203 A 91 + ©% A @},
dp} = @3 A O] + O} A 9 + 93 A W, — O3 A 0},
dol = @3 A @3 — @3 A @] + 05 A ©f + 0} A 9] .

From (22, ) and (22, ;), (@7 — ¢3) A ©' = (9] — @3) A @* = 0 follows, i.e.,

(23) o) = of.
Because of (23), (17) and (18;), (22) reduce to
(24) OIAO' + oA =0, p}ro'—pl Aw?=0,
P3 A0+ 93 A 0% =0, 4piro] +2w; + 0}) A9l + 03 A0'—3A0 =0;
(25) doi = ¢} A (0 — o) + ©' A 9},
de? = =207 A ¢! — 202 A 0! + 0! A @3,
dp3 = @3 A @1 + @3 A 0] + 93 A 0 + 03 A9,
dp3 = —03 A @] — @3 A 0 + 0} A 9] + 93 A 0f.

Thus it is reasonable to define the infinitesimal isometries @ of our surface M as
sets of forms {¢]} satisfying (20) + (23) + (24) + (25).
From (24, _5), we get the existence of functions a’, b, &', ', 7' such that

(26) o} = —ico! + b, ¢} =ibo' + ide?,
@y =0 + fo?, @3 =pfo' +yw’;

the equation (24,) reduces then, using (5) + (6), to

(27) 2(bb" + e’y =o' + 9.
The differential consequences of (26) are, because of (25),
(28) (de" + 3b'w) A ©' — (db' — 3c'w) A 0 = =2f'0! A 0?,

(db" = 3cw) A o' 4 (de' + 3b'w) A ©* = () — @) @' A ©?,
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(do' = 2'w) A @' + (df + (¢/ — y) o) A ©* =
= {$a — p) b + B’ + 1b(a — ) + B} 0" A @?,
(dB + (@ — 7)) A o' + (dy + 2B'w) A ©* =
={-Bb" + 3o —y)c’ + fc(a’ —y) — BB} @' A @*.
We have w!(t) = o! + to] + O(t*). Comparing (5) + (6) with (26), it turns out
that the variations of the forms (10) + (11) are
(29) dd = —4{c'(0')® = 3b'(0")? 0* — 3cw'(w?)? + b'(w?)’},
68 = —{o(0')? + 2B 0'0? + y/(w?)*},
0% = P(o') + (« —y)o'ew? — f(w?)?;
the variations of the invariants (12) + (13) are then
(30)  S6J=bb +cc', SH= -3« +7), 6K=oy +ya — 28p .

Because of (27), 6x = 8J + SH = 0 holds, this being the infinitesimal version of the
theorema egregium.

Let us restrict ourselves to a coordinate neighbourhood G of our surface M.
In G, let us choose coordinates (x, y) such that

Il

(31) o'=rdx, o*=rdy; r=r(xy)>0.

From (8), we get

(32) o= —r'rdx +r'r,dy;

here, r, = 0r[dx, etc. The equations (28, ,) yield the existence of functions By, ..., C,
such that

(33) db’ — 3cw = B,o' + B,w?, d¢' + 3b'w = C,0' + C,0*;

(34) B,+C,=28, C,—B,=7 —u.

Analogously, equations (285 ,) and Cartan’s lemma imply the existence of func-
tions Dy, ..., F, such that

(35) do/ — 2f'w = D;w' + D,?, df’ + (¢ —y)w = E;0' + E,0*,
dy’ + 2f'w = F,0' + F,0?;
(36) E, — D, = Ho—19p)b + B’ + 3b(o) — ') + cf,
Fy —E, = —Bb" + ¥a —y) ¢’ + 4e(a/ —y') — bp.

Further, the differential consequences of (5) are

(37) (db — 3cw) A @' + (dc + 3bw) A ©* = —(¢ — y) @' A @,
—(de + 3bw) A ©' + (db — 3cw) A ©* = 2Bw' A ©?;

thus there are functions by, ..., ¢, such that

(38) db — 3cw = b0 + b,w?, dc + 3bw = c,0' + c,0*;

(39) ¢ —by=—(x—7v), by+c;=28.
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From (27), we get
(40) 2b,b’ + 2¢,¢’ + 2bB, + 2¢C; = D, + F,,
2b,b" + 2¢,¢’ + 2bB, + 2¢C, = D, + F,.

Now, let us take use of our coordinates (x, ). Inserting (31) and (32) into (33)
and (35), we get

(41) rBy = bl + 3r 'rc’, rB, = b, —3r 'r.c,
rCy=c, = 3r7'rb', rCy=c, +3r7'rb’;
"Dy — F)) = (' =), + 47 'rf, rE, =B —r 'rfa —7),
"Dy — Fy) = (o =), — 4r 'r ', rE, = By + r7'roe — ).
Using (41, ), the equations (34) turn out to be
(42) by + ¢, +3r7'rb + 37 r e’ = 2rf =0,
¢ — by = 3r7trb +3r e + r(d =) =0.
Consider the trivial identities
(43) D, + F, =D, — F, + 2(F, — E,) + 2E,,
D, + F, = F, — Dy +2(D, — E,) + 2E; ;
inserting into them from (40) and (4] s_g), We get
(44) (0 = ) + 2B, — 2bby — 2¢cl + (2r 're + ) (@ = ¥') +
+2(2r ', — rb) B — 2(rby — 3r7'rye + )b —
— (2rey + 6r7'rb — r(@ — 7))’ =0,
2B, — (o' = y'), — 2bb}, — 2¢c, — (2r~'r, + rb) (' = V') +
+ 227y = re) B — (2rby + 68 e + (o — ) b —
—2re; = 3r7'reb+ 1) = 0.
Thus we have proved
Lemma 1. Let G = M be a coordinate neighbourhood of a surface M < A3,
let the coordinates (x, y) in G be chosen in such a way that
45) ds? = r¥(dx* + dy?),
=24 = r¥cdx® — 3bdx?dy — 3edxdy? + b dy?),
—B = r*(adx® + 2fdx dy + ydy?).
Let @ be an infinitesimal isometry of G such that
(46) —20ef = r¥(c' dx® — 3b" dx?dy — 3¢’ dxdy? + b' d)?),
8¢ = r* (B dx® + (o' — y')dxdy — B dy?).
On G, define the functions

(47) ulzb,a u2=c', u3=a/—v,? u4=2BI;

483



let

(48) u = (u,,uz,u3,u4)T.

Then

(49) u,+ Bu, + Cu=0

with

(50) 0 1 00
-1 0 00

B=\_2 2 o1].

—2b —2¢ —10

Indeed: Consider the equations (42) + (44); in (44), replace b}, and ¢, by the values
calculated from (42).

Lemma 2. Let the situation be as in Lemma 1. On G, consider the complex
variable z = x + iy and the usual operators

(51) _a:=1,(i+i£), i=1<i_i~0_>‘
0z 2\0x dy 0z  2\0x dy

Define the functions

(52) wyi=c +ib, wy =2 + (e — ).

Then

(53) %‘;—1 + 3r71 %Wl — Lirw, =0,

z

— J3pt th_ia_rc _Q("__li) Wy — r(c +ib)w, = 0.
0z 0z 0z

owa _ (b + ic) aaﬂ - {r(ﬁ — ti(e —y)) + a—(cé; lb)} wy + Zr”gng -
VA

Proof. Comparing the real and imaginary parts of (53), we get a system equivalent
to (42) + (44). The functions b,. ..., ¢, are to be calculated from (38). QED.

Theorem 1. Let G be a simply connected bounded domain on an elliptic quadratic
surface M < A>. On G, let us choose coordinates (x, y) such that ds* =
= r}(dx? + dy?), r = r(u, v) > 0. Let vy, v, be the unit vector fields (with respect
to dsz) tangent to the curves y = const. or x = const. resp. Let @ be an infinitesimal
isometry of G possessing the variations (46). Suppose:

(54) S(v)) =0, 6%(v;) =0 on &G,
(55) da(v,) = 0 at some point z, € 0G,
(56) 6%(v, + v,) = 0 at some point z,;€dG .

Then & is trivial on G.
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Proof. On a quadratic surface,
(57) b=c=0, =0, a=7y;

this is well known. Thus the system (53) reduces to

(58) a(L_WI) = Lirtw, , M =0.

0z 0z
This means that r*w, is a holomorphic function on G; (54,) reads Re (r’w,) = 0
on G, (56) is then Im (r?w,) = 0 at the point z, € dG. But this means w, = 0 in G.
Now, r*w, is holomorphic in G, and we apply the same procedure to ensure w; = 0
inG. Thusb' =¢ =0, =0,« =y inG. Finally, from (27) we get o’ =y’ = 0
in G. QED.

Theorem 2. Let G be a simply connected bounded domain on an elliptic analytic
surface M = A3. Let ® be an infinitesimal isometry of G. Let y = G be an arc,
and let 6o/ = 0 and 6% = 0 on y. Then & is trivial in G.

Proof. The system (49) is clearly elliptic, and we may use Carleman’s theorem
claiming that the zeroes of a non-trivial solution are isolated. For this, see [4],
Theorem 5.4.1. Thus b’ = ¢’ = ' =o' — 9" = 0in G, and we are finished. QED.
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