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INTRODUCTION

In this note we will be concerned with the following general problem which
essentially goes back to A. Grothendieck [1] (compare also [14] and [3]):

(¥) Let E be a locally convex space. Which conditions have to be imposed on E
in order that E ®, E = E ®, E may imply that E is nuclear?

Various such conditions can be found in literature; we refer e.g. to [7] and [9].
For example, it is shown in [9] that E ®, E = E ®, E implies nuclearity of E
provided E has a 0-basis % such that the Banach spaces associated with the neigh-
bourhoods in % are #,-spaces for some fixed 1 < p < co. On the other hand,
G. Pisier [20] presented a method of generating Banach spaces X of infinite dimension
such that X ®, X = X ®, X holds (and such that both X and X’ have cotype 2).
This indicates that the final answer to problem (*) will at least be not easy.

The above problem (x) is of course a special case of the following more general
question (which was actually raised in [1]): If E and F are locally convex spaces
such that E ®, F = E ®, F, under which conditions on E and/or F is one of these
spaces nuclear? Let us mention that in [8] two (different) non-nuclear Fréchet-
Schwartz spaces E and F were constructed, each of which is isomorphic to a sub-
space of I3, such that E®, F = E ®, F.

In dealing with problem (*), one is led in a natural fashion to the study of operators
T: X — Y between Banach spaces X and Y such that T® T maps X ®, X con-
tinuously into Y ®, Y. We begin our discussions by proving certain results on such
operators in general. These are then applied in the context of problem (x). In parti-
cular, we obtain several generalizations of results from [7] and [9]. Our methods
also lead us to prove a criterion for a locally convex space E to be nuclear whenever
E ®.,X = E ®, X holds for a fixed arbitrary Banach space X of infinite dimension.
Further we examine certain locally convex topologies on Banach spaces with respect
to (*) Among others we shall see that, on every infinite-dimensional Banach space X,

*) The major portion of this paper was written while the second author visited the University
of Ziirich in 1985.
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there exist locally convex topologies  which are consistent with the dual pairing
<X, X"y but for which the e-tensor product of [X, J ] with itself does not coincide
with the corresponding z-tensor product. This applies in particular to the Banach
spaces constructed in [20].

1. NOTATION

We shall employ standard notation and terminology on Banach spaces, ideals of
operators between such spaces, and locally convex spaces. Unexplained terminology
and facts may be found e.g. in [12], [15], and [3], respectively. To simplify reading,
however, let us briefly recall some basic facts and fix some notation which will be
used in the sequel. Continuous linear mappings between locally convex spaces (lcs)
will be simply called operators. Unless otherwise stated, subspaces are linear sub-
manifolds and, in the Banach space case, assumed to be closed. The ideals (of Banach
space operators) consisting of all integral operators, nuclear operators, strongly
nuclear operators, % -factorable operators, (r, D q)-summing operators, operators
of type r and operators of cotype s, will be denoted by £, A", T, 2, ,,, 7, and €,
respectively. We shall write 2, , instead of 2, , ., #, instead of Z,,, and 2 in-
stead of #, , ,. Recall that 2 is the largest extension of Hilbert-Schmidt operators
to an operator ideal on Banach spaces.

Throughout, we shall tacitly assume that all our Ics are Hausdorff. Also, we shall
only consider 0-neighbourhoods in such spaces which are absolutely convex and
closed. Given a 0-neighbourhood U in an Ics E, we write E y, for the Banach space
canonically associated with U, and @, for the corresponding natural operator E —
— Ey,. If Vis another 0-neighbourhood in E and if ¥ = U, then there is a unique
operator ®@yy: Eyy — Ey, such that &y = &y o Gy

Given an ideal o/ (of operators between Banach spaces), we call E an Ic «/-space
if for some (and then every) 0-basis % of E the following holds: For every U € %
there is a Ve % contained in U such that ®yy € #(Eyy, Ew). If o is N or £,
then the Ic «/-spaces are precisely the nuclear Ics; in case & = &, one obtains the
strongly nuclear Ics, and taking for & the ideal of compact operators one arrives
at the Schwartz spaces, etc.

2. ON (g, m)-CONTINUOUS OPERATORS

Let X and Y be Banach spaces. An operator T: X — Y is said to be (g, n)-con-
tinuous if T® T is continuous as a map from the normed space X ®, X into the
normed space Y ®, Y. The relevance of this concept for our purpose is due to the
fact that an Ics E with (no matter which) 0-basis % satisfies E ® . E = E ®, E if and
only if every U € % contains a Ve % such that ®yy: Ey) — Eg, is (&, 7)-continuous.
This follows e.g. from the well-known representations of n- and e-tensor products
as projective limits; see e.g. [3], 15.4.3 and 16.3.3.
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We shall need the following

1. Lemma. Let X; and Y; (j = 1,2) be infinite-dimensional Banach spaces.
Let Se #(X,,X,) and Te #(Y,, Y,) be such that S®T:X; ®, Y, > X, ®, Y,
is continuous.

()If X, =Y, =X, X, =Y, = Yand S = T, then Se #(X, Y).
(b) If T is an isomorphic embedding, then S e 2, , (X, X,).
(c) If Tis a surjection, then S € 2, ; ,(X,, X,).

Proof. (a) cf. [4] and [7]; for the sake of completeness, we give the simple argu-
ment. Identify (Y ®, Y} with Z(Y, Y’), and (X ®,X) with #(X, X’), in the usual
way. The adjoint of S ® S then appears to be the map (Y, Y’') » 4(X,X'): R —
+— S'RS. Thus, given Ae %(Y,1,) and Be %(l,,X), (ASB) (ASB):1, > I, is
nuclear, hence ASB: 1, — I, is a Hilbert-Schmidt operator. Since 4 and B have
been arbitrary, S € .@(X, Y) follows.

(b) Without loss of generality, we may suppose T is isometric. Fixn e N, x,, ..., x, €
€X, and uy, ...,u, e X;. Given ¢ > 0, use Dvoretzky’s theorem to produce y;, ...
cw¥s€Yy and vy, .., v,€Y; such that (Ty,v;> =6 [v;] <1 +e (1 =4,
Jj = n),and wy(y;) < 1. Here and later, w,(z,) denotes the weak I-norm of a sequence
of vectors (z;) for 1 < s < 0.

For an n-tuple A = (4, ..., 4,) of scalars, consider §, : = i/ljuj ® v; as a bilinear
form on X, x Y,. Clearly, |8, = (1 + ¢). [4]., .wl(ui),j}:l;nce
. ISsi | = sup (5 (S0 - <Tyi) 4] Al S 1) -
s (885 o) 2] 5 1) =
S (1 + &) wi(w) IlZini ® Tyilxse,, <
(L +2)[S® T wiyw) Ilini ® Vilxiou, =
S(1+e)|S® T| walxs) wylu,) .
This proves (b).
(c) We proceed similarly. Without loss of generality, let us assume that T'is a quo-

tient map. Use Dvoretzky’s theorem and local reflexivity to find y; € ¥; and v; € Y,
such that (Ty;,v;,> =3d;;, |y S1+e (1 24, j <n), and wy(v;) £ 1. With B,

as above, we now have ||B,]| < [4]. wa(u;) from where Y [<Sx; u)| < (1 + ¢).
- |S ® T| wy(x:) wa(u;) follows as before. ® =1

We note that S’ e 2, ; 1 2 follows in the situation of 1(b), and Se 2, ;" Z in
the situation of 1(c). Note also that 1(a) is far from being sufficient, just look at the
identity map of an #,- or .# -space.

Let us pass to (&, 7)-continuity. We shall use the main result in [20] (cf. also [21])
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to show that in certain interesting cases all operators are (g, n)-continuous. For
some particular cases (e.g., X = %,, Y = %) a simpler argument is available.

2. Proposition. Let X be of cotype 2 and Y such that £(Y,Y') = I',(Y, Y'). If
L(X,Y)=P(X,Y)(e.g., if X or Y is a Hilbert-Schmidt space [4]), then (X, Y)
consists of (e, m)-continuous operators only.

Proof. It is easy to see than it suffices to consider the case where X is separable. Let
us fix Se Z(Y,Y’). Write S=A.B, Ae (H,Y'), Be #(Y,H), H a suitable
Hilbert space. Note that 4 is the adjoint of C := A4'[Y.

By [20] there is a Banach space Z containing X such that Z®,Z = Z ®, Z.
Let J: X — Z be the corresponding embedding. Then Bo Te 2,(X, H) has an
extension Ue.?(Z, H), and Co.T has an extension Ve Z(Z, H). Because of
Z®,Z=Z®,Z, V'oU is integral, hence T' o So T = J' o V' o U o J belongs to
J(X, X'). Since S has been arbitrary, T must be (e, 7)-continuous. ®

So, if X is of cotype 2 and Yis an & -space, or if X is an & ,-space, Y’ has cotype 2,
and Y satisfies some weak form of the approximation property (cf. [17]), then every
operator X — Y is (s, n)-continuous. In particular, for 1 £ p <2 < q < o, the
spaces (& ,, &L,,) and L(&L, Z,) consist of (g, n)-continuous operators only.

Let us say that an operator T: X — Y fixes a subspace Z if there are isomorphic
embeddings J;:Z - X and J,:Z — Y such that ToJ; = J,. Dually, we say
that T fixes a quotient Z if there are surjective operators Q;: X — Z and Q,: Y—> Z
such that 0, o T = Q,.

3. Proposition. Suppose T: X — Y is (e, n)-continuous. If T fixes a quotient Z,
then (Z,Z') = T'5(Z,Z'). If T fixes a subspace Z and if X' has the bounded ap-
proximation property, then .SE(Z’, Z) = I’Z(Z', Z).

Proof. Assume first that T fixes a quotient Z. Let Q; and Q, be as above. Then
QiSQ, = T'Q5SQ,T is integral for any Se #(Z, Z'), which can only happen if
Seryz,z).

Next assume that T fixes a subspace Z and that X' has the bounded approximation
property. Then (T ® T) maps (Y ®, Y)' = Z(Y, Y’) continuously into (X ®,X)" =
= J(X, X'), By our assumption on X', this space contains X’ ®, X' isomorphically,
so that T" is (¢, m)-continuous and fixes the quotient Z'. Hence #(Z’, Z") = I'y(Z', Z")
by the previous observation, and so L(Z',Z) = I',(Z',Z). m

Given a Banach space X, let us as usual denote by q(X) the infimum of all 2 <
=< g < oo such that X has cotype q.

4. Proposition. Let X and Y be Banach spaces.
(a) If g(X’) > 2 and every infinite-dimensional subspace of X' contains a copy
of X', then every (g, m)-continuous operator T: X — Y is strictly cosingular.
(b) If g(X) > 2, X’ has the bounded approximation property, and every infinite-
dimensional subspace of X contains a copy of X, then every (e, n)-continuous
operator T: X — Y is strictly singular.
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Proof. (a) If Z is an infinite-dimensional quotient of X, then our hypothesis
yields q(Z') = q(X’) > 2. This implies #£(Z,Z') + I')(Z,Z’), cf. [17] or [21].
By Proposition 3, T cannot fix any infinite-dimensional quotient, i.e., T is strictly
cosingular.

(b) This time we have g(Z) = g(X) > 2 for every infinite-dimensional subspace Z
of X. Again this yields #(Z’, Z) % I'y(Z', Z). Since X' has the bounded approxima-
tion property, Proposition 3 tells us that T cannot fix Z. Consequently, T must be
strictly singular. W

In particular, all (&, 7)-continuous operators from [, into any Banach space Y are
strictly cosingular if 1 < p < 2; to cover the case p = 2, use the fact (e, n)-con—
tinuous operators belong to 2. However, by Proposition 2, this does not extend
to p = 1. Similarly, for 2 < g < oo, all (g, m)-continuous operators I, > Y are
strictly singular. It follows again from Proposition 3 that this does not extend to
g £ 2, or to ¢ = . By duality, all (e, n)-continuous operators from an arbitrary
Banach space into I, are strictly singular if 2 < r < oo, and strictly cosingular if
1 <r<2;cf [13]

In addition, we may state

5. Proposition. Let X and Y be Banach spaces and let Te #(X, Y} be (&, n)-con-
tinuous.
(a) If Yis an Z,-space, then T is strictly singular.
(b) If X is an &£ -space, then T is strictly cosingular.

Proof. (b) follows from (a) by a duality argument. To prove (a) let Z be a sub-
space of X which is fixed by T. Let J;: Z - X and J,: Z — Y be isomorphic
embeddings such that T J; = J,. By our choice of Y, Z ®, Y is a subspace of
Y®,Y; cf. [1] or [3]. Also, T® T induces the continuous operator Id; ® J,:
Z®,Z—->Z®,Y. So, if we assume Z to be of infinite dimension, application of
Lemma 1(b) yields Idz € 2, i.e., Z must be a Hilbert-Schmidt space [4].

Z cannot contain a copy of I;, since otherwise Iy ®,1; = I; ®, ; would follow
from our assumptions, which is impossible. Being a subspace of an % ;-space, Z must
therefore be reflexive [10], hence super-reflexive [22] (compare [6] for a direct
argument). However, thete are no super-reflexive Hilbert-Schmidt spaces of infinite
dimension [4].

It follows that Z must be finite-dimensional, i.e., T is strictly singular. H

Every strictly cosingular operator L,(u) - X is weakly compact (but not con-
versely: consider any surjection L,[0, 1] — [,). Similarly for strictly singular
operators X — L,(p). However, as was shown in [13], the strictly cosingular
operators L.(u) — L,(v), that is, the strictly singular operators L,(u) — Ll(v) are
precisely the weakly compact ones. We shall use this below.
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3. CRITERIA FOR NUCLEARITY

Our first result in this section depends on another theorem of G. Pisier [16].

6. Proposition. Let X, X,Y,Y, be Banach spaces, let 1 <p<2=<gq < o
be fixed, and let Re€(Y,Y,), Se T (X,Y) and Te #(X,, X) be given. Put
o := (1/p) — (1/q). Then there is a constant C such that

(X “RSTxiHZ)”Z < Cn? wy(x;)
i=1
for all finite subsets {xl, vees X} of Xo. Here we put

wa(x;) = sup {(_;Ka, x»?)!?lae X, [a| 1

Proof. Let us write X for the linear span of {Tx,, ..., Tx,}, ¥ for S(X), R, for
the restriction of R to ¥, and S,: X — ¥ for the operator induced by S. By Theorem
4.1 of [16], ReS, has an extension U: X — Y, such that y,(U) < K 1,(S) ¢,(R) n°,
K being independent of xy,...,x, Here y,,7, and ¢, denote the canonical ideal
norms on I',, 7, and &, respectively. Let us abbreviate C, := K 7,(S) ¢,(R).

Given ¢ > 0, we can ﬁnd a Hilbert space H and operators A;: X - H, A, H - Y,
such that 4,4, = U and |4, [4] = (1 + &) y,(U) £ (1 + &) Con°. Let m be the
natural ideal norm on 2. Then n(T) = sup n,(AT), m, being the ideal norm on 2,
and A ranging over all operators from X into a Hilbert space such that “A]l =1
In particular, we have n,(4,T) £ n(T) |A4,]. Thus

(5 RST )" = (0T € 420 (I Tl =

< A [Ad] 2(T) wa(xi) < (1 + &) Co n(T) waxi) n” .
Put C:= C, n(T) and let ¢ pass to zero. W
Application of Proposition 3 in [7] yields:

7. Corollary. Let R, S, T be as before. If (1/p) — (1/q) < 4, then RST belongs
to F/’,,Z(XO, Y,) for every r such that

1.1

1
r 2 p

Further, from Lemma 1(a) we obtain:

+

ES

8. Corollary. Let &/ be an operator ideal which is contained in €, , where
1 <p=2=q< o are such that (1/p) — (1/q) <. Let E be an Ic .sa{—space
IfE®.E = E ®,E, then E is nuclear.

Proof. Fix any 0-basis % in E. From our assumptions, Lemma 1 and Corollary 7,
we get that each U € % contains a Ve % such that &, € @,,Z(E(V), E(U)). Since the
composition of n operators in 2, , is nuclear if n is sufficiently large (cf. [11]),
our Ics E is nuclear. H
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9. Corollary. Let E be an lcs with a 0-basis U such that each Eyy, Ue, is
isomorphic to a subspace of a quotient of some & ,-space,1 < p < o fixed. If
E®,E =E ®,E, then E is nuclear.

Of course, we may also allow p to vary over an interval [s, {] for any fixed 1 <
< s £t < oo. Compare with [9] and [7].

We do not know, however, if for projective limits E of £ -spaces, or of & -
spaces, it is also true that E is nuclear whenever E ®, E = E ®, E holds. From
Proposition 5 and the fact that & ,-spaces and &£ -spaces possess the Dunford-
Pettis property we only get that such a space E must be a Schwartz space.

The methods used here can also be employed to obtain informtion on the following
problem which is related to (*): Given an Ics E and a Banach space X, when does it
follow from E ®, X = E ®, X that E is nuclear? Various conditions to be imposed
on X are known to ensure the answer is affirmative, see e.g. [3] and in particular [7].
We ammend these results by specifying conditions to be put on E in order that
the answer to the above question be affirmative no matter which infinite-dimensional
Banach space X we have chosen to start with. These conditions are broader than the
corresponding ones in Corollary 8: the cases of £ -spaces and of £ -spaces are
included.

10. Proposition. Let A be an operator ideal which is contained in either of the
ideals
(a) I'y of all &, -factorable operators,

(b) I'y, of all & ,-factorable operators,

(¢) T,n%, for 1 <p<2=q< oo with (1/p) — (1/q) <3,

and let E be an lIc o/-space. If there is a Banach space X of infinite dimension
such that E ®,X = E ®, X, then E is nuclear.

Proof. (a) follows from (b) by a duality argument. To prove (b), recall that
P51 0T, is contained in 2, for every g > 2 (cf. [15]), and apply Lemma 1(c).
To obtain (c), we may proceed as in Corollary 8, by using Corollary 7 and Lemma
1(b). m

4. LOCALLY CONVEX TOPOLOGIES ON BANACH SPACES

Let X be a Banach space and &/ anoperator ideal. An lctopology J , is defined
on X in terms of the seminorms x > || Tx|, where T runs through #(X, Y) and Y
varies over all (or sufficiently many) Banach spaces. We shall also write X, instead
of [X, 7 4] Note that X , does not change if we pass from & to its injective hull[15].
Therefore we only need to work with injective ideals.

Note that X , is not necessarily an Ic «/-space. In fact, one easily checks that for
every Banach space X and every injective ideal &/ the space X is an lc &/-space
if and only if (X, Y) = N &"(X, Y) holds for every Banach space Y. Here we put

neN

ofcourse " = A oA o...0 A (n times) for every n e N.
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The above condition is trivially satisfied if the operators in &/ factor through
Banach spaces whose identity mappings belong to 7. It is also satisfied if & is
injective, surjective, and uniformly closed, cf. [2] And finally, it is satisfied for the
ideal &, of all strongly nuclear operators, cf. [15]. It is well-known that the topology
of Xy, is in fact the finest (strongly) nuclear topology on X which is consistent with
the dual pairing <X, X'}, cf. [3]. Using this it is easy to see that nuclearity of X
implies (X, Y) = &4(X, Y) for every Banach space Y.

Note also that X, is not necessarily nuclear if X, ®, X, = X, ®, X, holds:
Just consider any of the Banach spaces X constructed in [20] and define &/ by any
of the properties Id, possesses anyway (e.g., being of cotype 2, or of dual cotype 2,
etc.). Nonetheless, even for these spaces X there are, in between the norm topology
and J 4,, Ic topologies J such that the e-tensor product of two copies of [X, 7]
does not coincide with the corresponding n-tensor product. To prove this, let us
denote by 7, and %, the ideals of operators which factor through a Banach space
of type p, that is, of cotype q.

11. Proposition. Let 1 < p <2 < q < o be such that (1/p) — (1/g) < %, and
let o be the ideal T} N4, . If X is a Banach space such that X, @, X, =
=X, ®,X,, then X is finite-dimensional.

Proof. 7, and 4, , and hence <7, are injective. Let Te M(X, Z) with dense range
be given. By hypothesis, there are operators S;e (X, Z;), j = 1,2, with dense
range, and operators R, € #(Z,,Z), R, e #(Z,, Z,) such that R;S; =T and
R,S, = S,. We may assume that Z has cotype g and Z, has type p. From Corollary
7 weinferTe 6,09 ,0 P < P, , for any r such that

1 1 1 1

r 2 p gq
As in Corollary 8 we conclude that X, is nuclear.

Let H be a Hilbert space. Since Idy belongs to o/, we get that #(X, H) consists
of nuclear operators only. As in [5] we obtain dim X < c0. ®
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