Czechoslovak Mathematical Journal

Pavel Tomasta; EliSka Tomova
On H-closed graphs

Czechoslovak Mathematical Journal, Vol. 38 (1988), No. 3, 404-419

Persistent URL: http://dml.cz/dmlcz/102236

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102236
http://dml.cz

Czechoslovak Mathematical Journal, 38 (113) 1988, Praha

ON H-CLOSED GRAPHS

PAveL TomasTA, ELISKA ToMmovA, Bratislava

(Received January 23, 1986)

0. INTRODUCTION

We start with four questions. All these questions are in a special way similar. It is
this similarity which is of interest.

a) For which Hamiltonian graphs G, each subgraph of G, isomorphic to a connected
subgraph of a Hamiltonian cycle of G, can be extended to a Hamiltonian cycle
of G?

The answer was given by Chartrand and Kronk [1] in 1968. Namely, G is iso-
isomorphic to one of K, C, and K, ,/>-

b) For which Eulerin graphs G, each trail of G can be extended to an Eulerian
circuit of G?

The answer was given by Ore [8] in 1951.

¢) For which perfect matchable graphs G, each subgraph of G, isomorphic to a sub-
graph of a perfect matching of G without isolated vertices, can be extended to

a perfect matching of G?

The answer was given by Sumner [12] in 1979. G is isomorphic to one of K,,

or K, ,.

d) For which graphs G containing a path of length n — 1, each such path can be

extended to an n-cycle in G?

The answer was given by Dirac and Thomassen [5] in 1973. G is isomorphic
toK,, pzn,C,if nisodd and K,, p=2n,C, and K, ¥ + s =p;r,s = in
if n is even.

One could continue asking and answering analogous questions. See, for example,
[2]. [3]. [6]. [7]. [9]- However, for our purposes this sample of questions is quite
sufficient.

Now we are coming to the crucial point. Let us generalize these questions in a natu-
ral manner. First we make the following important agreement:

From now on, all graphs considered will be tacitly assumed to be without isolated
vertices.

Question. For which graphs G, each subgraph of G, isomorphic to a subgraph
of H, can be extended to H in G?
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This question was for the first time proposed by Chartrand, Oellermann and
Ruiz [4].

Definition. A non-empty graph G is said to be H-closed if and only if

F is a subgraph of G that is isomorphic to a subgraph of H implies F can be

extended to a subgraph of G which is isomorphic to H.

Obviously, every graph G is K ,-closed and also every graph G is G-closed. Further,
K, is H-closed for every H = K,. A little bit less elementary results concerning
a characterization of H-closed graphs for certain H of small size as well as when H
is a star, can be found in [4] (“randomly H”’ isused there instead of the term H-closed).
There is also a characterization of C,-closed graphs. The authors essentially used the
following result of Dirac and Thomassen [5].

C,-closed graphs for p =25 are K, and C, if p isodd and K,, C,and K ;> ;> if p
is even.

In the study of H-closed graphs rather surprising facts occur. For example,
intuitively it seems true that if the only H-closed graphs are complete graphs then
the only F-closed graphs, for H < F, are complete graphs as well. However, this
intuitive feeling does not work. The only Cs-closed graph on five vertices different
from Cs is Ks. However, for G equal to Cs with one chord, 5-vertex G-closed graphs
may be essentially different from K, see Fig. 1.

7
5 2 5 2
H1 ) E ’
4 3 4 3

Fig. 1. 5-vertex G-closed graphs.

For six vertices, the G-closed and Cs-closed graphs are also essentially different.
For the G-closed graphs on 6 vertices see Fig. 2.

5 2

G, 7
6

Fig. 2. 6-vertex G-closed graphs.
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On the other hand, there is a single Cs-closed graph on six vertices, namely K.
However, up from 7 vertices the only G-closed graph and Cs-closed graph is the
complete graph.

Up to now, as far as we know, there is no satisfactory theory of H-closed graphs,
although the present state calls for it. We try to establish modest beginnings of such
a theory. Then we apply this theory to obtain several results concerning the charac-
terization of H-closed graphs for certain infinite families of H’s. At the end we in-
dicate some open problems and further possible development of the theory.

1. MAIN RESULTS

As we remarked above, this article revolves primarily around the theory of
H-closed graphs. As a consequence we characterize H-closed graphs for H regular
of degree r = 2. Another infinite class of graphs for which we obtain the characteri-
zation results is a family of cycles with one special chord, the so called triangle chord,
as well as a family of cycles with two special triangle chords. We also find a large
family of connected free graphs, all with degrees at least two, for which there exist
closed graphs different from the complete graphs K, for every sufficiently large
natural n.

Before we state the results let us fix the notation used throughout the paper.

The family of all H-closed graphs will be denoted by G(H) and the family of all
n-vertex H-closed graphs by S,(H). The H-cloure ,(H, G) of an n-vertex graph G
will be the set of all minimal graphs from &,(H) containing G.

1.1. Closedness Criterion. Lemma 1. If G € G(H) then &(G) = S(H).

Proof. Let M e &(G). We shall prove M e S(H). That is, we have to show:
if Fis a subgraph of M that is isomorphic to a subgraph of H, then F can be exten-
ded to a subgraph of M which is isomorphic to H.

Given a subgraph F of M that is isomorphic to a subgraph of H, then F is a sub-
graph of M that is isomorphic to a subgraph of G, since G € &(H). Thus M € S(G)
implies that F can be extended to a subgraph G’ of M which is isomorphic to G
Since F = G', from G € ©(H) we have that F can be extended to a subgraph H' of G’
which is isomorphic to H and this completes the proof.

Corollary. If G € ,(H) then S,(G) = S,(H).

The proof is evident and is left to the reader.

The main problem in the theory of H-closed graphs is the following:

We are given two graphs G and H. How to find out whether the graph G is
H-closed?

One can proceed by definition. However, in most cases this procedure requires
a great amount of time and is horrible even for small graphs. This can be demon-
strated for example if one tries to prove the graph G in Fig. 3 to be H-closed.
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We will now direct our effort to developing some useful criterion for H-closedness.
Let G and H be given graphs. The notation H < G will be an abbreviation for the
correct but needlessly pedantic formulation: there exists a subgraph H' of G that is

u
T
i

@

Fig. 3

isomorphic to H. Assign to every edge (ab) € G a boolean variable x,, and construct
the following boolean expression V:
V=1] >oox,.
HcG ecE(G)—E(H)
Let S = {x,,, Xeyr o ns xek} be a family of variables for which the expression V is
true. Denote by Fg the graph consisting of the edges {e,, e, ..., ¢} which correspond
to the variables in S.

Now we can state
Preposition 1. Let G and H be graphs, H < G. If Fg & H holds for every family
S = {x,,, x Xt of boolean variables for which the boolean expression

V=1] Yox,
HEG ceE(G) - E(H)

€20 s

is true, then G is H-closed.

Proof. Assume G is not H-closed. By definition there exists F ¢ H = G such
that F is not extendible to H in G. Let us interpret the boolean variables x, as follows:
set

x,=1 if eeF
x, = 0 otherwise .

If we take some H = G, the graph F must contain at least one edge from E(G) -
- E(H), since F is not extendible to any H in G. Thus the expression
Vg = X,
ecE(G) - E(H)
is true. This conclusion is true for any subgraph H of G and we conclude that the
boolean expression

HcG
is true.
Since F is not extendible to H in G and V is true, there exists a system S =
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= {X¢,» X+ -+ X} Such that Fg = F and V'is true for S. However, Fs = H, since
F < H and we have a contradiction with the assumption. The proof is complete.

Let G be an H-closed graph. Assume that V is true for S = {xel, Xogs ++vs Xep}
and Fg < H for some H in G. But then the boolean expression Vcontains an expres-

sion Y x, which has no member from S. Thus Vis not true, a contradiction.
ecE(G)—E(H)

This proves the converse implication in Proposition 1 and we have the desired
criterion:

Closedness Criterion: G is H-closed if and only if Fg & H holds for every
(minimal) system S = {x,,, X,,, ..., X} for which the boolean expression
V=11 Y oox,
H<G ecE(G)—E(H)

is true.

Now we illustrate the usefulness of Closedness Criterion on some examples.

Later, in Section 1.3, we use this criterion to demonstrate the H-closedness for an
infinite class of graphs.

Example 1. Let G and H be the two graphs in Fig. 4.
1

Fig. 4

We prove that G is H-closed. Let us apply Closedness Criterion. The graph G
contains exactly four graphs H:

H, = {(12). (23). (34), (43). (56). (16), (26)} ,
H, = {(12), (26), (56), (45), (34), (13), (16)} ,
Hy = {(12), (26), (56), (45), (34), (13), (23)} ,
Hy = {(13), (16), (56), (45), (34), (23), (12); .

Thus the boolean expression V has the form
V=12X13 AN X33 A X156 N X3¢ . :
There exists only one minimal system S for which V is true namely S = {(13), (23),
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(16), (26)}. The resulting graph Fg is the cycle C4 on four vertices. Since C4 ¢ H,
we obtain by Closedness Criterion that the graph G is H-closed.

Example 2. Let G and H be graphs in Fig. 3. We prove G is H-closed. The
graph G contains exactly twelve graphs H. The corresponding sets E(G) — E(H)
are the following:

{(13), 25)}, {(25), (35)}, {(35), (43)}, {(43), (15)} .
{(12), (33)}, {(12), (43)}, {(23), (45)}, {(23). (15)} .
{(34). (15)}, {(34). (25)}, {(14), (33)}, {(14). (25)} -

4, 1 4 1
X :

3 2 3° 2
{(15),(35), (25],(45)} {(15)(25),(45)(12),(14)}
4 1 4o 1
3 2 3 2
{(15),(35),(34), (14)(45)} {(15)(35)(12), (23)(25)}
4 1 ‘ of
3 2 3 2
{(15)(35)(34), (14),(12),(23)} {(25),(23), (34)(45)(35)}

{(25)(23),(34):(45), (12, (14} Fig. 5
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The boolean expression V has the form

V= (x15 V X25) A (X25 V X35) A (X35 v Xas) A (Xa5 V X45) A
A (%12 V X35) A (X512 V Xa5) A (X253 V X45) A (Xa3 V Xp5) A
A (x34 V Xg5) A (x34 V Xp5) A (x14 v xas) A (x14 v xzs) =
= [xys v (x25 A X253 A X34 A Xas)] A [X35 V (X25 A Xas A Xp2 A x18)] A
A [x2s v (X34 A x10)] A [xas v (355 A x23)] -
If S; = S, then Fg, ¢ H implies F5, ¢ H. Consequently, it is sufficient to investigate
only minimal S for which Vis true. There are exactly seven such S. The corresponding
Fg are shown in Fig. 5.
None of these Fg are contained in H. Thus, by Closedness Criterion, G is H-closed.

1.2. Regular graphs. Lemma 2. Let H be a connected graph on at least four vertices
which is different from a star. Then every H-closed graph is connected.

Proof. Let G be an H-closed graph which has at least two components. Take two
edges from different components of G. These two edges form the graph F = K, U K,
which is a subgraph of H. Since G is H-closed, F must be extendible to H in G.
But H is connected and we have a contradiction. This completes the proof.

Assume we are given a connected n-vertex regular graph H, of degree r = 2.
Let G, be an Hj-closed graph on p vertices, p > n. Since Kj;-closed graphs and
C,-closed graphs are characterized in [4], from now on we will suppose H; +
# K, C,. Denote by I'(a) the neighbourhood of a vertex a.

Lemma 3. Let v, x and w be three vertices of G, with the following properties:
(i) we G, — Hj,
(ii) v, x € Hy,
(iii) the edges (wv), (vx) are in G,.
Then I'(v) = I'(w).

Proof. Form a graph F as follows: from Hj delete the vertex v and add the edge
(wx). Obviously, F is a subgraph of H; and thus it can be extended to Hj in G,.
However, the only possibility to extend F to H, is to add precisely those edges (wa)
for which the edge (va) was deleted from Hj,. This completes the proof.

Lemma 4. Let w be a vertex of G, which is joined to some vertex of H;, (w ¢ H).

Then
V(H;) c F(W) .

Proof. Put V; = {ve H,, (w)eG,}, V, = V(H;) — V,.

Let vy, v, € ¥; and (vyv,) € E(H;). If V, = 0 there is nothing to prove. Thus we
assume z € V,. Since H, is connected, we can suppose without loss of generality
that there exists an edge which joins z and v, or v,, say v,. However, the vertices w,
vy and v, fulfil the assumptions of Lemma 3. Thus I'(v,) = I'(w). This implics
(zw) e G,, which is a contradiction and the set V; is independent.
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Let vy, v, € V, and (v,0,) € E(H}). As above, we can assume that there exists an
edge which joins v, or v,, say v,, with a vertex z € V;. However, the vertices w, z and
v, fulfil the assumptions of Lemma 3. Thus I'(v,) < I'(w). This implies (v;w) € G,,
which is a contradiction and the set V, is also independent.

Since V; and V, are independent, the graph H}, is bipartite. However, the graph H,,
is regular, hence [V;| = |V,|. But in this case the well known K&nig’s theorem implies
the existence of an 1-factor of Hj. Denote it by F. Let (vu;) be edges of F, v;e V,
and u; € V,. Since Hj, + K5, C, we can suppose without loss of generality that the
edge (vu3) € Hy, exists. Form a graph F’ as follows (see Fig. 6): add to F the edges
(wvy) and (v,u;) and delete the vertex v, from F.

Obviously, F’ is a subgraph of Hj. Thus, F' can be extended to Hy in G,. The
vertices v; and w must belong to different parts of Hj,. The same is true for the vertices
v, and w. Thus v, and v, are contained in the same part of Hj. Hence the parts
of H; have different cardinality, which is a contradiction. Hence the proof is

complete.
w
v, (N v, Vi
u, u, u, u, u,

Fig. 6

Let two graphs G and H be given, H < G. The graph G will be called the roof
with respect to H if for H = G,

ve(V(G) — V(H)) A T'(v)n V(H) 0 implies V(H) = I'(v).

Lemma 5. Let H, be a given n-vertex graph and let G be H,-closed and the roof
with respect to H,. Moreover, let G contain a complete n-vertex graph K,. Then G
is a complete graph.

Proof. Let K be a maximal complete subgraph of G. Suppose K = G. Then there
exists ve G — K and x, y € K such that (vx) ¢ G and (vy) € G. The inclusion K, = G
implies that there exists H, < K containing x and y. Since G is the roof with respect
to H,, V(H,) = I'(v). Thus (vx) e G, a contradiction. This completes the proof.

Theorem 1. Let H] be a connected n-vertex regular graph of degree r = 2,
different from K3 and C4. Then

S,(H;) = {K,} forevery p>n.

Proof. Let GPESP(H;). By Lemma 2, G, is connected. Take any H, = G,
and any we G, — Hj, such that w is adjacent to H}. By Lemma 4, V(H}) < I'(w).
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This means G, is the roof with respect to H,. We shall prove that the graph H
induced on V(H}) U {w} is K, +,. Suppose this is not the case. Then there exist u, v
such that (uv) ¢ G,. Form a graph F as follows: delete the edges (vx) from Hj, and
add the edges (wx). Clearly, F is isomorphic to Hj,. The graph G, is H;-closed and v
is joined to F, hence Lemma 4 yields V(F) <= I'(v), which implies (vu) € G,, a con-
tradiction. Hence K,,,; = G,. By Lemma 5, G, is a complete graph. The proof of
Theorem 1 is complete.

Remark. Theorem 1 generalizes a previous result of Chartrand, Oellermann and
Ruiz. Their paper [4] contains a characterization of cycle-closed graphs.

1.3. Cycles with one or two triangle chords. We introduce a suitable notation which
will be used throughout this section. Denote by [ay, as, ..., a,] the cycle C, on n
vertices ay, a,, ..., a,, n = 3. The edges of C, are (a;a;,,) taken modulo n. Put
TC, = C, L (a,a,). The sequence

IIA

a;yy ... ay—qla,a,a,]as...a;-;, 32i<n,

denotes the graph TC, — (a,-,a;), and the sequence

a;[a,a5as ...a,_]
denotes the graph TC, — (aya,).
Before investigating TC,-closed graphs for general n, we deal with the cases TC,
and TC; separately.

Lemma 6. G,(TC,) = {K, — ¢,K,} for n = 4.

Proof. For n = 4 the statement of Lemma 6 is trivial. Take n = 5. Let M e
€ &4(TC,). Then M contains one of the two graphs
i) G, = [1234] U {(24), (15)} © {5},
ii) G, = [1234] U {(24), (25)} v {5}
since by Lemma 2, M is connected.
(i) Let G, = M. Then 5[124] = M. Thus (25)e M or (45)e M, say (25)e M.
Then 3[215] = M and we have
(35)e M or (13)e M.
(i1) Put (35) € M. Then [1534] = M implies
(13)e M or (45)e M.
(i11) Put (45)e M. Then M 2 K5 — e G5(TC,).
(i12) Put (13)e M. Then also M <= K5 — e e S5(TC,).
(i2) Put (13)e M. Then 5[134] = M implies
(45)e M or (35)e M.
In both cases M = K5 — e e S5(TC,).
(ii) Let G, = M. Then 5[241]. Thus (15) e M or (45) € M.
(iil) Let (15)e M. Then G, = M. As in the case (i) this implies M 2 K5 — e.
(ii2) Let (45)e M. The graph {(12), (23),(25)} is a subgraph of TC,. Thus
it can be extended to TC, in M.
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Hence
(13)eM or (15\eM or (35)eM.

In all these cases there exists G; = M. Thus M < K5 — e by (i).

Conclusion: &5(TC,) = {Ks — e, Ks}.

Now take n 2 6. Let M e §(TC,), M + K, and let Q = M be the maximal
complete graph without one edge in M. If Q = M, there is nothing to prove. Thus,
assume Q + M. Since M is connected by Lemma 2, there exists a vertex v = Q
which is joined with a vertex of Q, say w. However, since Q is the maximal complete
graph without one edge in M, there is a vertex z € Q with (vz) ¢ M. Moreover, let
x,y€Q and (xy)¢ Q. Obviously, the vertices v, w, z, x, y are contained in a 5-
vertex subgraph G’ of M which is isomorphic to G; or G,. In both cases, as we have
seen above, G’ can be extended to K5 — e in M. Thus (vz) € M, a contradiction.
Consequently, we have Q = M and &,(TC,) = {K, — e, K,}. Hence, Lemma 6
is proved.

Proposition 2.

(i) ©5(TCs) = {H,, H,, H3}, see Fig. 1.

(ii) &4(TCs) = {Gy, G, Gs}, see Fig. 2.

(iii) S,(TCs) = {K,}, n = 7.

Proof. (i) Let M e &5(TCs, H, U (13)) be given. Since 4[5132] = M, we have
(41)e M or (42)e M. In both cases M contains H,. Thus M = H,, since H, is
TCs-closed, as we have proved in Example 2.

Suppose H, = TCs U {(13), (14)}. Let M € @4(TCs, H, U (24)). Since 5[412] 3 <
< M, we have (35)e M. Thus M = K5. Now let M € G5(TCs, H, U (24)). Since
1[524] 3 = M, we have (13) € M. From the above considerations we may conclude
M = K. The first part of Proposition 2 is proved.

(ii) Let M e @4(TCs, H, L {6} L (16)). Since 6[125]4 = M. we have (46) € M.
6[152] 3 = M implies (63) € M. Thus G; = M. We prove G, is TCs-closed. In fact,
G, — x = TC; for any vertex x € G;.

Let M e G4(TCs, G, U (13)). Since 2[136]4 = M, we have (24)e M. Since
6[342] 5 = M, we have (56) € M. For any xe M, M — x is equal to H,. Since H,
is TCs-closed by (i), H = G,.

Let M e G¢(TCs, H, U {6} U (26)). Since 6[2345] = M, we have (36)e M or
(56) e M.

I. Suppose (36) e M. 1[263] 4 implies (14) € M. Further, 62[154] = M implies
(46)e M or (56) e M.

(1) Put (46) € M. 63[215] = M implies (16) € M or (56) € M.

(1a) Let (16)e M. 5[162] 3 = M implies (53)e M. Thus G, = M. This implies
G, = M, since G, is TCs-closed. In fact, G, — x is TCs-closed for every
x € G, as follows from the case (i).

(1b) Let (56)e M. 1[564] 3 = M implies (13)e M. Thus G, = M. This implies
G, = M, since G, is TCs-closed, as we have seen before.
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(2) Put (56) e M. 1[256] 3 € M implies (13) € M. Further, 4[123] 6 = M implies
(46) € M. Thus G, = M and we have G, = M, since G, is TCs-closed.

II. Now suppose (56) € M. 4[562] 1 = M implies (14) € M. 1[562] 3 = M implies
(13)e M. 4[152]6 = M implies (46)e M and 3[125]6 = M implies (36)€ M.
Thus G, < M and we have G, = M, since G, is TCs-closed.

Let M e G4(TCs, TCs L {6} L (36)). 63[215] implies (56)e M or (16)e M. If
(56) € M we have

M e &4(TCs, H, L {6} U (56)) ,
and if (16) e M we have
M e S¢(TCs, TCs L {6} U (16)).

Thus we have M = G, or M = G,, as we have seen above.

Now, let M € S¢(TCs, G, U (24)), where G, is labeled as in Fig. 2. Since 6[254] 1 =
= M, we have (16) e M. Since 5[126] 3 = M, we have (35)e M. Thus M = K,.
Since M € G4(TCs) is connected by Lemma 2, we have completed the proof of the
second part of Proposition 2.

(iii) Consider G, from Fig. 2. Let M € &5(TCs, G, L {7} L (17)).
4[521]7 = M and 7[152] 3 = M imply (47)e M and (37)e M.
5[463]7 = M and 7[463]2 = M imply (57)e M and (27)e M.
6[152] 7 = M implies (67) e M. Thus the vertex 7 is adjacent to each vertex
of G,. Since M — x contains G, for each vertex x € M, we conclude that x
is adjacent to each vertex of G, for any x € G;. This implies M = K.

Consider G, from Fig. 2. Let M € &,(TCs, G, u {7} U (17)). Then 7[123] 4 = M,
7[132] 5 = M, 7[154] 3 = M, 7[145] 2 = M, 7[145] 6 = M imply {(72), (73), (74),
(75), (76)} = M.

Thus the vertex 7 is adjacent to each vertex of G,. Since M — x contains G, for
each vertex x e M we conclude that x is adjacent to each vertexof G, for any x € G,.
This implies M = K.

Let Ge G,(TCs), n = 7 and take any copy T = TCs in G. By Lemma 2, G is
connected. Thus there is a vertex v € G — T'that is joined to T'by an edge e. However,
we have G¢(TCs, Tu v U e) = Gy, G, or G5 by the case (ii). There are x; and e; such
that G, U x; U e; (i = 1, 2) are connected.

As we have seen above, &,(TCs, G, U x; U e;) = K;, i = 1,2. Thus G is the
roof with respect to TCs. From Lemma 5 we may conclude that G = K, and the
proof of Proposition 2 is complete.

Theorem 2. For every natural numbers n > p = 6 we have
S,(TC,) =K, .
Proof. (1) Let M e &,,((TC,, TC,u {p + 1} U (1 p + 1)).
(la) We prove (ip+1)eM, 1 <i < p.
Sincc p + 1[12p] p—1p —2...54 = M, we have (p + 1 4)e M.
Since p + 1[45...p — 1 p23] = M, we have (p + 13)e M or (p + 15)e M.
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Put (p + 15)e M. Since 3[21p] p — 1...65p + 1 = M, we have (p + 13) €

eM. |
Thus we may assume (p + 1 3)e M.

Suppose (p + 1i)e M for some 3 <i < p — 3. Then p+111—1
B[2lplp—1p—2...i +2 < M implies (p + 1i + 2)e M.

Thus we have proved (p + li)e M forany 3 <i < p — 1.

12[3p + 14]56...p — 1 = M implies (p — 1 1) e M.

2[lpp—1]p—2...54p + 1 = M implies (p + 12)e M.

1[p + 156] 78 ... p23 = M implies (13) e M.

p[123]45...p —2p+ 1 = M implies (pp + 1) e M.

We conclude (i p + 1)e M forany 1 < i < p.

(1b) The graph {[2p + 13]45...pu(2p)u {1} U (1 p + 1)} = M is isomorphic
to TC,u {p + 1} u {1 p + 1}. Since the roles of the vertices p + 1 and 1
are interchanged, by the case (la) we can conclude (1i)e M for any 2 <
<is<p+ 1

(lc) The graph {[pp+12]34...i—11i+1..p—1uU(p—1p)u{i}u
v(p+1)}cM 3<i<p-1, is isomorphic to TC,u {p + 1} u
U (1 p + 1). The roles of p + 1 and i are interchanged. Thus by the case (1a)
we can conclude (ij)e M forany 1 £ j < p + 1,i % j.

(1d) The graph [3p + 14]56...plu(13)U{2}U(2p + 1) and the graph
Bp+14]56...p —1120(23) U {p} U(pp + 1) are isomorphic to TC, U
u{p+ 1} U (1 p + 1). As above, we conclude(2i)e M forany 1 < i < p + 1,
i*2 (pi)eMforany 1l £i<p+1,i%p.

Thus we have proved M = K, ;.

(2) Let MeG,,(TC,, TC,u{p + 1} U (2p + 1)). Since p + I[21p]p — 1 ...
..4c M, we have (4p + 1)eM. 34p + 1[21p]p—1...5 = M implies
(35)e M.

From p + 1[345]6...p1 = M we have (1 p + 1) M. Thus by the case (1) we
can conclude M = K, ,.

(3) Let MeG, (TC,, TC,u{p+1}u(@Bp+1). p+1[345...p2] = M
implies (2p + 1)eM or (4p + 1)e M. If (2p + 1)e M, then by the case
(2), M =K, . Suppose (4 p + 1)e M. Since [3p + 14]56... pl = M, we
have (I p + 1)e M or (13)e M.

If (1 p + 1) e M, then by the case (1), M = K,
If (13) € M, then by the case (2), M = K.

(4) Let Meg,,(TC,, TC,u {p + 1}uU(ip + 1)) imply M =K,,, for any
i 2 3 smaller than j < [4p]. We prove that the same is true for j. Assume
Me€, (TC, TC,u{p+ 1)u(jp+1)). Since p+ I[jj+1...p23...
j—1]eM, wehave (j — 1 p+1)eMor (j+1p+1)eM. If(j -1
p + 1) € M, the proof is complete. Suppose (j + 1 p + 1)e M. Since p + 1
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j+1l1j+2...p—1[p12]34...j —1eM, we have (j — 1 p + 1)e M and
again the proof is complete.

Now take M e S, 1(TC,,). By Lemma 2, M must be connected. However, from
(1), (2), (3) and (4) we can conclude M = K, ;.

Suppose we are given a TC, in some M € &,(TC,). By Lemma 2, M is connected.
Thus, take any vertex v ¢ TC, which is joined with TC, by an edge e. From the above
we have that the TC,-closure of TC, U v U e is K, .. The preceding considerations
also imply (vi) € M for any ie TC,. Thus M is the roof with respect to TC,. By
Lemma 5, M = K, and the proof of Theorem 2 is complete.

Denote by T,C, the graph TC, U (a;as). We will characterize T,C,-closed graphs
with more vertices than p.

Theorem 3. For every natural numbers n > p = 6 we have

S,(T,C,) = K, .
First we prove

Proposition 3. T,C, is TC,-closed for p = 6.
Proof. We apply Closedness Criterion. Consider T,C, as in Fig. 7.

Fig. 7. T,C, is TC,closed graph.

There are exactly four TC,’s in T,C,. Namely,
[12...p]u(p2), [134... p2] v (23),
[12...pJu(13), [134...p2]u(1p).
The boolean expression V has the form
V=X, A X153 A Xa3 A X,,.

Thus the unique minimal Fg is C,. Since Cs4 ¢ TC,, we conclude by Closedness
Criterion that T,C, is TC -closed.
Proposition 3 is proved.
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Proof of Theorem 3. From Proposition 3 we have
T,C, e G(TCP) .

By Corollary of Lemma 1, &,(T;C,) € &,(TC,). However, from Theorem 2 we have
&,(TC,) = K,. Thus &,(T,C,) = K,. Theorem 3 is proved.

1.4. K, — e and free graphs. A graph H is said to be free if for any edge e e H
there exists an edge f ¢ H such that

H—-e+fxH.

The first who had introduced the notion of free graphs was Sheehan [10], [11].
However, his motivation had been quite different from ours. He had investigated
“fixing subgraphs” of a given graph. The graphs which contain exactly one fixing
subgraph are just the free graphs [11].

The class of free graphs is sufficiently abundant. For example, the following
proposition is true:

Proposition 4. Let H be an edge-transitive graph. Then H — e is free for any
edge ec H.
Proof. The proof is evident and is left to the reader.

Theorem 4. Let H, be a given p-vertex free graph. Then
{K,—e¢,K,} «S(H,), n=p.

Proof. Evidently, K, is H,-closed. We prove K, — e is H,-closed. Let F with
F c H,and F c K, — e be given. If F does not contain the end vertex of e, then
evidently F can be extended to H, in K, — e. Assume that F contains both end
vertices of e. F can be extended to some H,, say H,, in K,,. I e ¢ H, then the proof
is complete.

Let ec H,. Since H, is free, there exists f such that H, — e + f = H,. But
F < H, — e + f. Hence the proof follows.

The following theorem gives a characterization of (K, — e)-closed graphs.

Theorem 5. Let n = p = 4 be given natural numbers. Then
G(K,—e) ={K,—eK,}.
Proof. Since K, — e is free, Theorem 4 yields
{K, - &K} = G(K, —e).

Let MeG,(K, — e) be given. Since M is (K, — e)-closed, each induced graph
of M on p vertices is K, — e or K. The only such graphs are K, — e and K,,. Thus
the proof is complete.
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2. CONCLUDING REMARKS AND OPEN PROBLEMS

Let G, be a p-vertex graph with at least one end vertex. Then S,(G,) + {K,}
for every n = p. For example, K, _; with one “hanging” edge is G,-closed. On the
other hand, let F be a graph with no end vertex which is not free. We have not
succeeded in looking for F for which &,(F) = {K,} for sufficiently large n.

One can obtain similar results as in Proposition 2 and Theorem 2 for cycles with
one chord of length greater than two. Even if the number of chords is much smal-
ler then the length of the cycle, it is not difficult to find out that for sufficiently large
n the only graph closed under such graph is the complete graph.

Problem 1. Let F be a graph with no end vertex which is not free. Is it true that
there exists ny such that

Gu(F) = K, forevery n zny?
If the answer is no, the following problem would be of interest.

Problem 2. Is there an algorithm which decides whether or not for a given graph G

there exists ny such that
S.G) =K,, for n=ny?

Sections 1.2 and 1.3 contain characterizations of H-closed graphs with more
vertices than ’H | for H regular. However, there are no results about H-closed graphs
on ]H l vertices. This task seems to be more difficult, although some partial results
can be obtained.

Problem 3. Characterize H)-closed graphs on p vertices.

Closedness Criterion works very well if G has not much more edges than H.
This calls for further development of the theory of H-closed graphs in order to obtain
a more suitable criterion in the general case.
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