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In [4] a non idempotent semigroup S has been called an E,-semigroup (k positive
integer) if every subsemigroup of S containing k idempotents either is idempotent
or contains all the idempotents of S. A similar definition can be given for rings,
merely substituting the word “‘semigroup” by the word “ring”. But, since every
subring of a ring R always contains an idempotent, namely the zero of R, we prefer
to modify the definition slightly in the following way.

Let R be a non idempotent ring, with set of idempotents E, and |E| > 1. For every
positive integer k we shall say that R is an E,-ring if every subring of R containing k
non zero idempotents either contains E or is contained in E. We shall call trivial
E,-rings those for which |E| = k + 1.

In the first part of this note we shall prove that the only E,-rings are the trivial
ones. The second part is devoted to characterize non-trivial E,-rings, whose actual
existence is shown by some examples.

Throughout this paper Z will denote the center of the ring R and E the set of
idempotents of R. The term ‘“‘subsemigroup of R” means “multiplicative subsemi-
group”, and (R, +) denotes as usual the multiplicative semigroup of R. Non defined
terminology may be found in [6] and [7].

1. E;-RINGS

The purpose of this section is to prove the following.

Theorem 1.1. R in an E,-ring if and only if E is a proper subset of R having
order two.
The proof of the theorem will be preceded by some Lemmas.

Lemma 1.1. If R is a non-trivial Es-ring, then E is a subsemigroup of R, and
Re = 0 for every ecE.

Proof. Let e, fe ENO. Then we have either ¢eR > E or eR < E, and in both
cases we immediately see that ef € E. Thus E is a subsemigroup of R. Now, let

*) This work is supported by the Italian M.P.I.
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u € E with 2u + 0. Then 2u € R\ E, hence uR n Ru > E and u is the identity of E.
From the uniqueness of the identity it follows that 2e = 0 for every e € E \ u. Since
|E| > 2, there exists ee EX {0, u},and we have (e + u)® = e + 2eu + u = e + u +
# u, whence 2(e + u) = 0 and 2u = 0, a contradiction.

Lemma 1.2. If R is a non-trivial E,-ring, then E is not commutative.

Proof. Suppose that E is commutative. Then, for every e, fe E, we have
(e + f)* = e + f(Lemma 1.1), hence E is a subring of R. Moreover, it is well-known
that E is contained in the center. At this point there are two cases, each of which
leads to a contradiction.

1) E is not an ideal. Since E < Z, we have uR ¢ E for some u € E. Then uR > E,
hence u is the identity of E. From the uniqueness of the idzntity it follows that
eR < E for every ee Exu. Now, taking ee Ex{u,0}, we have u + ee Exu,
whence (u + e) R < E. This implies uR < E, a contradiction.

2) E is an ideal. Let us preliminarly show that ae = 0 for every ae R\E, e E.
In fact, suppose that ae = 0 for some ae€ R\E, e E, and consider the subring
{a, ey generated by a and e. Since there exists fe€ E \ {e, 0}, and {a, e) o E, there
is a polynomial P(t)e Z[f] with zero constant term, such that f = P(a) + he,
where heZ, (Lemma 1.1). Hence P(a)e E\O. Moreover, P(a) e = 0. Thus the
annihilator A(e) contains E, whence e = 0, a contradiction. Then ae #+ 0 for every
ae R\E, ec E. Now, since E is an ideal, we have ae = (ae)* = a’e, whence
ae(a — e) = 0. But this contradicts the fact that aee EX0 and a — ee R\ E.

Lemma 1.3. If R is a non trivial E,-ring, then E\ 0 is a left (right) Zero semigroup
of order 2.

Proof. Since E is not commutative (Lemma 1.2), there exist e, f € E such that
ef + fe. Then, we may suppose that fe + efe and, since fe — efe is nilpotent, the
subring {e, fe — efe) contains E. On the other hand, we have {e, fe — efe) =
={0,e,fe — efe, e + fe — efe}, whence E = {0,e, e+ fe — efe}. Thus f =
= e + fe — efe, and ef = e, fe = f. Analogously, if ef = efe, E\0 turns out to be
a right zero semigroup.

Proof of theorem 1.1. Let R be an E,-ring. If R is not trivial, EXO0 is a left
(right) zero semigroup of order 2, by Lemma 1.3. Suppose that EXO is a left zero
semigroup and that E = {0, e, f}. Since eR 2 E implies that e is a left identity of E,
it must be eR < E. Then, for every a € R, we have ea = e(ea) = e, whence (ae)* =
= ge, which implies Re < E. At this point we have e + f = (e + f) e E, a contra-
diction. The converse is obvious.

2. STRUCTURE OF E,-RINGS

In this section we shall study non-trivial E,-rings, which will be characterized
by the following theorem.
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Theorem 2.1. R is a non-trivial E,-ring if and only if E is a proper subsemigroup
of R satisfying one of the following conditions:

i) E is commutative of order 4 with identity.

ii) EXO is a left (right) zero semigroup of prime order p > 2, and there are two
elements e€ EXO, a€ R\O such that ENO = {e + ka|k =0,1,...,p — 1}.

In preparation for the proof of the theorem, we establish the following Lemmas.

Lemma 2.1. A finite Boolean ring has the identity ([5], Theorem 39).

Lemma 2.2. Let R be a non-trivial E,-ring. If E is commutative, then E is a sub-
semigroup of R of order 4, with identity.

Proof. First of all, let us recall that E, being commutative, is a subsemigroup
of R contained in the center. That being established, we have to examine the two
following cases.

1) E is not an ideal. Since E = Z, we have eR & E for some e € E. Then, let
feEN{0,e}. Now, if ef e EX{0, e}, we get eR > E, which implies that e is the
identity of E. Then, suppose ef = e. Since eR + fR o E, for every u e E there
exist x, y € R such that u = ex + fy. Consequently, fu = fex + fy = u, hence u
is the identity of E. Finally, if ef = 0, we have e + fe EX{0,e}. Then, eR +
+ (e + f)R o E, and for every u e E, there exist z, we R such that u = ez +
+(e+f)w. Thus (e +f)u=(e+f)ez+ (e +f)w=u, hence e + f is the
identity of E. At this point, we have proved that in any case E has the identity, which
will be denoted by 1. Moreover, the idempotent e for which eR & E may be supposed
different from 1. In fact, if uR < E would hold for every u € EX{0, 1}, we should
have also (1 — u) R € E, since 1 — u e Ex{0, 1}. But this should imply IR < E,
whence eR < E for every e€ E, a contradiction. Now, let us suppose that E has
order greater than 4. This means that, in addition to the four idempotents 0, 1, e,
1 — e, there exists another idempotent f. Moreover, 1 — f is also an idempotent
distinct from all the preceding. Eventually exchanging f with 1 — f, we may suppose
ef £ 0. Now, we cannot have ef = e, since this would imply eR o E, and e would
be the identity of E, while e % 1. Thus ef = e. But, in this case we have Rf o E,
since Rf contains the distinct idempotents f and ef = e, and Rf 2 Ref = Re; so f
is the identity of E, contrary to f % 1. Thus we have proved that |E| = 4.

2) E is an ideal. If we show that |E| = 4, E turns out to be a finite Boolean ring,
and the statement follows from Lemma 2.1. Thus we may suppose |E| > 4, and start
by proving that there exist two idempotents e, f such that
(1) e is not the identity of E ,

ef e EX{0, e}
In fact, it is easily seen that E contains two elements u, v such that u, v, u + v are
distinct from each other, from zero and from the eventual identity. Now, if uv e
e Ex{0, u}, it is enough to take e = u, f = v. If uv = u, it suffices to take e = v,
f = u. Finally, if uv = 0, we have u(u+ v) = u, hence we may take e = u + v,
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f = u. That being stated, let a be an element of R \ E. Then, the subring <a, e, ef )
generated by a, e, ef contains E; consequently, for every w € E, there exist an element
b e R and a polynomial P(t) e Z[{] with zero constant term, such that w = P(a) +
+ eb. Since e is not the identity of E, by the (1), we have P(a) # O for at least an
idempotent w. Moreover, since E is an ideal, we have P(a) = w — ebe E. Thus
P(a) € EXO. At this point we have shown that, for every a € R, there exists a poly-
nomial P(t)e Z[t] with zero constant term, such that P(a)e EX0. Now, let us
verify that 2a = 0 for every a € R. For the elements of E this is induced by the fact
that E is an ideal, so we may suppose a € R\ E. If 2a € E, we have 4a = 0, whence
2a = 4a® = 0. If, on the contrary, 2a € R\ E, from the above it follows that there
exists a polynomial P(t)e Z[f] with zero constant term, such that P(2a)e E\0.
But P(2a) = 2 Q(a) for some Q(t) € Z[{] and, since 2 P(2a) = 0, we have P(2a) =
= [P(2a)]* = [2 Q(a)]*> = 2 P(2a) Q(a) = 0, a contradiction. This result, together
with the preceding, allows us to conclude that every element of R is an algebraic
co-integer, hence R is a periodic ring by Proposition 2 of [2]. Now, let us recall
that in a ring every periodic element is the sum of a potent element (i.e. an element x
such that x = x™ for some integer m > 1) and a nilpotent (see [1], Lemma). If R
contains some nilpotent, then there exists a € R with a? = 0, and the subring
{a, e, ef ) contains E, as above remarked. But, since ae = (ae)*> = a’e = 0, we have
a,e,efy = {ha + ke + jef | h, k,je Z,}, whence E = {0, ¢, ef, e + ef}, contrary
to ]E| > 4. Thus, every element of R is potent. Then, for every x € R, there exists
an integer m > 1 such that x = x™ = xx™ ! e E, since x"~! is idempotent. This
implies R = E, which contradicts the hypothesis.

Lemma 2.3. Let R be a non-trivial E,-ring. If ENZ # 0, the elements of ENZ
are all right identities (all left identities).

Proof. Let ee EXZ. Then, ex % xe for some x € R. If xe + exe, the subring Re
contains the distinct idempotents 0, e, e + xe — exe and the nilpotent xe — exe,
hence Re o E, and e is a right identity of E. If, on the contrary, xe = exe, we
obviously have ex # exe, and in the same way we may conclude that e is a left
identity of E. Since a right and a left identity may not co-exist, the statement is
proved.

Lemma 2.4. Let R be a non-trivial E,-ring. If E is not commutative, then E\ 0
is a left (right) zero semigroup.

Proof. If Zn E = 0, the statement easily follows from Lemma 2.3. Otherwise,
there exist u € ENZ and ve(E n Z)\0. Since the subring (u, v), which is com-
mutative, cannot contain E, it must be {u,v) < E. Thus 2u = 0, and we have
(u + 0)2 = u + v. Moreover, u + ve Z implies u € Z, in contradiction with the
hypothesis; so it must be u + v e ENZ. Hence, by Lemma 2.3, we have v =
= u(u + v) = vu + v = 2v, another contradiction.

Lemma 2.5. Let R be a ring with set of idempotents E. If EXO is a left (right)
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zero semigroup, and e,fe ENO, putting a = f — e, we have a?2=0, ea =0,
ae=a(a*=0,ae=0,ea = a).

The proof is immediate.

Lemma 2.6. Let R be a non-trivial E, — ring. If EXO is a left (right) zero semi-
group, there exist a prime p > 2, an element e E\O and an element a € R\ 0,
such that ENO = {e + ka|k =0,1,...,p — 1}.

Proof. Let e, f be two distinct element of EXO. Since (f —e)> =0+ f — e,
the subring <{e, f) contains E. Then, for every u € E\O there exist two positive
integers h, k such that u = he + kf, whence (h + k — 1) e = 0. Then we have
u=ce+(h—1)e+ kf =e + k(f — e), hence, putting f — e = a, we find u =
= e + ka. Moreover, making use of Lemma 2.5, we have (e + ja)*> = e + ja + 0
for every integer j; consequently EXO = {e + ka | ke Z}. Now, let us suppose
that na % 0 for every integer n. Then, the two idempotents e and e + 2a are distinct.
Moreover, 2a is not idempotent, since 2a # 0. Thus, {e, e + 2a) > E. Then,
a=f—ece e+ 2a) and there exist two integers o, f such that a = ae +
+ B(e + 2a). Since eae = 0, by Lemma 2.5, we easily obtain (2ﬁ - 1) a=0,
which contradicts the hypothesis. Therefore a has finite additive order r. If r is not
prime, suppose that p is a prime factor of r. Since pa € R\ E, the subring H =
= (e, e + pa) contains E, hence a € H. Then there exist two positive integers y, J
such that a = ye + (e + pa). In the same way as above, we find (6p — 1) a = 0,
hence it follows that 6p — 1 = 0 mod r, in contradiction to the fact that p divides r.
At this point we may conclude that EXO = {e + ka |k =0,1,...,p — 1}, and
|E| = p + 1 for some prime p. Since p = 2 implies |E| = 3, p must be odd. Thus
the statement is completely proved.

Proof of theorem 2.1. The “only if part” easily follows from the preceding
Lemmas, so it suffices to prove the “if part”. Suppose that R is a ring satisfying
condition i) of the statement. Then we have necessarily E = {0,1,¢,1 — e} and
every subring of R containing two distinct non zero idempotents contains the whole E;
so R is a non-trivial E,-ring. Now, suppose that R satisfies condition ii), and let A
be a subring of R containing two distinct non zero idempotents u, v. Then, we may
assume that u = e + ka, v = e + ja with k, j integers and 0 < k < j < p. Let us
show that a is an element of 4. In fact, we have: (j — k) a=v— uecA, where
(j — k, p) = 1. Consequently, there exist two integers A, such that 1 = ip +
+ u(j — k), hence a = Apa + u(j — k) a. Now, let us verify that pa = 0. Making
use of Lemma 2.5, we have (e + pa)2 =e + pa + 0, whence e + pa = e + ka
for some integer k with 0 < k < p. If k = 0, we obviously have pa = 0. If k + 0,
we have (p — k) a = 0, in contradiction to the fact that |[E| = p + 1. At this point,
a= u(j — k) ae A; moreover, e = u — ke A, hence E = A. Thus R is a non-trivial
E,-ring. '

Remark. From the proof of the “if part” of Theorem 2.1, we may easily derive
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the following proposition: A non idempotent ring R is a non-trivial E,-ring if
and only if every subring of R containing two distinct non zero idempotents
contains E.

Now, we shall consider the particular case of regular E,-rings, for which the fol-
lowing characterization holds.

Theorem 2.2. R is a non-trivial regular E,-ring if and only if it is the direct
sum of two division rings and |R| > 4.

Proof. If R is the direct sum of two division rings, it is immediate that R is regular.
Moreover, R has exactly four idempotents, which form a commutative semigroup
with identity. Thus, since |R| > 4, R turns out to be a non-trivial regular E,-ring,
by Theorem 2.1. .

Conversely, let R be a non-trivial regular E,-ring. If E is not commutative, by
Theorem 2.1, we may assume that E\O0 is a left zero semigroup. Let e, f be two
distinct non zero idempotents. Then we have e — f = (e — f) x(e — f) for some
xeR. But u = (e — f) x is idempotent, hence e — f = u(e —f)=ue—uf =0,
a contradiction. Therefore, by Theorem 2.1, E = {0, l,e,1 — e} is commutative,
hence E = Z. Then (R, ) is a union of four groups G, = 0, G, G,, G, _, (sce e.g.
Theorem IV.1.6 of [7]). On the other hand, 1 turns out to be the identity of the regular
ring R, so it is easily verifiable that R is the direct sum of the two ideals eR and
(1 — e)R. To complete the proof, it suffices to show that eR and (1 — e) R are
division rings. Let ex € eR\ 0. Then, if ex € G,, we have exy = 1 for some y € R.
If exe G,_,, we have exz = 1 — e for some z € R. In both cases we deduce the
contradiction 1 = e, so ex must lie in G,. Thus, there exists w € R such that e =
= exw = exew. This shows that eR and (1 — e¢)R (by a similar argument) are
division rings.

We wish to conclude this note by some information on periodic E,-rings. To this
end we state the following.

Lemma 2.7. Let R be a ring with set of nilpotents N. If N is an ideal of R, ¢ the
canonical homomorphism of R onto R/N, and T a t-archimedean subsemigroup
of R with idempotent e, then ¢(T) is a subgroup of R|N with identity N + e.

Proof. It is well-known that every homomorphical image of a t-archimedesan
semigroup with idempotent is itself f-archimedean with idempotent, so ¢(T} is
t-archimedean with the idempotent N + e. Now, it suffices to prove that N + e is
the identity of ¢(T). In fact, let N + a be an element of ¢(T). This means that
ae€T, and therefore ae = ea; hence there exists a positive integer h such that
d'e = a". Thus we have (ae — a)’ = d" — hd'e + ... + (=1 a" =

h
= {Z(—l)’(?)} a" = 0. Hence ae — aeN, and (N + a)(N + ¢) = N + a.
i=0
Now we are able to prove the following.

Theorem 2.3. Let R be a ring with set of idempotents N. R is a periodic non-
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trivial E,-ring with central idempotents if and only if the following conditions
are satisfied:

i) |R| > 4,

ii) (R, *) is a strongly reversible semigroup,

iii) N is an ideal of R,

iv) R|N is the direct sum of two periodic fields.

Proof. Let R be a periodic non-trivial E,-ring with central idempotents. Then,
by definition, |R| > 4. Moreover, for every a,x, y€R, there exists a positive
integer h such that (yxa)®, (ayx)", (ayxa)* are idempotents. Therefore we have

(xay)** = x(ayx)" ay = xa’y(xay)" ' xy,
(xay = xa(yxa)h y = xy(xay)"_l xazy s
(xa" 1 = xalaysal ay = xayz = weay,

\h+ 1
)

for some z, w € R. Thus, by the well-known result of Putcha [8], and the fact that
the idempotents are permutable, we may conclude that (R, ) is a semilattice of
t-archimedean semigroups. Then, (R, *) is strongly reversible, by [3, Proposizione 8].
In addition, since a power of each element of R lies in a group, N turns out to be an
ideal of R, by Theorem 8 of [9]. Now, it remains to prove that R/N is the direct
sum of two fields. In fact, since E = {0, 1,e,1 — e} by Theorem 2.1, (R, -) is
a semilattice of four t-archimedean semigroups T, = N, T, T,, T, -, with idem-
potent; then, making use of Lemma 2.7, we may easily see that (R/N, +) is a semi-
lattice of four groups G, = 0, G4, G, G, _.. At this point, partially repeating the
proof of Theorem 2.2, we find that R/N is the direct sum of two division rings,
which turn out to be fields by periodicity.

Conversely, suppose that R satisfies conditions 1), ii), iii) and iv) of the statement.
First, R is periodic: in fact, for every x € R there exist some positive integers h, r
such that (N + x)" = (N + x)"*", whence x* — x"*"eN. Thus the periodicity
of R follows from Proposition 2 of [2]. Moreover, since (R, *) is strongly reversible,
the idempotents of R commute, which implies E = Z. To complete the proof it will
suffice to prove that R has four idempotents, one of which is the identity of E
(Theorem 2.1). To this end, we observe that (R, +), being strongly reversible, is
a semilattice of t-archimedean semigroupé with idempotent, by [3, Proposizione 8];
consequently, (R/N, *) is a semilattice of four groups, by Lemma 2.7 and the fact
that a direct sum of two fields has exactly four idempotents. At this point, it is
obvious that |E| 2 4. On the other hand, if e€ E, N + e turns out to be an idem-
potent of R/N. Let e, f be two distinct idempotents of R, and suppose N + e =
=N + f. Then e — fe N, whence e — efe N and ef — fe N. But (e — ef)2 =
=e — ef, (ef — f)* = ef — f, consequently e = ef = f, a contradiction. Thus it
must be |E| < 4, and therefore |E| = 4. Finally, let u be the idempotent of R such
that N 4+ u is the identity of R/N. Then, for every e e E, we have N + ye =
= (N + u)(N + e) = N + ue. Since ue € E, we may conclude as above that ue = e,
so e is the identity of E.

- 462



Example 1. Let R be the ring of integers modulo p*q” (where p, g are distinct
primes and «, f positive integers. R has exactly four idempotents 0, 1,e,1 — e
(see e.g. [10], Theorem 2.1), so it is a non-trivial E,-ring satisfying condition i)
of Theorem 2.1. Moreover, if « + # > 2, R contains some nilpotent, so it provides
an example of non regular E,-ring.

Example 2. Let p an odd prime. The ring R of all matrices of order two over
the field Z,, of the form
x 01,
>

has exactly p + 1 idempotents, namely

00] and [1 0

00 y 0
with y = 0,1, ..., p — 1. It is immediately verified that the non zero idempotents
of R form a left zero semigroup. Moreover, every non zero idempotent may be written

in the form
10}j={101+y]00},
y 0 00 10

so R is an example of non-trivial E,-ring satisfying condition ii) of Theorem 2.1.
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