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1. Introduction. Pseudocompactness is a purely topological property. Being
considered in the class of topological groups, it acquires specific features that are
of the most interest for an investigation. It is known that the product of two pseudo-
compact (even countably compact) spaces need not be pseudocompact [19]. However
the product of an arbitrary many pseudocompact topological groups is pseudo-
compact, too [7, Theorem 1.4]. This Comfort and Ross’s theorem is a base point
of our research.

1.1. The notion of pseudocompactness admits the following generalization.
A subset X of a space Y is said to be bounded in Y if any continuous real-valued
function defined on Y is bounded on X [4, 5]. In Section 2 we spread the Comfort
and Ross’s theorem on bounded subsets of topological groups: if a set X, is bounded
in a topological group G,, o€ A, then II{X,:a€ A} is a bounded subset of
I{G,: o € A} (Theorem 2.2). Some applications of this result to (iree) topological
groups are given here. ,

Let f be any continuous real-valued function on a pseudocompact group G.
Then f is extendable to a continuous function f on the completion G of G, hence f
is uniformly continuous [ 7, Theorems 1.2 and 1.5]. If, however, a topological group G
is not pseudocompact, there may exist continuous functions which do not admit
to a continuous extension to G. Nevertheless, a ““bounded” analogy of the uniform
continuity theorem holds (see Theorem 2.27 and Corollary 2.29).

In Section 3 we consider the inverse spectra consisting of pseudocompact groups
and open homomorphisms. Recently W. W. Comfort and L. C. Robertson [10]
(and the author independently) proved that if the groups G/N and N are pseudo-
compact then G has the same property. A generalization of the above result is given
in Section 2 (Theorem 2.18). It is shown also that the natural quotient map p: G —
— G|N is z-closed in this case (Lemma 3.1.) With the help of these facts we prove
that the limit group of a countable spectrum & = {G,, Pu.m}manen 1S Pseudocompact
if the groups G, are pseudocompact and p, 4, are open epimorphisms with pseudo-
compact kernels (Theorem 3.4). The conditions of this theorem are essential, that
follows from Examples 4.2 and 4.3. It is necessary to mention that a closed subgroup K
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of a pseudocompact group G does not need even to be locally pseudocompact and
moreover, any totally bounded group is embeddable to some pseudocompact group
as a closed subgroup. This fact is an easy generalization of [8, Th. 2.4].

The case of the uncountable well-ordered inverse spectrum with pseudocompact
groups is much more simple (see Theorem 3.6).

It is known [20] that for each continuous real-valued function f on a compact
(or even pseudocompact [7]) group G there exist a continuous homomorphism 7
of G onto a separable metrizable group H and a continuous function h on H such
that f = hom. It seems to be surprising that this assertion holds for any totally
bounded group G (Theorem 3.8). The equivalent formulation of Theorem 3.8 is the
following: Any continuous real-valued function defined on a subgroup of a product
of compact groups, depends on countably many coordinates (Assertion 3.7).

Recently M. V. Matveev [16] and E. Reznichenko have shown that there exists
a Tychonoff pseudocompact space X such that every countable subset of X is closed
and C*-embedded in X. We claim in Example 4.5 that there exists a pseudocompact
group G with w(G) = [G[ = 2% such that every countable subgroup of G is closed
and h-embedded in G (see Definition 4.4). Besides the group G is zerodimensional
and contains no non-trivial convergent sequences. It is interesting to note that every
infinite pseudocompact group has a countable non-closed subset (Remark 4.8).

1.2. Our terminology and notations are standard. The set of all positive integers
" (with zero) denoted by N, N* = N\ {0}.
The symbol ¢ stands for the power of continuum, ¢ = 2%, All spaces under con-
sideration are assumed to be Tychonoff and topological groups are Hausdorff.

2. Bounded subsets in topological groups.

2.1. Definition. A subset X of a space Y is said to be bounded in Y provided that
any continuous real-valued function defined on Yis bounded on X.

The main result of this section is the following theorem.

2.2. Theorem. Let X, be a bounded subset of a topological group G,, where
a€ A. Then II{X,: o€ A} is bounded in I1{G,: o € A}.

Comfort and Ross’s theorem on a product of pseudocompact groups follows
easily from Theorem 2.2 (put X, = G, for each o € A). Here we shall prove a more
general result, Theorem 2.11 (note that Lemma 2.10 answers partially the question:
what properties of topological groups are responsible for the bounded subsets product
theorem). Some definitions and preliminary results are necessary.

2.3. Definition. A subset B of a space X is strongly bounded in X if each infinite
family of open subsets of X meeting B, contains an infinite subfamily {U,: n e N}
which satisfies (*), where
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(*) For each filter @ consisting of infinite subsets of N,
Nelx(UU,) £ 0.

Ped neP
Obviously, each strongly bounded subset of X is bounded in X, for any locally
finite family of open sets in X has at most finitely many members which intersect
a bounded subset B of X. The following result is quite analogous to the Lemma
of [17].

2.4. Lemma. Let & be a filter on N, U,n By, + 0, xe X, 2 B, and U, open
in X, for each n € N, where x € Clxﬂ( U U,) for each P € &. If B, is strongly bounded

neP

in a space X,, V, is open in X, and V, " By % 0 for each n e N then there exists
a point y € X, such that (x, y)ecly xx,( N U, x V,) for each Qe ®. m
neQ

Lemma 2.4 implies easily the following corollary.

2.5. Corolary. If B, is bounded in X, and B, is strongly bounded in X, then
By, x Bj is bounded in X, x X,;. W

The following theorem can be proved in the same manner as Theorem 3.1 [17],
therefore we omit its proof.

2.6. Theorem. Let B, be a strongly bounded subset of a space X,, for each a € A.
Then II{B,: a € A} is strongly bounded in II{X,: e A}. ®

Now let f: X — Y and g: X — Z be continuous mappings. The inequality f < g
means that there exists a continuous mapping h: Y — Z such that g = ho f.

2.7. Definition. Let 2" be a family of continuous mappings of X to some spaces.
We shall say that & is ¥,-directed lattice for X provided that & generates the original
topology of X and each countable subfamily of & has an lower bound in Z.

Due to the Definition 4 from [22], a continuous mapping f: X — Y is said to be
d-open if for open set O of X there exists an open set V of X such that f(0)is a
dense subset of V. The crucial step toward Theorem 2.11 is the following lemma.

2.8. Lemma. Let & be an N -directed lattice for X consisting of d-open mappings
onto Dieudonné-complete spaces. Then each bounded subset of X is strongly
bounded in X.

Proof. Let B be a bounded subset of X and {U,,: ne N} a family of open subsets
of X each of which meets B. Pick a point x,e Bn U,, ne N. As & generates the
original topology of X, for each n e NV there exist a mapping ¢, €%, ¢,: X —» X,
and an open subset ¥, < X, such that x, € ¢, '(¥,) < U,. We choose ¢ € Z with
¢ £ ¢, for every ne N. '

There exist open subsets W, of the space Y = ¢(X) such that x,e ¢~ '(W,) = U,
for each n e N. The set ¢(B) is bounded in the Dieudonné-complete space Y, hence
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K = cly ¢(B) is compact. Consequently for each filter & on N the set ) cly( U W,)

Ped neP
is not empty. The mapping ¢ is d-open, therefore one can apply Lemma 5 of [22]

to conclude that ¢ ~!(cly W) = cly ¢~ *(W) for each open subset W < Y. In particular,
Ne(UU,)2Nc(Ue (W) = (NC(UW,) +0. =
Ped neP Ped neP Ped neP

2.9. Definition. A subset Y of a space X is said to be a dop-subset of X (Dense
in OPen) provided that there exists an open set ¥ < X with Y € V< cly Y.

2.10. Lemma. Each dop-subset of a topological group G has an N,-directed
lattice consisting of d-open mappings onto Dieudonné-complete spaces.

Proof. Here we use Definition 2.19 of an admissible subgroup. Let X be a dop-
subset of G, 9 a family of all admissible subgroups of G and ny a quotient mappings
of G onto a coset space G[N, for each N € 2. Now we define Z* = {ny: N € 2} and
Z = {nN[ x: N e 9}. The family Z* is ¥,-directed and consists of open mappings.
Moreover, for each N € @ there exists a continuous one-to-one mapping of a coset
space G/N onto a metrizable space (see [1], or our Lemma 2.21), hence G/N is
a Dieudonné-complete space [12, Exercise 8.5.13 (g)] and any subspace of G/N has
the same property. It remains to note that a restriction of an open mapping to a dop-
subset is d-open [22; Lemma 7], hence & is an N,-directed lattice consisting of
d-open mappings onto Dieudonné-complete spaces. MW

Theorem 2.6 and Lemma 2.8, 2.10 imply together:

2.11. Theorem. Let X, be a dop-subset of some topological group and B, bounded
in X,, where a. € A. Then TI{B,: « € A} is bounded in TI{X,: v € A}. ®

Lemma 8 from [25] implies that a dense (dop-) subset of any x-metrizable*)
compact space has an N,-directed lattice consisting of d-open mappings onto sepa-
rable metrizable spaces. Thus one can apply Theorem 2.6 and Lemma 2.8 to prove
the following.

2.12. Theorem. Let X, be a dense (dop-) subset of some x-metrizable compact
space and B, bounded in X,, « € A. Then II{B,: a € A} is bounded in TI{X,:xc A}. B

2.13. Theorem. Let X be a pseudocompact x-metrizable space. Then X x Y
is pseudocompact for each pseudocompact space Y.

Proof. Theorem 2 of [6] implies that the Cech-Stone compactification X of X
is x-metrizable, hence the space X has an N,-directed lattice consisting of d-open
mappings onto separable metrizable spaces [25, Lemma 8]. It remains to apply
Lemma 2.8 and Lemma 2.4 (with X; = B, = Yand X, = B, = X). &

If G is a pseudocompact group, then the completion G of G is a compact group
and G is »-metrizable [25, p. 201]. Thus G is x-metrizable as a dense subspace of G.
With the help of Theorem 2.13 we have proved the following.

*) The notion of x-metrizable space is defined in [25], [27].
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2.14. Corollary. If G is a pseudocompact topological group then G x Y is pseudo-
compact for each pseudocompact space Y. ®

Theorem 2.2 has a few corollaries.

2.15. Corollary. For any bounded subsets X, Y of a topological group G the group
product X . Yis bounded in G.

Proof. Consider the bounded subset X x Y of G X G and the continuous map-
ping @:Gx G- G, 0(x,y)=x.y. &

A subset X of a space Yis said to be g-bounded in Y, if X is an union of countably
many bounded in Y subsets.

2.16. Corollary. Let a topological group G be generated by its a-bounded subset.
Then G is o-bounded, too. ®

For free topological groups, Corollary 2.16 admits the following improvement.

2.17. Theorem. The following conditions are equivalent for a space X:
(i) the free topological group F(X) is o-bounded,

(ii) the free abelian topological group A(X) is o-bounded;

(iii) the space X is o-bounded.

Proof. If X is o-bounded then F(X) and 4(X) are o-bounded by Corollary 2.17.
Inversely, assume that the group F(X) is o-bounded, ie. F(X) = U{M,:ne N},
where each M, is bounded in F(X). For any M < F(X) let «(M) be the set of all the
elements x € X which occur in the reduced words of M. Proposition 2 of [3] implies
that «(M,) is bounded in X for each n € N, hence X = J{«(M,): n € N} is 5-bounded.
Analogous arguments are applicable to the group A(X). ®

It was mentioned above that the class of pseudocompact groups is closed under
the operation of extension [10, Theorem 6.3]. A considerably more general version
of this result is valid.

2.18. Theorem. Let K be a closed subgroup of a topological group G, K bounded
in G and X bounded subset of the quotient space G|K. Then the set p~*(X) is bounded
in G, where p: G — G/K is a quotient mapping.

To prove this theorem we need some preliminary results.

2.19. Definitiin. A subgroup H of a topological group G is said to be admissible,
if there exists a sequence {U,: n € N} of open neighbourhoods of identity such that
U;'=U, Uy = U, for each ne Nand H = N{U,: ne N}.

It is easily seen that any admissible subgroup of G is closed in G. An intersection,
of countably many admissible subgroups is an admissible subgroup, too. Finally,
each open neighborhood of identity contains some admissible subgroup.

2.20 Lemma. If X is not bounded in a topological group G then there exists
an admissible subgroup N of G such that n(X) is not bounded in G|N, where
n: G > G|N is a quotient mapping.
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Proof. Let G/N be a left coset space. As X is not bounded in G, there exists
a locally finite family {V,:ne N} of open subsets of G each element of which
intersects X. For each n € N we pick a point x, € ¥, n X and an open neighborhood
of identity W, such that x,W?2 < V,. Let H, be an admissible subgroup of G with
H,< W, and H = N{H,:ne N}. Then H is admissible in G. For the quotient
mapping 7,: G — G/H, we have

T(’l_ln'l(xnw/n) = anVan = anVnz = I/n N

Consequently ™ 'n(x,W,) € V, for each n e N, where n: G - G/H. The mapping
is open, hence the previous inclusion implies that the family {n(x,W,): ne N} of
open subsets is locally finite in G/H. Evidently, each element of this family meets
7(X), hence n(X) is not bounded in G/H. ®

2.21. Lemma. (See also [1]) For any admissible subgroup H of a topological
group G there exists a continuous one-to-one mapping of the quotient space G/H
onto a metrizable space.

Proof. There exists a sequence {U,: ne N} of open neighborhoods of identity
such that U, ' = U,, U3, < U, for each ne N and H = "{U,: n€ N}. We define

n

v,={(x,y)eG x G:x"'yeU,}, neN.

From Theorem 8.1.10 of [ 12] it follows that there exists a continuous pseudometric d
on G such that

Y e1 S {(x,¥)eG x G:d(x,y) 27" '} =¥, foreach neN.

Obviously d(x, y) = 0 iff x 'y e H. Thus there exists a metric d* on G/H with
d*(n(x), n(y)) = d(x, y) for any x, y € G, where n: G —» G/H. A continuity of the
metric d* on the quotient space G/H follows from the fact that 7 is an open map-
ping. H

2.22. Lemma. Suppose that there exists a continuous one-to-one mapping of X
onto a metrizable space and B is a bounded subset of X. Then cly B is compact.

Proof. Exercise 8.5.13 (g) of [12] implies that X is a Dieudonné-complete space
and so we have done it. &

The following lemma is a consequence of Lemma 1.3 from [13].

2.23. Lemma. Let N be a closed subgroup of a topological group G, G the
completion of G and N = clgN. Then G/N is embeddable naturally into G/N. [ |

2.24. Lemma. Let K be a bounded subset of a topological group G with the
identity e and {V,:ne N} a sequence of open subsets of G such that ec V, = V!
and V},; <V, for each ne N. Then the set KP is dense in F = (\{KV,: ne N},
where P = ({V,: ne N}.

Proof. Assume the contrary and pick a point x € F \ clg(KP). Then (xV,) n K =+ 0
for each ne N and there exists an open symmetric subset U 3 e of G such that
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U?x N KP = 0 (hence UxP n UK = ). Now define y* = {xV,: ne N} and y =
= {xV,\clg(UxP): n € N}. Then y is an infinite locally finite family consisting of
open non-void subsets of G. Indeed, each element of y is contained in a single
element of y* and all limit points of the family y* are in xP. It remains to note that
Wn K £ 0 for any We y. It contradicts the boundness of K in G. B

2.25. Lemma. Let K be a bounded subset of a topological group G with the
identity e. Then for each open set U 3 e there exists an open set V3 e such that
VK < KU.

Proof. Clearly the set K is totally bounded in G, i.e. for any open subset U 3 e
there exists a finite subset M = G with UM 2 K. One can prove this assertion in
a fashion nearly identical to that of Theorem 1.1 in [7]. Now it is enough to note
that each totally bounded subset of G has the required property. M

Proof of Theorem 2.18. We assume that p~*(X) is not bounded in G. Then Lemma
2.20 implies that there exist an admissible subgroup P = N{V,:ne N} of G and
a locally finite family {U,: ne N} consisting of open subsets of G/P such that
' (U)nY=%0 for each ne N, where Y= p '(X) and =:G — G/P. Using
Lemma 2.25 one can assume that open sets ¥, are chosen so that

KV,,, < V,K and V,,,K <KV,

for each ne N. Clearly, F = {KV,:ne N} is a closed subgroup of G and K < F.
Therefore there exist continuous mappings q: G/P — G[F and w: G/K — G/F such
that wo p = g o @ =% 1. The quotient mappings p, 7 and i: G — G[F are open,
hence the mappings g, w are open, too. From Lemma 2.24 it follows that KP is
dense in F. Consequently g~ () = clg,p 7(K), where & = A(e) and e is the identity
of G.Indeed, ™' ¢~ '(¢) = A"'(¢) = F, and using the fact that = is an open mapping,
we conclude that
7 (clg,p n(K) = clgn ™' n(K) = clg(KP) = F

Thus the equality g~ () = clg,p 7(K) is proved.

Now Lemmas 2.21 and 2.22 imply that the set B = clg/p n(K) is compact. We claim
that g is a perfect mapping. Obviously, all fibers of g are homeomorphic to the
compact set B = g~ '(é). To show that g is a closed mapping, we choose an arbitrary
open subset O of G/P with B = 0. Using Lemma 2.23 one can identify G/P with the
corresponding subspace of G/P. Let O be an open subset of G/P with 0 n G/P = 0
and #: G - G/P. Then K is a compact subgroup of G and #(K) = clgs n(K) =
= B < O, hence £~ (0) is an open neighborhood of the compact set K in
Consequently there exists an open subset 73 e of G such that VK < #7*(0). For
the open subset ¥ = V' n G we have n(VK) = #(VK)n G/P = On.G/P = 0. It is
easily seen that the point & belongs to the open subset U = A(V) of G/F and ¢~ '(U) =
< 0. Indeed, n71q"(U) = A"Y(U) = A~ ' A(V) = VF and VF = VKP, for KP is
dense in F (Lemma 2.24). Further, n(VK) < O, hence n~'n(VK) = n~*(0) and
VKP < n~*(0). Thus we have n~! g~ (U) < n~(0) whence it follows g~ '(U) < 0.
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So, the mapping ¢ is closed at the point & € G/F. Analogous arguments show that g
is closed at each point of G[F. Thus q is perfect.

The family {U,: n € N} of open subsets of G[P is locally finite whence it follows
that the family {g(U,): n € N} is locally finite in G/F, and in turn {w™' q(U,): ne N}
is a locally finite family consisting of open subsets of G/K. Further, we claim that

(¥) w* q(U) = pn~'(U) for each open subset U = G/P. Indeed, the equality (x)
is equivalent to p~'w™! g(U) = p~'pn~*(U), or to WF = WK, where W = n~*(U).
However KP is dense in F (Lemma 2.24), hence (KP)™! = PK isdensein F~! = F.
Consequently WF = WPK = WK, for Wis open in G and W=z~ n(W) = WP,
and (%) is proved.

From the choice of the sets U, it follows that n~'(U,) n p~*(X) + @ for each
ne N. Therefore the equality () implies that the open set pn~*(U,) = w™! g(U,)
meets X for each n € N. It contradicts to the boundness of X in G/K. [ |

2.26. Corollary. The class of pseudocompact groups is closed under the operation
of extension. Moreover, if K is a closed pseudocompact subgroup of a group G
and the coset space G|K is pseudocompact, then G has the same property. ®

It is well-known that any real-valued continuous function on a topological group
is uniformly continuous on a compact subset of this group. In the Comfort and Ross’s
paper [7] it is shown that any real-valued continuous function on a pseudocompact
group is uniformly continuous. The following theorem generalizes these results via
bounded subsets of topological groups.

2.27. Theorem. Let d be any continuous pseudometric on a topological group G
and X a bounded subset of G. Then d is uniformly continuous on X.
To prove Theorem 2.27 we need one lemma.

2.28. Lemma. Let H = N{V,: ne€ N} be an admissible subgroup of a topological
group G and Y a bounded subset of the coset space G/H. Then for any neigh-
borhood ¥ of the diagonal A in G|H x G[H there exists n< N such that Y* n
n7*(Uy,) € ¥, where n: G > G|/H, n* is a square of m and Uy, = {(x, y)e G X
x G: x"'yeV} for each V= G with ee V.

Proof. Lemmas 2.21 and 2.22 imply jointly that the set B = clg,zY is compact.
We claim that the family y = {B*nn*(U,,): n € N} is a base of the diagonal 4 in B*
(the sets ¥, are chosen in accordance with the definition of an admissible subgroup).
Indeed, B is a compact space, hence it is sufficient to show that 4 = )y and the
closure of the set B> nn?*(Uy, ) is contained in B> n n*(Uy,) for each ne N.
However the first fact is obvious and the second one requires standard arguments
(see [21]). =

Proof of Theorem 2.27. Assume that the pseudometric d is not (left) uniformly
continuous. Then we can find ¢ > 0 such that for any open neighborhood U of the
identity in G there exist elements x, y € X with x 'y e U and d(x, y) = ¢. By in-
duction one can easily define a sequence {V,:ne N} of open neighborhoods of the
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identity in G and a sequence {(x,, y,): n € N} = X? satisfying the conditions
(i) Vos1 S Vaand V7' = W
(ll) d(xm yn) = ¢
(iii) if x, 'z e ¥, then d(z, x,) < &[4,
if y7'zeV, then d(z,y,) < &/4;

(iV) Xni1Vn+1 € Vas
where ne€ N. Then H = (\{V,: ne N} is an admissible subgroup of G. Let 7 be
a quotient mapping of G onto left coset space G/H, U = {(x, y)e G x G:d(x, y) <
< ¢[2} and ¥ = n*(U) an open neighborhood of the diagonal 4 in G/H x G/H.
Then
(*) (Y> a2} (Uy,))N 7" =% 0 for each ne N, where Y = n(X).

Indeed, the condition (iv) implies (n(x,+1), 7(¥,+1)) € Y? N 7*(Uy,) and we claim
that (n(x,41), 7(yus1)) ¢ 7. For if (n(x,41) 7(y,+1)) € ¥ then there exists a pair
(x,y)eU such that n(x) = n(x,+,) and 7(y) = 1(y,4,) ie. x;31x€H S V, iy
and y,;-+11y€H < Vst

Thus we have

d(x,y) <el2, d(x,+1.x) <e/4 and d(y,.. ) < /4,

whence it follows that d(X,.q1, Vu+1) < /4 + &2 + ¢/4 = &. The last inequality
contradicts the condition (ii) and the property (*) is proved. However, (*) contradicts
Lemma 2.28 that completes the proof. H

2.29 Corollary. Let X be a bounded subset of a topological group G. Then any
continuous real-valued function f defined on G is uniformly continuous on X.

Proof. Apply Theorem 2.27 to a continuous pseudometric d on G defined by the
rule d(x, y) = |f(x) — f(y)| for cach x, ye G. m

2.30. Corollary. Let %, *%*, *U and U* be universal, two-sided, left and right
uniformities, resp., of a topological group G. Then %|y = *%*|X = *ﬂ?llx = U*|x
for any bounded subset X of G. B

3. Inverse spectra and pseudocompact groups. Being given a countable inverse
spectrum & = {G,, p,,,,,,},,,’,,eN with pseudocompact groups G, and continuous epi-
morphisms p, . we consider the question whether the limit group lim Z is pseudo-
compact. We begin with the following lemma, which gives an additional information
on homomorphisms of pseudocompact groups.

3.1. Lemma. Let K be a closed pseudocompact subgroup of a group G having
the Souslin property. Then the natural quotient mapping p: G — G/K is z-closed,
i.e. p transforms zero-sets to zero-sets.

Proof. Let @ be a zero-set in G, 1.e. & = f”l(O) for some continuous real-valued
function f on G. One can assume that f = 0 (replace f by |f|). Theorem 6 of [26]
implies that there exists an open homomorphism n: G - G, and a continuous func-
tion g on G, such that G, is of countable pscudocharacter and f = g o 7. Let N =

332



= ker 7 and H = KN (=NK). Now we claim that H is a closed subgroup of G.
Indeed, the group G, is of countable pseudocharacter, whence it follows that N is
an admissible normal subgroup of G (see Definition 2.19). Consequently Lemma 2.21
implies that there exists a continuous one-to-one mapping of the quotient space
G/N = G, onto a metrizable space. So, each subspace of G, is Dieudonné-complete
(see Exercise 8.5.13 (g) from [12]), whence it follows that the pseudocompact
subspace n(K) = G, is compact and closed in G,. Clearly, KN = 7~ ! n(K), hence
KN is a closed subgroup of G.

Let 4 be a quotient mapping of G onto L = G/H. Then there exist open mappings
q: G{ » Land w: G/K — Lsuch that gom = wo p = A. It is easily seen that the
following condition is satisfied:

(*) pn~'(x) = w™! g(x) for each point x € G,.

Let e be the identity of G and & = A(e). Obviously, n(K) = ¢~ () is a compact
subgroup of Gy, hence ¢~ ' q(P) = Pn(K) is closed in G, for any closed subset
P = G,. As q is a quotient mapping, so the last equality implies that g is closed.
Thus q is a perfect and open mapping.

Now we define F = g~ '(0). Then the equality f = g o = implies that ¢ = =~ (F).
Using the properties of the mapping g one can easily varify that g(F) is a zero-set
in L (define a continuous function h on Lby h(y) = inf {g(x): x € ¢~ '(y)} for each
y € L). An application of the property (*) gives us the equality p(®) = pn~!(F) =
= w~! q(F) whence it follows that p(®) is a zero-set in G/K. ®

3.2. Remark. It seems to be interesting to find out whether the Souslin property
of the group G is necessary in Lemma 3.1.

3.3. Corollary. Let K be a closed pseudocompact subgroup of a group G with
(G) Ny, and p G — G|K a quotient mapping. Then p(ncl V) =
= ﬂcl(/K p(V,) = ﬂp(c] V) for any decreasing sequence IV neN of open

subsets in G.

Proof. As the group G has the Souslin property, so for any open subset V< G
there cxists a closed normal subgroup N & G of type Gy in G such that clgV =
= ny 'ny(clgV), where my is a quotient mapping of G onto G/N (see f.e. § 2 of [26]).
Consequently there exists a closed normal subgroup i7 € G of type G; in G such that
clgV, = n,}lnn(chI/,,) for each n € N. Then we define a closed subgroup H = KIT <
< G, the mappings q: G/I7 — G/H. w: G/K — G[H and complete the proof as in
Lemma 3.1. ®

The following theorem is the main result of this section.

3.4. Let Z =[G, Pym}mmen be an inverse spectrum consisting of topological
groups G, and open epimorphisms p, ,, where each ker p,, , be pseudocompact.
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If the group G, is pseudocompact then the limit group G = lim & is pseudocompact,
too.

Proof. Assume that G, is a pseudocompact group. By induction on n (with an
aid of Corollary 2.26) one can easily show that G, and ker p, ,, are pseudocompact
groups for each m, n € N. The completion of any pseudocompact group is a compact
group, hence pseudocompact groups have the Souslin property. Let p,: G - G,
be a limit homomorphism, n e N, {V,,,: me N} a decreasing sequence of open
non-empty subsets in G and @, = N{clp,(V,): me N}. The homomorphisms
Pu.m are z-closed (Lemma 3.1) and open, hence Corollary 3.3 implies that p, ,(®,) =
= @, for each m, ne N with m < n. Consequently there exists an element x € G
such that p,(x) € @, for each n € N. Now we fix an integer m € N. From the definition
of the sets &, it follows that p,(x) e cl p,(V,,) for each n e N, i.e. x € ¢lV,,. Thus we
have shown that x € (\{clgV,,: m € N}, i.e. an intersection of any decreasing sequence
of non-empty regular closed subsets in G is not empty. So the limit group G = lim &
is pseudocompact. W

Examples 4.2 and 4.3 below show that the conditions of Theorem 3.4 on epimor-
phisms p, ,, can not be weakened.

It seems that an inverse spectrum ordered by NNV is a very partial case of an inverse
well-ordered spectrum. However the case of uncountable well-ordered spectrum with
pseudocompact spaces is much more clear. We omit the proof of the following
obvious result.

3.5. Assertion. Let % = {X,, n5,}, <. be a well-ordered inverse spectrum
consisting of pseudocompact spaces X, and continuous open mappings g Lf
¢ f(r) > N, and all limit projections n,:lim Z — X, are mappings ““onto”, then
the limit space X = lim & is pseudocompact, too. M

In the previous assertion one can replace the condition on mappings 7w, , by the
weaker condition “the mappings 7, , are d-open” (see the comment after Definition
2.6). Clearly, if p: G — H is a continuous epimorphism of totally bounded topological
groups, then p is a d-open mapping. Indeed, let p: G — H be an extension of p to
a continuous homomorphism of completions G and H. Any continuous epimorphism
of compact groups is open, whence it follows that the restriction p = ﬁ]G of open
mapping p to the dense subspace G = G is d-open [22, Lemma 7]. Thus we have
proved the following theorem.

3.6. Theorem. Let % = {G,, p,,,a(},,[,,,<t be an inverse well-ordered spectrum
consisting of pseudocompact groups G, and continuous homomorphisms pg ,.
If ¢ f(t) > Ny and all limit projections p,: lim & — G, are epimorphisms, then the

EIiLiy

limit group G = lim Z is also pseudocompact. W
The following two results seem to be surprising.

3.7. Assertion. Let f be a continuous real-valued function defined on a subgroup G
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of a product IT = HKa with compact groups K,. Then there exists a countable

acAd

subset B < A and continuous function g defined on pB(G) such that f = go pB]G,
where pg: IT — [ K,

aeB
Proof. The group G* = cl;G is compact, hence the homomorphism pﬂlgo is

open for each B = A. Thus the family {p;|¢: B < 4, |B| < N,} is Ny-complete and
consists of d-open homomorphisms. Any compact group embeds into some product
of compact metrizable groups (see f.e. Theorem 1 of [2]), hence we can assume that
all factors K, are metrizable. Now Theorem 1 of [24] implies that f depends on at
most countably many coordinates. MW

3.8. Theorem. Let f be a continuous real-valued function on a totally bounded
group G. Then there exists a continuous homomorphism n of G onto separable
metrizable group H and a continuous function h on H such that f = ho =.

Proof. The completion G of the group G is a compact group, hence G embeds
into some product of compact metrizable groups. An application of Assertion 3.7
completes the proof. H

A spectral form of Assertion 3.7 is obvious now.

3.9. Remark. The following result generalizes Assertion 3.7:
Let a topological group G, be generated by its Lindel6f Z-space for each e 4

and S a dense subspace of the product IT = H G,. Then any continuous function
acA

f* S = R depends on at most countably many coordinates. In addition, there exists
a continuous homomorphism =: IT - H onto separable metrizable group H and
a continuous function g: n(S) — R such that f = g o n]s.

We omit the proof of this theorem which based on some Uspenskii’s ideas [28]
and Gleason’s factorization theorem.

4. Some examples. Examples 4.2 and 4.3 below show that all conditions of Theorem
3.4 are necessary. Moreover, we will see that the limit group of countable inverse
sequence of pseudocompact groups may even have a countable pseudocharacter.
Here the sketches of the corresponding constructions are given. We need some
nowations. Let B be a set with ]B[ =c¢, H = H{T,: ae B}, where T, = T the circle
group for each « € B, e the identity of T and é the identity of H. For any point x € H,
let k(x) denote the set {« € B: n,(x) + e} and n,: H — T, the natural projection. The
symbol X = X(B, &) is used to denote the set {x € H: [k(x)| < No}, the Z-product
of spaces T,, « € B. For each X < H, gp(X) is the subgroup of H generated by X.
Finally, the projection of H onto Hy = II{T,: « € M} is denoted by m,, where
M < B.

4.1. Lemma. There exists a sequence {Y,: n € N} of disjoint subsets in X satisfying
the conditions
(1) ny(Y,) = Hy, for each ne N and each countable M < B;
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(2) the set Y= U Y, generates the group G = gp(Y) isomorphic to the free
group on Y. =0

Proof. Let ¥ = {x,: a < ¢}. For each a < ¢ one can choose a sequence 4, =
= {b,,;ne N} = B with b,, * b,, whenever n & m, such that 4,0 4, =0
if « + B and 4, n U{k(xs): B < o} = 0 (it is possible because |B| = ¢). Pick an ele-
ment t* € T of infinite order. For each « < ¢ and n € Nlet y, , be a point of H such
that mg(y,.,) = ms(x,) if fe B\{b,,}, and ny(y,,) = t* if p =b,, Now define
Y, = {Von: @ < ¢} for every ne N. Clearly, Y, < X. It is easy to check that the
sequence {Y,: n € N} satisfies the conditions (1) and (2). =

4.2. Example. Let G be a free abelian group of cardinality ¢. There exists a strictly
increasing sequence {7 ,:ne N} of topological group topologies on G such that

(i) the group (G, 7,) is pseudocompact for each n € N;

(ii) the group G, = (G, 7) endowed with the topological group topology J =
= sup &, is of countable pseudocharacter, hence it is not pseudocompact;

n

(iii) the group G,, has the Frechét-Urysohn property;

(iv) the completion G,, of G, is topologically isomorphic to the compact group T*.

The sketch of the construction. Let B, be a set of cardinality ¢, H, = H{Ta: xe BO},
é the identity of H, and a sequence {Y,(0): ke N*} of disjoint subsets in X, =
= X(By, &) be chosen satisfying the conditions (1) and (2) of Lemma 4.1, where
T, = Tfor each « € B,. Assume that for some n € N there are defined a set B, 2 By,
a group H, = I{T,: ae B,} and a sequence {¥(n): ke N*} of disjoint subsets
in X, = X(B,, ¢,) satisfying the following conditions:

(1) m3(Yi(n)) = Hy, for any k > n and any countable subset M = B, where 7,
is the projection of H, onto H,;

(2) m3m)(9) * e for any element g € F,\ {¢,}, where a(n) is the fixed index of B,
and F, is the subgroup of H, generated by Z, = U{Y(n): i < n};

(3) the projection p, of H, onto H,, is a bijection of Y,(n) onto Y,(0) for cach k e N*.

Now let A, be a set of cardinality ¢, A,,; N B, = 0. For the set B,;; = B, U
U 4,4, we define the group H,,, = II{T,: a € B,,,}, where T, = T for any a e
€B,,;, and an index o,,, € 4,,,. A routine recursive construction enables us to
define a sequence {Y,(n + 1): k€ N*} of disjoint subsets in X, , satisfying the con-
ditions (1)—(3) at (n + 1)-th step. We omit the construction which involves a few
enumerations of points of 2,4 ;.

Now let B = U{B,: ne N}, H = II{T,: a.€ B}, pr, the projection of H onto H,
and p"* ! the projection of H, . onto H,, n € N. The condition (3) of the construction
implies that p"*! is a one-to-one mapping of X, onto X,, where X, = U{Y,(k):
me N*} for each k e N. Consider the set X = {x e H: pr,(x) € X, for each ne N}.
It is clear that pr, is a one-to-ine mapping of X onto X,. Let G, = gpu(X) and
G, = gp,,n(X,,), ne N. For each ne N the restriction n, = prnlcm is a one-to-one
continuous homomorphism of G, onto G,. As G, is isomorphic to a free abelian
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group, so the same is true for G, (n € N) and G,,. The condition (1) implies that
73(G,) 2 ny(X,) = Hy for each countable subset M < B,, hence G, is a dense
pseudocompact subgroup of H, (see Lemma of [23]). Consequently G, is a dense
subgroup of H and G, = T*. Let 7, be the topology of the group G,. Then the to-
pology J of the group G, is the upper bound of the pseudocompact topological
group topologies m, (7,), ne N, for By < B, < ... and B = U{B,: ne N}. As
X, c Z, for each ne N, so X < X = X(B, ¢), where ¢ is the identity of H. Con-
sequently G, < 2. All factors T,, o« € B, are metrizable hence the spaces 2 and G,
have the Frechét-Urysohn property (see [18]). It remains to varify that (G,,) < N,.
Consider the set 2 = {a,: n€ N}. Then the condition (2) implies that 7,(g) * e,
for each g € G, \ {&}, where np: H — Hp, and @, is the identity of Hj. Consequently
np(ép) N G, = {&} whence it follows that Y/(G,) < N,. In turn it implies that the
group G, is not pseudocompact. Indeed, a pseudocompact group of countable
pseudocharacter has a countable character, hence it is metrizable (Lemma 3.1 of
[9]). However there are no dense metrizable subspaces of T°. ®

The following example shows that the limit group of a countable spectrum with
pseudocompact groups and open epimorphisms need not be pseudocompact.

4.3. Example. There exists a countable inverse spectrum & = {G,,, p,,,,,,},,,,,,e,v with

pseudocompact abelian groups G, and continuous open epimorphisms p, , such that
(i) the limit group G = lim & is not pseudocompact and ¥(G) < No;

(ii) the group G has the Frechét-Urysohn property;

(iii) the completion G of G is topologically isomorphic to T¢.

Construction. Let By, H, and a sequence {Y,(0): k € N} be chosen as in the
previous construction. For each n e N one can define a set B, of cardinality ¢, the
group H, = TI{T,: « € B,} and a sequence {Y,(n): ke N} of disjoint subsets of
Z, = X(B,, ¢,), where g, is the identity of H,, satisfying the following conditions:

(1) B, S B,4y;

(2) 7, w(Yi(n)) = Yi(m) for each ke N and m < n, where =, ,, is the projection
of H, onto H,,;

(3) the group G, < H, generated by the set X,
to a free abelian group on X,;

(4) my(Yi(n)) = O{T,: 0 e M} =" H, for each k >n and each countable
subset M < B,, where 7}, is the projection of H, onto H,;

(5) there exists a countable subset C(n) < B,\B,_; such that mcu(g) * ec)
for any g € Gy \ {¢,}, where &c(,) is the identity of the group H¢(,y and G is the sub-
group of H, generated by the set U{Y;(n):i < n}, n > 0;

(6) for any g e X,_,, finite set P = A, and 7e Hp there exists a point he X,
with 7, ,_ (k) = g and np(h) = 7, where 4, = B,\B,_; and X,_; = U{¥,(n — 1):
ke N}, n>0.

The conditions (1)—(5) are similar to the corresponding conditions of the previous
construction. The condition (6) is of the other type, it implies that the projection

U{Yi(n): ke N} is isomorphic
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Tpno1: Xy = X,—; is open. In its turn it implies that the epimorphism Ppn-1 =
= "n,n—llc.. is open, where G, is the subgroup of H, generated by X, (use the di-
visibility of the group T).

Now let all be defined at n-th step. We choose a set 4,.; with A,+; 0 B, = 0,
|4,4:] = ¢ and define B,iy = B, U Aysy, Hyyy = I{T,: € By}, Zyyy =
= X(B,+1> y4+1)- Let also C,,; be a subset of A,,; with \C,,HI =Ny, Z =
=U{xi(n): k<n+1} and o= {xeH,, :|k(x)] <No} an usual o-product.
Consider the enumeration Z x ¢ = {y,: @ < ¢}. Evidently there exists a subset
I = {t,;;a < ¢} of the group T such that the subgroup of T generated by I is
isomorphic to a free abelian group on I and t, # t; if « # B. For each a < clet j,
be a point of H,,, with ny(J,) = t, if fe CphpyNk(ys), and my(7,) = my(y,) if
BeB,s1N(Cory NK(y,). We define Z = {j,;a<ec} and Y(n) = {j:a<e,
y. € Yi(n)}, where k < n. It is clear that Z = U{¥(n): k < n}.

Let {x,:a < ¢} be an enumeration of the set Z U ((X,\Z) x X’), where X' =
= X(A,+,, €) and ¢ is the identity of H, . . As the set A = A4,,,\ C,;, is of car-
dinality ¢, there exists a one-to-one mapping ¢ of ¢ into A4 such that () ¢ U{k(x):
B = oc} for each o < ¢. Pick an element t* of the infinite order in T. For each a < ¢
we define the point X, € H,4+; by T,)(X,) = t* and mp(X,) = mp(x,), where M =
= B,.: \{p(x)}. Finally, we define Y(n + 1) = {X,; ¢ < ¢ and x,€ Y,(n)} for
each k >n, Y(n + 1) = {X,: @ < ¢ and x, € Y,(n)} for each k < n, and X, =
= U{Y(n + 1): ke N*}. It is easy to see that X,,; S Z,+; and our construction
at (n + 1)-th step is complete. We omit the proof of the fact that the conditions
(1)—(6) are satisfied.

Let B= U{B,:neN}, H=1{T,;0eB} and G = {xe H:n,(x)e G, for each
ne N}, where ,: H — H,. Then G is a dense subgroup of H and p, = n,,|G, Pom =
= 7, m|G, are open epimorphisms of G to G, and G, to G,,, resp. It is clear that there
exists a topological isomorphism of the limit group of the spectrum Z =
= {G,, Pn.m}mumen onto G. Epimorphisms p, ,, are open and the groups G, are pseudo-
compact (see the condition (2)). The inclusions G, < Z, imply that G = 3(B, e),
where ¢ is the identity in H. The condition (5) implies that nz'(ec) n G = {&},
where n¢c: H - H and é is the identity of H¢. Consequently y(G) < N,. The other
properties of the group G may be proved so as in Example 4.2. &

Our last example makes clear the distance between pseudocompact and countably
compact groups. We need a primary definition.

4.4. Definition. A subgroup H of a topological group G is said to be h-embedded
into G provided that any homomorphism ¢ of H to an arbitrary compact group K
is extendable to a continuous homomorphism @: G — K.

Note that if H is an h-embedded subgroup of G then any homomorphism of H
to a compact group is continuous.

4.5. Example. There exists a pseudocompact abelian group G with |G| = w(G) = ¢
any countable subgroup of which is closed and h-embedded into G. Moreover, the
group G is zero-dimensional and contains no non-trivial convergent sequences.
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4.6. Remark. The first example of infinite countably compact topological group
without non-trivial convergent sequences was created by A. Hajnal and 1. Juhdsz
[14]. Their group is constructed under CH and is hereditary separable. The other
countably compact group with no non-trivial convergent sequences was constructed
by E. K. van Douwen ubder MA [11]. Our group G is of completely other type.
An absence of convergent sequences in G is an easy corollary of the facts that each
countable subgroup of G is closed in G and the group G is boolean, i.e. x + x = Og
for each x € G (check it).

4.7. Some words on construction. The boolean groups have a few important
properties.

Fact 1. A boolean group is abelian and for each boolean groups H, K the equality
|H| = |K]| implies that H = K.

Fact 2. Each homomorphism defined on a subgroup of boolean group H extends
to a homomorphism of H, see [11].

Fact 3. Each compact boolean group H of weight © = N, is isomorphic con-
tinuously to the group Z(2)" [15, Theorem 25.9].

The group G in Example 4.5 should be realized as a dense pseudocompact
subgroup of Z(2)° x Z(2)°. There are only ¢ countable subgroups lying in X =
= 2(c,0) = Z(2)°, where 0 is the neutral element of Z(2)°. For each countable
subgroup S < X there are at most ¢ homomorphisms of S to Z(2). We enumerate
the points of X, countable subgroups of ¥ and homomorphisms of these groups
to Z(2),say X = {x, 0 < ¢}, # = {S;:n < ¢} and # = {h;: & < ¢}. By induction
on a < ¢ one can define an extension of each h; to a homomorphisms f.: X — Z(2)
(Fact 2 is used here). At a-th step of construction it is necessary to define homo-
morphisms h, . on the corresponding subgroups E, . S X, & < ¢, satisfying the
conditions

(1) Epe < E,zand h,g|g, . = hy whenever & < ¢ and B < o

(2) Sy S E,¢ and |E, ;| < || . X, whenever o, & < ¢, where Sy = dom (hy).

Now let we have defined the homomorphisms flg =Uh,eé<e
a<e

Let id be the identity mapping of X onto itself and p the diagonal product of
homomorphisms id and h,, & < ¢. Then p: £ — X x Z(2)° and we put G = p(Z).
With the help of enumeration 2 = {xa: o< c} the extensions E,: may be chosen
such that projections of G fill up all the countable subproducts of X x Z(2)* =
< Z(2)° x Z(2)°. 1t implies that G is a dense pseudocompact subgroup of H* =
= Z(2)° x Z(2)°. Each homomorphism h, is identified with the restriction of pro-
jection prgt H* — (Z(2)); to G, hence all countable subgroups of G are h-embedded
into G (apply Fact 3). It remains to note that if all countable subgroups of a boolean
group are h-embedded then these subgroups are closed. W

4.8. Remark. It was noted earlier that there exists an infinite pseudocompact
space X each countable subset of which is closed in X. However any pseudocompact
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group with this property is finite. Indeed, a pseudocompact group is totally bounded
[7] and each subgroup of totally bounded group inherits the last property. Con-
sequently any infinite subgroup of totally bounded (pseudocompact) group is not
discrete.

It is easy to see that each countable subgroup of G inherits from G the finest
totally bounded topological group topology. Therefore all infinite countable sub-
groups of G are topologically isomorphic.

References

[1] Arhangel’skii A. V.: Topological spaces and continuous mappings. Notes on topological
groups. — Moscow State University, 1969. (In Russian).
[2] Arhangel’skii A. V.: Cardinal invariants of topological groups. Imbeddings and condensa-
tions. — Soviet Math. Dokl., 1979, v. 20, N. 4, p. 783—787.
[3] Arhangel’skii A. V.: On linear homomorphisms of functional spaces. — Dokl. Acad. Sci.
URSS, 1982, v. 264, N 6, p. 1286—1292. (In Russian). )
[4] Arhangel’skii A. V.: Spaces of functions endowed with pointwise convergence topology and
compact sets. — Uspekhy Math. Sci., 1984, v. 39, N 5, p. 11—50. (In Russian).
[5] Blasco J. L.: On p-spaces and kpg-spaces. — Proc. Amer. Math. Soc., 1977, v. 67, N 1,
p. 179—186.
[6] Chigogidze A. Ch.: On x-metrizable spaces. — Uspekhy Math. Sci., 1982, v. 37, N2, p.
241—242. (In Russian).
[7] Comfort W. W. and Ross K. A.: Pseudocompactness and uniform continuity in topological
groups. — Pacific J. Math., 1966, v. 16, N 3, pp. 483—496.
[8] Comfort W. W. and Saks V.: Countably compact groups and finest totally bounded uni-
formities. — Pacific J. Math., 1973, v. 49, N 1, p. 33—44.
[9] Comfort W. W. and Soundararajan T.: Pseudocompact group topologies and totally dense
subgroups. — Pacific J. Math., 1982, ». 100, N 1, p. 61— 84.
[10] Comfort W. W. and Robertson L. C.: Extremal phenomena in certain classes of totally
bounded groups. — Preprint.
[11] Douwen E. K. van: The product of two countably compact topological groups. — Trans.
Amer. Math. Soc., 1980, v. 262, N 2, p. 417—427.
[12] Engelking R.: General Topology. — PWN, Warszawa, 1977.
[13] Grant G. L.: Topological groups which satisfy an open mapping theorem. — Pacific J.
Math., 1977, v. 68, N 2, p. 411—423.
[14] Hajnal A. and Juhdsz I1.: A separable normal topological group need not be Lindelof. —
Gen. Top. Appl., 1976, v. 6, p. 199—205.
[15] Hewitt E. and Ross K. A.: Abstract harmonic analysis, vol. I. — Springer-Verlag, Berlin—
Gottingen— Heidelberg, 1963.
[16] Matveev M. V.: Pseudocompact spaces and spaces closed to being pseudocompact. —
Dissertation, Moscow, 1984. (In Russian).
[17] Noble N.: Countably compact and pseudocompact products. — Czechoslovak Math. J.,
1969, v. 19, N 2, p. 390—397.
[18] Noble N.: The continuity of functions on Cartesian products. — Trans. Amer. Math. Soc.,
1970, v. 149, p. 187—198.
[19] Novak J.: On the Cartesian product of two compact spaces. — Fund. Math., 1953, v. 40,
p. 106—112.

340



[20] Pontrjagin L. S.: Continuous groups. — Moscow, 1973. (In Russian).

[21] Roelcke W. and Dierolf S.: Uniform structures on topological groups and their quotients. —
N. Y., Mc Grow-Hill Inc., 1981.

[22] Tkaéenko M. G.: Some results on inverse spectra, II. — Comment. Math. Univ. Carol.,
1981, v. 22, N 4, p. 819—841.

[23] Tkadenko M. G.: Examples of connected left-separated spaces and topological groups. —
Acta Math. Acad. Sci. Hungar, 1981, v. 38, N 3, p. 257—261.

[24) Tkadenko M. G.: Free topological groups and related topics. — Colloquia Math., 1983,
v. 41, pp. 609— 623.

[25) S¢epin E. V.: Topology of limit spaces of uncountable inverse spectra. — Uspekhy Math.
Sci., 1976, v. 31, N 5, p. 191—226. (In Russian).

[26] Séepin E. V.: Real-valued functions and canonical sets in Tychonoff products and topolo-
gical groups. — Uspekhy Math. Sci., 1976, v. 31, N 6, p. 17—27. (In Russian).

[27] Séepin E. V.: On x-metrizable spaces. — Izv. Acad. Sci. URSS, 1979, v. 43, N 2, p. 442—478.
(In Russian).

[28] Uspenskii V. V.: On continuous images of Lindelof topological groups. — Dokl. Acad. Sci.
URSS, 1985, v. 285, N 4, p. 824—827. (In Russian).

Author’s address: Gor’kogo 62/1, kv. 6, 170005 Kalinin, USSR.

341



		webmaster@dml.cz
	2020-07-03T06:15:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




