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Czechoslovak Mathematical Journal, 38 (113) 1988, Praha 

CONSTRUCTION OF NORMAL BASES IN CYCLIC 

EXTENSIONS OF A FIELD 

ŠTEFAN ScHWARZ, Bratislava 

(Received July, 14 1986) 

Let F be a field and K a separable normal extension of F of degree n. Let G = 
— {#i>#2> --->9n} be the Galois group of K|F. It is known that there exists an 
element co є K such that g^a>, g2o), •.., gnoo are linearly independent, hence they form 
a basis ofK|F. Such a basis is called a normal basis ofK over F. 

Various proofs of the existence of a normal basis are given in several textbooks. 
The proofs always distinguish two cases: F is infinite and F is finite. In this last 
case both F andXare finite fields. For example Van der Waerden ([9], Russian edition 
pp. 239 — 243) proves the case F is infinite, the case F is finite is rather sketched. 
A thorough discussion of the case F finite given in L. Rédei ([6], pp. 552 — 558) 
is certainly not short. The proof of the case F finite (more generally K cyclic over F) 
given in N. Jacobson ([3], pp. 57 and 61) is short but it is based on several previously 
proved not quite elementary results. An analogous situation is in the book A. A. 
Albert ([1], p. 120). 

In this paper we first give a new short and transparent proof of the normal basis 
theorem for cyclic extensions over any field F. In section 2 we give a method how to 
find effectively all normal bases. As far as I can decide the systematic method 
developed in this paper is new. In section 3 we illustrate this method on several 
examples. 

1 

Theorem 1. Any cyclic extension KJF has a normal basis over F. 

Proof. Write K = F(a), where a satisfies / (a ) = 0 and f(x) is an irreducible 
cyclic polynomial ofdegree n over F. Let G = {g, g2, ..., # r t ~\ gn = 1} be the Galois 
group of K|F. The roots of/(x) = 0 will be written in the form 

o c j = a , cc2 = ga, cc3 = g2a,...,ccn = gn~1oc. 
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Introduce the following n x n matrices: 

A = 

n-l 

1 
« 1 

*{ 

аГ1 

1 
a2 . 
a 2 

«Г1 • 

. . 1 

. . a, 

. . a, 

. . «; 

ЛГ = 

and (T denotes the transpose) 

iVr = N-1 = 
0 0 0 
1 0 0 
0 1 0 

0 0 0 

(0 1 0 . 
0 0 1 . 

0 0 0 . 
1 0 0 ., 

0 l1 
0 0 
0 0 

1 0 

Construct finally the n x n matrix C = (c,/) defined by 

(1) 

. 0^ 

. 0 

. 1 

. 0 

gi = c 
got 
got2 

00 

— cio 
= C20 

+ C010t + . . + Co.n-1«' 
+ c n a 

« - і 

+ c21a 
+ 
+ 

• • + cu 
. . + C2,,,_ia' « - і 

Loo 

flfoc" 

~ 1? C01 ~ •• • — C0,n 

-« -1 ,0 + Сп-1,1а + • • • + Cn 

„x = 0). Otherwise written 

- l , n - l _,a" 

( l ,a . 2? ^ 2 ' • • a n-l\T ) r = C( l , a l 5 l 5 аГ1^ i ) , 

By applying g1 1 (i ^ 2) to both sides we obtain (with the convention ocn + 1 = ax) 

( l ? a i + 1 ? « п г п ~ ^ г 

a f + i ; 
= C ( l , a , , a f , . . . , a r 1 ) 1 

Hence the matrix CA is equal to the matrix arising from A by (cyclicly) shifting 
the columns of A to the right (i.e. we replace the first column in A by the last column, 
the second by the first column, and so on). Therefore CA = ANT and (since the 
determinant \A\ =f= 0) 
(2) A~lCA =NT. 

We have proved that the matrices C and NT are similar in K = F(oc). Now since all 
elements of the matrices C and NT are in F, they are similar in F. [This is the unique not 
quite elementary statement from the theory of matrices used in the proof. It immedi­
ately follows from the fact that (2) implies A~\C - kE)A = NT - XE and the 
A-matrices C — XE and NT — XE have the same invariant factors. Hereby E is the 
n x n unit matrix.] 

Hence there exists a non-singular matrix P with elements in F such that PCP~l = 
= NT. 

In the following sections it is more convenient to work with N (instead of NT). 
The matrices N and NT are similar (in F). As a matter of fact we have NT = SNS, 
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where 
S = S-1 = 

/0 0 0 V 
0 0 . . . 1 0 . 

\í 0 . . . 0 0/ 

We finally have: There is a non-singular matrix Q (with all element in F) such that 

(3) QCQl=N. 

Denote <2(1,а,.. . ,аи~1)г==Сґ = (м1 ,м2 , . . . ,м / І) г . Since Q is non-singular, 
(w1?tt2,...,tt„) a r e linearly independent over F. We show that (uliu2,...,un) is 
a normal basis of F(ct) over F. We have 

0 t f = o ( ^ l ^ a , . . . ^ a " " T = e C ( l , a , . . . , a " - 1 ) 7 ^ QCQ''U = NU. 
Explicitly: 

(guugu2, ...,gu„) = (w2,w3, ...,u,,,uJ, 
whence 

W2 = 0W1? W3 = #W2, . . . , #W,,_i = W„ , 
and 

L/ = (ul9gul9g2ui9 ,..,gn~1u1) . 
This proves Theorem 1. 

Note for further purposes: Since N" = E, the relation (3) implies C" = E. Next 
sincedet|yV| = ( - l ) " " 1 , wehavede t |C | = ( - l ) " " 1 . 

We now turn to the question how to find effectively all normal bases of F(cc) 
over F. This will be done by using the matrix C introduced above. 

We have seen: Ifan n x n matrix Q satisfies (3), then the elements ofthe column 
vector Y= g ( l , a , . . . , a " " 1 ) 7 form a normal basis. Conversely, suppose that the 
elements of the vector Z = Л( .1 ,а , . . . , а и _ 1 ) г with some non-singular matrix R 
form a normal basis, i.e. gZ = NZ. Then 

R(gUg*,...,goT^y = NZ, 

implies RC(l, a, ..., a"" 1) 7 = NZ and RCR~lZ = iVZ. Hence ДСЯ" 1 = ЛГ, i.e. R 
satisfies (3) with Q = R. 

To find all solutions satisfying (3) (with unknown Q) we first find all solutions 
of QC = NQ. 

Denote by Qi = (rn, ri2, ..., rin) (i = 1, 2, ..., и) the rows of Q. Then 

(0 1 0 . . . 0\ (g1 

0 0 1 .. . 0 I I Q2 
( i l ì 

02 

i i i - 1 

U» І 

с = 

\ 
0 0 0 . . . 1 
1 0 0 . . . 0 

n-í 

{Qn 
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implies QXC = Q2, Q2C = Q3, ..., Qn-iC = Qn [and qnC = ^ ] . Hence ß is necessarily 
of the form 

(4) 
Q = 

Qi 

QiC 

ôlC
2 

U i C " - 1 , 

Conversely, if Qx is an arbitrary row vector (with elements in F), then with respect 
to C" = E we obtain 

O,c = 

U c 
kc 2 

Uc*-
Ui 

і 

1 

J 

= NQ 

This implies 

Lemma 1. Any normal basis {œl, ш2, ..., ..., оэп) of the cyclicfield F(a) is of the 
form 

/соД /1 \ |g \ /1 \ 
0J7 

V°W 

= Ö « 

a""1/ 

where the row vector Q = (rí,r2,...,rn) (r^F) is restricted by the condition 
d e t | ß | Ф 0 . 

A row vector g = (г 1 ? . . . , г я ) will be called admiss ib le (with respect to C) 
iffor the corresponding matrix Q, we have dct | ß | Ф 0. 

For a given row vector o denote by ýQ(ty the monic A-polynomial of smallest 
degree (with coefficients in F) such that g фе(С) = 0. The polynomial ф0(Х) is called 
the minimal polynomial of@ with respect to C. Tt is well known that фв(Л) is uniquely 
determined and фв(Х) | A" — 1. 

The condition that g, gC, ..., oCn~x are linearly independent says that the minimal 
polynomial of Q with respect to C is Xn — 1. 

We decompose the polynomial kn —1 into the product of monic irreducible 
factors over F. This factorization is of the form 

(5) А " - 1 = [ Ф і (А) .? 2 (л) . . .ф , (Я)] ( . 

a) If the characteristic of the field F is zero, or a prime p ^ 2 with (и. p) = 1, 
then t = 1. 

b) Ifthe characteristic of F is p and n = mpe, (n, m) = 1, then t = pe, e è 1. 
Construct now the polynomials 

* i W - ^ ' * a ( A ) - ^ . . . . ^ ) - ^ . 
9i(A) Ф2(А) ^ ( я ) 
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The minimal polynomial of a row vector g with respect to C is A" — 1 if and only if Q 
is such that 

e 0 i ( C ) * O , е ф 2 ( С ) ф О , . . . , е ф г ( С ) ф О . 
This implies: 

Lemma 2. Denote by Wt the linear space of all row vectors g = (rx,...,rn) 
satisfying дф^С) = 0 (i = l , 2 , . . . , r ) . Then g is admissible with respect to C 
ifand only ifg is not contained in the (set theoretical) union [Wx u W2 u ... u Wr]. 

The procedure described by Lemma 2 can be essentially simplified. In particular, 
it will turn out that it is not necessary to solve the system of linear equations 
Q Фі{С) = 0. 

Lemma 3. Any vector g satisfying g фі(С)= 0 is contained in the linear space Vt 

spanned by the rows of the matrix q>i(C). 

Proof, a) We first give a very simple proof in the case that Xn — 1 = q>i(X) ... 
... фг(Я), where all irreducible factors are difTerent. 

Since q>i(C) . фі(С) = 0, it is clear that any g contained in Vt satisfies g Фі(С) = 0. 
We show conversely that any g satisfying g фі(С) = 0 is contained in Vt. 

Since q>i(X) and ф^Х) are relatively prime, there are two polynomials £t(A), n^X) 

such that si(X) q>i(X) + rji(X) фі(Х) = 1. This implies 

ЦС) q>{C) + n{C) ф{С) = E , 

and multiplying by g we obtain 

g = a ЦС) q>lC) + g ф{С) n{C) . 

If g is such that g (pi(C) = 0, we get g = g £ř(C) q>i(C). Denote g Čř(C) = 
= (к[1\ к%\ ..., típ) with kf є F. Then g = (кф,..., к^) q>{C), which says that g 
is a linear combination of the rows of q>i(C), hence it is contained in Vt. 

b) Suppose next the general case, i.e. the case that repeated irreducible factors 
may occur. Write 

A " - 1 = [^ (A) . . .<p , (A)r , 

where n = mpe, (ra, n) = 1, e ^ 0. We cannot apply the argument used above since 
q>i(X) and фі(Х) are not relatively prime. The proof which follows holds however 
also in the case a) (i.e. e = 0). 

Again, if g is in the linear space Vt spanned by the rows of q>i(C), then g ф,(С) = 0. 
We prove conversely, if g satisfies g фі(С) — 0, then g is in Vit 

Recall that there exists a non-singular matrix Q0 such that QoCQ^1 = N. If g(X) 
is any polynomial over F , t h e n O o 0 ( C ) 0 0 1 = g(N). 

Suppose that g = ( r i , r 2 , . . . , r „ ) satisfies g^ ; (C) = 0. This is equivalent to 
Q Фі(С) Qôl = 0 and QQö1 . Q0 ф{С) Ôô1 = 0. Write g' = gQô1 = (r[, r'2,..., r'n). 
We then have 
(6) e ' ^ ( N ) = 0 . 
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If the vector g' satisfies (6), then each of the rows of the matrix 

|a' \ Kr'2 . . . K 
Q'N = r > i . . . r;_ 

\6W"-v \rir'3 ... r; 
satisfies (6) 

The circulant to the right can be written in the form 

r[E + r'2N + r'3N2 + ... + KN"-1 = ^(iV). 

Hence tfr(iV) 0j(AT) = 0. 
Write ^(A) = q>i(X) ii(X) + /i0(A), where deg &0(А) < deg <př(A). Then /ř0(A) is 

necessarily the zero polynomial, since otherwise 

[q>i(N) Xi(N) + Xm(NJ] 4>{N) = X,o(N) 4>{N) = 0 , 

and the minimal polynomial of N would be a polynomial of degree <n, which is 
not true. Hence ф(Ы) = Xi(N) q>i(N). The first row of y(N) is g' = (r'u r 2 , . . . , r'n). 
Hence 

e ' = ( l , 0 , . . . , 0 ) z , ( N ) ^ ( N ) . 

Denote( l ,0 , . . . ,0)Xi(N) = (fci,fci,...,fci)- Wehave 

e' = (fci,fci,...,^)^). 
Using iV2o = 6o^ , ап(* <P/(N) ôo = ôo <Pi(C) w e n a v e successively 

QQö1 =(fci,fei,...,fc;)<Pi(iV), 

Є = (fei, fe2, ..., fei) ^(iV) ßo = (fei, fei, ..., K) Qo <p,(C) . 

Denoting (fei, fe2, ..., fe^) ßo = (fci> ^2, •••, fe«) (^i є ^7), w e finally obtain g = 
= (fcl5 . . . ,fe„)^(C), i.e. £ is contained in the linear space spanned by the rows 
of q>i(C). This proves Lemma 3. 

We have proved the following Theorem which enables to find all normal bases 
of cyclic extensions of any field. 

Theorem 2. Let F(a) be a cyclic extension ofdegree n of thefield F and g a genera­
tor of the Galois group ofF(a)|F. Construct the matrix C defined by (l). Let (5) be 
thefactorization ofÀn — 1 into irreduciblefactors over F. Denote by Vt the linear 
space spanned by the rows of the matrix q>t(C). Choose a row vector g = 
= ( r l 5 r 2 , . . . , r w ) [with elements in F) such that дф{Ѵ1и...иѴп}, Construct 
finally the column vector 

Q = /соЛ = |g \ /1 
oo2 \ J gC 

[gC"-1! \аГ~\ 
Then (col5 co2, ..., con) is a normal basis ofF(a) with respect to F, and any normal 
basis ofF(oc) over F is obtained in this manner. 
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Remark . It should be noted that Vi n Vj may be different from 0. Next two normal 
bases (considered as unordered га-tuples) are either identical or have no elements 
in common. 

3. Examples 

The following examples illustrate the procedure described by Theorem 2. Severa^ 
supplementary observations are included in these examples. 

In the case offlnite fields we do not aim to construct large tables ofnormal bases. 
On the contrary, we show how such tables can be replaced by rather simple statements 
which enable to identify all generators of normal bases. 

Example 1. Let R be the field ofrational numbers and R(<x) the extension obtained 
by adjoining a root a of x3 — 3x + 1 = 0. R(oc) is cyclic over R and g: a ~> goc = 
= —2 + a2 is the generator of the Galois group {1, g, g2}. 

We wish to find all normal bases of R(oc) over JR. 
Here g\ = 1, got = -2 + a2, got2 = ( - 2 + a2)2 = 4 - a - a2. 

/ 1 0 0\ /1 0 0\ 
C = i-2 0 1 and C 2 = 2 - 1 - 1 . 

\ 4 - 1 - l / \ 2 1 0/ 

Since Я3 - 1 = (Я - 1) (Я2 + Я + 1), we have 

/ 0 0 0\ 
q),(C) = C - E = -2 - 1 1 , <p2(C) = E + C + C2 = 

\ 4 -1 -y 
The space Vx spanned by the vectors ( — 2, 1, 1) and (4, —1, —2) is the set of all 
vectors of the form fej(-2, - 1 , 1) + fc2(0, 1, 0), feř є jR. 

A vector ^ = (r t , r2, r3) belongs to V1 if and only if 

rx r2 r3 

-2 - 1 1 
0 1 0 

= ~(rx + 2 r 3 ) = 0 . 

The space V2 is the set of all vectors of the form (r l5 0, 0). Hence [with rt e iťj 

— 2r2 + 4r3 —r3 r2 ~~ r^ 
+ 2r2 + 2r3 - r2 + r3 - r2 

gives all normal bases over R provided that g = (r l5 r2, r3) is chosen in such a manner 
that (r2, r3) Ф (0, 0) and rx Ф - 2 r 3 . 

Remark . The numbers col5 co2, co3 satisfy an equation ofdegree 3 over R: m(x) = 
= (x — œx) (x — co2) (x — co3) = 0. After some calculations we obtain 

m{x) = (x - rxy - 6r3(x -rxf + 3(3r2 - r2 + r 2 r 3 ) (x - rx) + 

+ (r2 - 3r2r2 - rl). 
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These are all monic irreducible polynomials of degree 3 over R with roots in R(a), 
where the roots are linearly independent over R. [Provided that (r2, r3) ф (0, 0) 
and rx Ф —2r3.] 

Example 2. Consider the polynomial / (x) = x* — 3 over the field F = Я(і). 
Let Да ) = 0. We have the find all normal bases of F(a) over F. 

Here F(<x)|F is ofdegree 4. Take as the generator of the Galois group g: a ~± /a. 
Then g\ = 1, ga = ia, #a2 = —a2, ga3 = —ia3. Hence 

/1 0 0 0\ 
C = 10 i 0 01 

0 0 - 1 0. 
\0 0 0 -ii 

Next A4 - 1 = (A - 1) (A + 1) (A - i) (A + i) implies 

Фі(С) = C - £ = diag(0, i - 1, - 2 , - i - 1) , 

ф 2(С) = С + E = diag (2, і + 1, 0, - і + 1), 
Фз(С) = С - iE = diag(l - і, 0, - 1 - і, - 2 i ) , 
q>i(C) = C + ìE = diag (1 + і, 2i, - 1 + і, 0 ) . 

The space Vx consists of all vectors ofthe form (0, r2, r3, r4), where r2, r3, r4 run 
independently over all elements of R(i). Analogously for V2, V3, V4. The admissible 
vectors are exactly those vectors g = (r l5 r2, r3, r4) for which г1г2г37л

4 ф 0. 
We have £C = (ruir2, - r 3 , - i r 4 ) , ^C2 = (gC) C = (r l9 - r 2 , r3, - r 4 ) , ^C3 = 

- (дС2)С = (r l5 - i r 2 , - r 3 , i r 4 ) . 
All normal bases are given by 

Q = 
1 ^i - r2 \ 

* " ì ~~ ' з 

provided that ГіГ2г3г4 Ф 0 [гу є #(i)] . 
In the following examples we shall deal with f inite fields G F(q") as extensions 

of degree n over G F{q) (q = p\ s ^ 1, p a prime). We shall occasionally write Fq 

instead of G F(q). 
Suppose that in the decomposition (5) (over Fq) the degree of q>i(X) is dh so that 

dx + ... + dr = m. In this case it is known that the number of n-tuples 

{œ, œq, ..., co^'1} , ш eFqn, 

forming a normal basis is equal to the number 

*-">-M''r)-(1-? 
This has been proved by O. Ore [5] and reproduced in a slightly other form in [2] 
and [4]. 
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Recall also the well known fact that the number of monic irreducible polynomials 
of degree n over Fq is given by the formula 

J(^n) = -E*4lW-n d/n \dJ 

Remark 1. If we wish to know only the number v(q, n) it is not necessary to 
know the factors q>i(X) explicitly. It is known (see [7]) that the number ok ofirreducible 
factors of degree k of Xn — 1 over Fq, (n, q) = 1, is given by the formula 

°k = T^^\~)(n^qt ~ *)> 
К t/k \t ) 

where pi is the Moebius function. The numbers ok may be successively calculated 
from the system 

2 > , = ( n , i * - l ) , fc = l , 2 , . . . , [ n / 2 ] . 
m 

For instance, for the polynomial A15 — 1 over F2 we have 

ax = (15,2 - 1) , 
2a2 + ax = ( 1 5 , 2 2 - 1) , 
3a3 + c1 = (15, 23 - 1) , 

4a4 + 2a2 + <rx = (15, 24 - 1) , 

This gives crx = 1, o-2 = 1, cr3 = 0, ď4 = 3. Hence in our notation dt = 1, d2 = 2, 
J 3 = d4 = d5 = 4. Therefore 

^H-;)H)H)'=6 7 5-
The field GF(215) has 675 normal bases over GF(2). 

For our purposes the complete factorization of Xn — 1 over Fq is of course 
necessary. 

R e m a r k 2. For numerical calculations it is useful further to note. The matrix C 
is non-singular. As a matter offact we have det \C\ = ( - l ) " " 1 . On the other hand 
C — E has exactly the rank n — 1. Both statements follow from a general theory 
concerning factorization of polynomials over finite fields given by the author in [8]. 
(See also [2].) 

For convenience we introduce the following notion. An irreducible monic poly­
nomial g{x) of degree n over Fq will be called an iV-polynomial if the roots of 
g(x) = 0 form a normal basis of G F(qrt) over G F(q). If (co, aß,..., ш*"-1) is a normal 
basis of G F(qn) over G F(q), then the monic minimal polynomial m(x) of all the 
elements co, coq, ..., ofn~l is the same polynomial of degree n and m(x) is an iV-poly­
nomial. [The number of iV-polynomial is exactly v(g, rc).] 
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If G F(qn) is represented in the form Fjcc), then each basis is expressed as an rc-tuple 
of polynomials in a of degree ^ n — 1. But the totality of all iV-polynomials does not 
depend on the special choice of a. 

To decide whether а given irreducible polynomial f(x) is an iV-polynomial is 
of course conceptually very simple. Let / (a ) = 0. It is sufficient to calculate a, ag, . . . 
...,aqn as polynomials in a , a 2 , . . . , a " _ 1 and to check the linear independence. 
It is advantageous to use the matrix C. 

Example 3. We have decide whether the irreducible polynomial f(x) = x4 4-
+ 2x3 + x2 + 1 over G F(3) is an iV-polynomial. 

This is the case if and only if g = (0, 1, 0, 0) is an admissible vector with respect 
to C. 

Let a be defined by / (a) = 0. We have 1 = 1, a3 = a3, a6 = 2a + 2a2 + 2a3, 
a9 = 2 + 2a. Hence 

/1 0 0 0\ 
0 0 0 1 
0 2 2 2 * 

, \2 2 0 0/. 

Now (0, 1, 0,0) C = (0, 0, 0, 1), (0,0,0,1) C = (2, 2, 0, 0), (2, 2, 0, 0) C = (2, 0, 0, 2). 
The matrix 

/0 1 0 0\ 
[ 0 0 0 1 

2 2 0 0 1 
\2 0 0 2/ 

is singular. The given polynomial is not an iV-polynomial over G F(3). 

Example 4. Find all normal bases of G F(72) over G F(7) [in a given representa­
tion of G F(72J] and the corresponding quadratic iV-polynomials. 

Choose an irreducible polynomial of degree 2 over F 7 , e.g., / (x) = x2 + 1, and 
represent F49 as F7(a), where / (a ) = 0. 

We have J(7,2) = 21. Since Я 2 - 1 = ( Я - 1 ) ( Я + 1 ) , we have v(7,2) = 
= i - 72(1 - ^)2 = 18. 

Here 1 = 1, a7 = 6a, so that 

-P 
and 

*гЮ-С-Е-§§, <p2(C) = C + E = 0. 
The space Fi consists of all vectors of the form kj(0, 1), кг e F 7 . The space V2 is. 
the set of all vectors of the form k2(l, 0), k2 e F 7 . A vector (r1? r2) does not belong, 
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to Vx u V2 iff Гх ф 0 and r2 Ф 0. Hence the admissible vectors are the 36 vectors 
Q = (ri> ^2). where rl9 r2 run independently over the set {l, 2, ..., 6). 

Since (r1? r2) C = (r l5 6r2), we obtain all normal bases in the form: 

4:K:;<::)(K:-:::)'^0-
Since the couples (r l5 r2) and (r l9 6r2) lead to the same normal basis we obtained 
18 different normal bases. 

In this case [and in general for n = 2, n = 3 independently of q~\ it is easy to find 
all iV-polynomials. It is sufficient to calculate 

m(X) — (X ~ œi) (X ~~ œi) — [X ~~ ( r l + аГії\ [X ~ ( r l ~ a r2)] = 

= (x- r,)2 + r 2 , rxr2 Ф 0 . 

Since r2(mod 7) is one of the elements 1, 2, 4, m(x) gives the 18 different quadratic 
iV-polynomials over F7. 

Remark 1. Note that knowing one irreducible polynomial (namely x2 + 1) 
we have found "almost all" irreducible polynomils. The remaining three irreducible 
polynomials which are not iV-polynomials are x2 + 1, x2 + 2, x2 + 4. 

Remark 2. The polynomial f(x) = x2 + x + 3 is irreducible over F7. It is pri­
mitive and moreover an iV-polynomial. Ifwe represent F49 as F7(ß), where/(j9) = 0, 
the form of the normal bases will be, of course, different (but in some sense not 
"simpler"). 

Here ß1 = 6 + 6j8. Hence 

c-(i2). ,M-c-M-$*|. ЫС)-с + «-(^). 
The space Fi is the set of all vectors of the form & (̂6, 5), кг є F 7 , what is the same 
as fci(l, 2), ki є F 7 . The space V2 is the set of all vectors of the form fc2(l, 0), k2 e F 7 . 

A vector Q = (r1? r2) is admissible if and only if r2 Ф 0 and r2 Ф 2rx. The normal 
bases are now given by 

Q = {col) = \вс) \ß) = {r[ + 6r2, 6r2) \ß) = {r[ - r2 - r2ß) • 

Of course, the set of iV-polynomials remains the same as above. 

Example 5. Find all normal bases of G F(74) over G F(72) for fixed chosen repre­
sentations of G F(74) and G F(72). Find also the set of all iV-polynomials of degree 2 
over G F(72). 

We represent F 4 9 as F7(b), where b satisfies b2 + 1 = 0. Next x2 + x + b is 
irreducible over F7(b). Denote by a а root of x2 + x + Ь = 0. Then F 2 4 0 i can 
be represented as F7(b, a), i.e. any element of F 2 4 0 i is of the form u + voc, where 
u, v є F7(b) and a2 + a + b = 0. 

[The fact that x2 + x + b is irreducible over F7(ò) can be proved directly by 

301 



showing that there is no element £ 4- brj, £ejF7, ^ e F 7 , satisfying (£ + fe7)2 + 
+ (É + fey) + b = 0.] 

The number of monic irreducible quadratic polynomials over F49 is J(49, 2) = 
+ 1[492 - 49] = 1176. Since A2 - 1 = (A - l)(A + 1), we have for the number 
of different bases (or different ^-polynomials) v(49, 2) = \ . 492(l - ^ ) 2 = 1152. 

To construct the matrix C we need a9 = a49. By using a2 = - ( a + b) we have 
successivelya4 = - ( l + b) + (2b - 1) a, a6 = - 3 + (2 + 4b) a, a7 = (4 - 2b) + 
4- (2 — 4b) a and finally a49 = 6 + 6a. Therefore 

c . ( ; j ) *,(с, = с - * - ( ° ° ) , . (c ) -c + * = (^ ) . 
The space Fi consists of all vectors of the form fc^l, 2), where kx e F7(b). The space 
V2 is the set ofall vectors fc2(l, 0), fc2 є F7(b). Hence a vector g = (rl9 r2) is admissible 
if and only if r2 Ф 0 and r2 Ф 2r^ 

This gives 48 vectors of the form (0, r2), r2 Ф 0, and 48.47 vectors of the form 
(rur2), rx ф 0, r2 ф 2rv Together there exist 48.47 + 48 = 2304 admissible 
vectors [with elements from F7(b)]. 

Now 

QC = (rur,)^^(r, + 6r2,6r2). 

Hence all normal bases are given by 

(7) o-h) = ( Гі гЛН»(гі + гав Y 
V ' \ Ш 2 / ѴГ1 ~ r 2 ' " Г 2 / V06/ \ r l * r2 - r2V 
with the restriction r2 Ф 0, r2 ф 2r^ 

Since again the vectors (r l 5 r2) and (?^ + 6r2, 6r2) lead to the same basis we obtain 
i . 2304 = 1152 different normal bases, given by (7). 

To find all iV-polynomials it is sufficient to form 

m(x) = (x — cox) (x — co2) = [x — (rx + r2a)] [* ~" ( r i ~~ r2 ~~ r2 a)] = 

= (x - гг)2 + r2(x - Гі) + br^ . 

We have proved: All the 1152 iV-polynomials are given by 

{8) m(x) = x2 + (r2 - 2rx) x + r2 - rxr2 + br2 , 

where ru r2 є F7(b), with the restrictions r2 Ф 0, r2 Ф 2r^ 

Remark . We may use the polynomial m(x) to describe all irreducible polynomials 
of degree 2 over F7(b). 

If a>x and co2 = co49 are different elements the polynomial (x — а>х) (x — co2) is 
irreducible over F7(b). Now c^ — a>2 = (7^ + г2а) — (гх ~ r2 — г2а) = 
= r2(l + 2а). Hence putting in m(x) any ( r b r2) with r2 ф 0 we get an irreducible 
polynomial. The non-admissible vectors satisfying this condition are the vectors 
(rv r2), where r2 = 2ri9 rt Ф 0. Putting in (8) r2 == 2rx we obtain m(x) = x2 -
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Further Я3 - 1 = (Я - 1) (Я 
normals is v(7, 3) = J . 73(1 — 

We have 

Ф і(С) = С - £ = 

- 4 ) ( A -

-f)3 = 72, 

/0 0 0\ 
0 3 0 1 

\0 0 1/ 

~- (1 + ЪЪ) r\. For г1 є F7(b), Гі ф 0, this gives £(49 - 1) = 24 difTerent irreducible 
quadratic polynomials over F7(b). 

Summarily: The polynomials m(x) and m(x) describe all the 1176 monic irreducible 
quadratic polynomials over F7(b). 

Example 6. We have to find all normal bases of G F(73) over G F(7) in a given 
representation of G F(72). 

There exist 112 irreducible monic polynomials ofdegree 3 over F7. 
We shall represent F 3 4 3 as F7(a), where a3 + 2 = 0. Here a7 = 4a, a14 = 2a2. 

so that 

/1 0 0\ 
C = 0 4 0 . 

\0 0 2/ 

2) over F 7 , so that the number of Я-роІу-

q>2(C) = C - 4£ = 

<?з(С) = C -

The space V1 consists of all vectors of the form (0, r2, r3) Analogously for V2 

and V3. Hence the vector Q = (r1? r2, r3) is admissible if and only if т1т1ѵъ Ф 0. 
All normal bases are of the form 

r2oc + r3a2 \ 
+ 4r2a + 2г3оґ , 

r t + 2r2a + 4r3a2 / 

where rl,r2,r3 run independently over all elements of the set { l , 2 , . . . , 6 } . The 
vectors (r l9 r2, r3), (r l5 4r2, 2r3) and (r l9 2r2, 4r3) lead always to the same basis. 

This result may be formulated as follows: An element ß = rt + r2oc + r3cc2e 
є F7(cc) is a generator of a normal basis of F7(a) over F 7 if and only if г1г2гъ Ф 0. 
This immediately enables to decide whether a given element ß e F7(aJ is a generator 
ofanormal basis or not. [For large n, n > 3, analogous statements make unnecessary 
the construction of huge tables of normal bases. See Examples 9 and 10.] 

We now turn to the problem to find all ЛГ-polynomials. Any iV-polynomial is of 
the form 

m(x) = (x — a>i) (x — œ2) (x — co3) = 

= [(* - r i ) - (r2* + r3a2)] [(x - rt) - (4r2a 4- 2r3a)] . 

. [(x » rx) - (2r2a + 4r3a2)] . 
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After some calculations we obtain 

(9) m(x) = (x - r,f -
If r2r3 = я, then 

гіГъ(х - rt) + 2{r\ - 2r 

2{rl-2rl) = 2[r 2a2 

= 2 1 - 2a3 

Since r2(mod 7) is either 1 or — 1, we have 

m(x) = ( x - rx)3 - a(x - ^ ) ± 2(1 - 2a 3 ) . 

If here rx and a run independently through the elements {1, 2, ..., 6}, we obtain all 
the 72 different iV-polynomials (each polynomial exactly once). Such a nice result 
is hardly available for n ^ 4. 

Remark . We may use the result (9) to describe in a condensed form all the 112 
irreducible polynomials of degree 3 over F7.. 

The polynomial (x — cOj) (x — a>l) (x — oj\9) is irreducible if and only if the 
elements œ1 = Гі + r2a + r3a ri + 4r2a + 2r3a . 4 9 т. + 2r2a + 
4- 4r3a2 are mutually different. This is true unless r2 = r3 = 0. 

Since the iV-polynomials are automatically irreducible, we have only to consider 
the non-admissible vectors (0, r2, r3), (r l9 0, r3), (r l5 r2, 0) with the exception of the 
case (r l 5 0, 0). 

a) If rj = 0, r2r3 ф 0, we have m(1)(x) = x3 - r2r3x + 2(r3 — 2r3). 
b) If rt e F 7 , r2 = 0, r3 Ф 0, we get m(2)(x) = (x - ^ ) 3 + 3r^. 
c) If rt є F 7 , r2 Ф 0, r3 = 0, we get m(3)(x) = (x - rx)3 + 2r | . 

This gives 12 + 14 + 14 
nomials). 

40 irreducible polynomials (which are not iV-poly-

Example 7. Consider the field GF(34) over GF(3), if GF(34) is represented 
by F3(0c) and a4 + a + 2 - 0. 

a) There exist 18 irreducible polynomials of degree 4 over F 3 . One of them is 
+ x + 2. 

Since A4 - 1 - (A - 1) (A + 1) (A2 + 1) over F 3 , we have v(3, 4) = i . 34 

• (1 ~ i ) 2 • (1 ~ §) = 8. Hence there are 8 different normal bases. 
Using a4 + a + 2 = 0 we get or = a2 + 2a 

C = 

q>,{C) = C - £ = 

+ a , so that 

Ф2(С) = C + F 

/2 0 0 0\ 
0 1 0 1 
0 0 2 2i 

\ 0 1 1 2/ 
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сръ{С) = С2 + E 

To get simple descriptions of the vector spaces Vu V2, V3, we use elementary row 
operations. It follows that Vu 

matrices 
/0 1 0 0\ 
0 0 1 0 , 

\0 0 0 1/ 

V2, V3 are spanned by the rows of the following 

1 0 0 0 
0 1 2 2 

ri 
1 
0 
0 

r2 
0 
1 
0 

^3 
0 
0 
1 

Г4. 

0 
1 
1 

The space V1 consists of all vectors of the form (0, r2, r3, r4). Hence an admissible 
vector is necessarily of the form (r l9 r2, r3, r4), rx Ф 0. Next an admissible vector 
(r l 5 r2, r3, r4) does not belong to F2, therefore we have necessarily 

= r2 + r3 - r4 Ф 0 

Any vector not contained in Vx u V2 is of the form (r1? r2, r3, r4), where ^ ф 0, 
r4 ф г2 + r3. From these 36 vectors we have to exclude the 4 vectors contained 
in V3 (with r± ф 0): 

(1 ,1 ,2 ,2) , (1 ,2 ,1 ,1) , (2 ,1 ,2 ,2) , ( 2 , 2 , 1 , 1 ) , 

(which satisfy r4 Ф r2 + r3). 
We obtained the following result: An element ß e F3(a), ß = rx + r2a + r3a2 + 

+ r4a3 , is а generator of a normal basis if and only if rt ф 0, r4 ф r2 + r3 and 
(r2, r3, r4) Ф (1, 2, 2), (r2, r3, r4) Ф (2, 1, 1). 

This solves, as a matter of fact, our problem since for any ß є F3(a) we can im­
mediately decide whether ß is a generator of a normal basis or not. E.g. ßx = 
= 1 + a + 2a2 + a3 is а generator, while ß2 = 1 + 2a + 2a2 + a3 is not 
а generator (since r2 + 7л

3 = r4). 
b) In the case (as our) where the number of admissible vectors is relatively small 

we can write down all admissible vectors. In our case the first half of them is: 

(1 0 0 1), (1 0 2 0), (1 2 0 0), (1 1 2 1) , 
(1 0 0 2), (1 0 2 1), (1 2 0 1), (1 2 1 2 ) , 
(1 0 1 0), (1 1 0 0), (1 1 1 0), (1 2 2 0 ) , 
(1 0 1 2), (1 1 0 2), (1 1 1 1), (1 2 2 2 ) . 

The second half is obtained by multiplying each vector by the element 2. 
The rows ofthe matrices M = [@, gC, gC2, c?C3]T introduced below are calculated 

successively as gC, (gC) C, (c>C2) C. 
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Put, e.g. Q = (1, 0, 0, 1). This gives the matrix M1. Then choose for g an admissible 
vector which is not a row of Ml9 e.g., g = (1, 1, 0, 2). This gives M2 . In this manner 
we obtain the matrices Mx — M4 . Multiplying each row by 2 we get M5 — M8 . 

1̂ 1 0 2\ /1 2 0 0\ 
1 2 2 0 
1 0 2 0 ' 

a o 2 1 / 

Mx = 

M, = 

2 0 0 2^ 
2 2 2 2 
2 2 1 2 
2 2 0 oi 

MR = 

The normal bases Qt (i = 1, 2, ..., 8) are given by Mi (1, a, a 

i2j = 

(1 + a3 

1 + a + a2 

1 + a + 2a2 

Д + a 

+ a0 

+ a3 ß« = 

/2 + 2a2 + a3 

2 + a + a3 

2 + 2a + 2a2 

U + 2a2 

c) We now turn to the problem to describe all iV-polynomials. It is easy (even 
for n > 4) to write down the matrix M corresponding to the "general form" of an 
admissible vector (with indeterminates ru r2, r3, r4). This is obtained by successive 
multiplication of the rows by C. In our case we have 

lrl r2 r3 r4 

r1 r4 r3 + r4 r2 + 2r3 + r4 
M = 

r2 + 2r3 + Тл r2 + 2r4 + гъ + r* і 
+ + 

The elements of the matrix M are always linear forms of the rf. 
Denote co1 = rt + r2oc + r3oc + r 4 a , a>, ri + (r2 + r3 + ^4) a + 

+ (2r2 + r3) a2 + r2a3 . What is technically by far not easy is to calculate the product 
(x — o>i)... (x — w4) (with indeterminates r t). 

But for any specified admissible vector (r l9 r2, r3, r4) the corresponding N-
polynomial can be obtained as the minimal polynomial of ß = rx + r2a + r3a2 + 
+ r4oc3 by а well known general procedure (see, e.g., [4]). 

Consider, e.g., Q2 and the third row ß = 1 + 2a2. (Recall that all rows of Qt 

have the same minimal polynomial.) We compute 

1 = 1 , 

ß = 1 + 2a2 , 
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ß2 = 2 + 2a + a2 , 

ß3 = 1 + 2a2 + a3 , 

ß* = 2 + a + 2a2 + a3 . 

Then the coefficients ofthe monic minimal polynomialm(x) = b0 + bxx + b2x
2 + 

f b3x3 + x4 are given as the solution of 

(1 0 0 0) 
1 0 2 0 
2 2 1 0 | 
1 0 2 1 
2 1 2 1 

(b0, b l 5 b2, b3, 1) 

V 

= (0, 0, 0, 0) . 

This gives (b0, bl9 b2, b39 1) = (2, 1, 1, 2, 1) and m(x) = 2 + x + x2 + 2x3 + x4. 

Denote by mt(x) the minimal polynomial corresponding to the rows of Mt. In our 

example we obtain: 

mj(x) = 2 + 2x3 + x4 , 

m2(x) = 2 + x + x2 + 2x3 + x4 , 

m3(x) = 1 4- x + 2x3 + x4 , 

m4(x) = 1 + 2x 4- x2 + 2x3 + x4 , 

m5(x) = 2 + x3 + x4 , 

m6(x) = 2 + 2x + x2 + x3 + x4 , 

m7(x) = 1 + 2x + x3 + x4 , 

m8(x) = 1 + x + x2 + x3 + x4 . 

These are the eight ^-polynomials of degree 4 over F 3 . 

R e m a r k 1. It is ofcourse not necessary always to use the general method applied 
above to find the minimal polynomials. 

Consider, e.g., the basis Qx and ß = 1 + a. Then a4 + a + 2 = 0 implies 
(ß ~ 1)4 + (ß - 1) + 2 = 0, i.e. ß* + 2ß3 + 2 = 0 which immediately gives 
Wi(x). 

M 5 contains the same rows as Mx multiplicated by 2. We have ß = 1 + a3 є Ql9 

ß1 = 2ß = 2 + 2a3 є Q5. Now 2 + 2ß3 + ^ 4 = 0 implies 2 + 2 . (iß^3 + 
+ (ißiY = 0 which gives m5(x). Knowing m2(x), m3(x), m4(x) we obtain in the 
same manner m6(x), m7(x) and m8(x). 

Remark 2. The polynomial x4 + x + 2 over GF(3) is a primitive polynomial. 
Hence all non-zero elements of.F3(a) can be represented by the sequence {a, a2, a3, ... 

v 4 0 = 2 , . . . , a 7 9 , a 8 0 = l } . 

In the following [w0, ui9 u29 w3] will denote u0 + uxa + w2
a2 + w3a3» and we 

shall freely consider Q as a vector as well as a set ofelements. 

We compute 

a = [0, 1, 0, 0] , a2 = [0, 0, 1, 0] , a3 = [0, 0, 0, 1] , a4 = [1, 2, 0, 0] . 

Since oc4eQ39 we may write Q3 = {a4 ,a1 2 ,oc3 6 ,a1 0 8} = { a 4 , a 1 2 , a 3 6 , a 2 8 } . Since 
Q1 = 2 0 3 and 2 = a40, we have Q7 = {a44, a52, a76, a 6 8}. 
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[2, 1, 0, 1] , a8 = [1, 1, 1, 0] . 

48 „64 „32 „16 , a 
a19, a 
/71 

57 
}. 

}• 
v 7 3 7}> 

Further computing gives: 

a5 = [0, 1, 2, 0] , a6 = [0, 0, 1, 2] , 

Hence £24 = {a8, a24, a72, a56} and Q8 = 
Analogously we obtain: Q2 = {a11, 

0 5 = {a13, a39, a37, a 3 1 }, Qx = {a53, a79, a77, a 7 1 }. 
This "multiplicative representation" of normal bases has been used in [10] (and 

reproduced in [4]), where of course, many other informations concerning finite 
fields are included. 

Ifwe are interested only in normal bases, the result obtained in a) replaces a tabula­
tion since it enables to decide immediately whether a given ßeF81 (written in its 
usual form) is a generator of a normal basis or not. 

Example 8. Consider the field G F(26) as extension ofdegree 3 over G i^(22). 
a) The number of irreducible polynomials of degree 3 over F 4 is J(4, 3) = 20. 
We represent the field F4 by means of the irreducible polynomial x2 4- x + 1 

over F2. We have F 4 = {0, 1, b, b2}, where b2 + b + 1 = 0. Over F 4 the poly­
nomial A3 — 1 splits into three factors: Я3 — 1 = (A — l)(A — b)(A — b2). The 
number of Лґ-polynomials is v(4, 3) = } . 43(l — ^) 3 = 9. 

We now choose an irreducible polynomial ofdegree 3 over F 4 , e.g.,/(x) = x3 + 
+ x + 1, and represent F64 as F4(oc), where a3 + a + 1 = 0. Hence all elements 
of i^(a) are ofthe form u0 + uxa H- u2ot2, where ut e F4. 

Recall that the generator of the Galois group is now g: a -^ ccq = a4. We have 
a so that 

/ 1 0 0\ 
C = 0 1 1 . 

\0 1 0/ 
Further 

<Pi(C) E = cp2(C) = C - bE = 

<p3(C) = C - b2E 

The spaces Vi (over F4) are spanned by the rows of the following matrices 

'0 0 l \ / 1 0 0 \ / 1 0 0^ 
,0 1 o j ' V0 

1 0 0 \ / 1 0 0 
0 1 b) ' V0 b 1 

A vector g = (rx, r2, r3) (r( є F4) is admissible if and only if 

*"l 

0 
0 

*̂2 

0 
1 

г з 

1 Í 
0 

+ o, 
Г і 

1 
0 

r2 
0 
1 

^2 

0 
b | 

= r3 + br2 Ф 0 , 
Гі 

1 
0 

7*2 

0 
Ь 

Гз 

0 
1 ' 

Hence (rlt r2, r3) is admissible if and only if r t ф 0, r3 ф br2, r3 

= or3 + r2 ф 0 . 

Ф b2r2. 
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This implies the following result: An element ß = r1 + r2a + r3a2 [ r , eF 2 (b ) ] 
is а generator of a normal basis of F4(a) over F2(b) if and only if ri ф 0, r3 ф br2, 
гз * Ь2г2. 

This immediately enables to decide whether a given ß is a generator of a normal 
basis or not. E.g., ß = 1 + Ьа + Ьа2 is a generator, while ß' = 1 + Ьа + b2oc is 
not a generator of a normal basis. 

b) The admissible vectors in which ri = 1 are the following 9 vectors: 

(10) (1, 0, 1), (1, 1, 0 ) , (1, b, b ) , 
(1, 0 , b ) , (1, 1, 1), (1, b\ 0 ) , 
(1, 0, b 2 ) , (1, b, 0 ) , (1, b2 , b 2 ) . 

The remaining 18 admissible vectors are obtained by multiplyning all the vectors 
in (10) by b and b2 respectively. 

The matrices M = (g, gC, gC2)T coresponding to the vectors in (10) are 

/1 0 l \ /1 0 b\ /1 0 b 2 \ 
Mi = 1 1 0 , M2 = 1 b 0 , M 3 = 1 b2 0 . 

\1 1 1/ \1 Ь b / \1 b2 b 2 / 

Hence we obtain the normal bases 

/1 + a2 \ /1 + ba2 \ /1 + b2a2 

Qx = 1 + a , ß 2 = 1 + ba , Í23 = 1 + b2ot 
\1 + a + a2 / \1 + boc + fea2/ \ l + Ь2а + Ь2а2 

The remaining bases £>4 — i29 are obtained by multiplying Qu Q2, Q3 by b and b2 

respectively. 

c) To obtain the minimal polynomial mx(x) of ß = 1 + а it is sufficient to insert 
а = ß + 1 into x3 + x + 1 = 0. This gives ß3 + ß2 + 1 = 0. Hence mx(x) = 
= x3 + x2 + 1. Analogously we obtain m2(x) = x3 + x2 + bx + b2 and m3(x) = 
= x3 + x2 + b2x + b. 

Replacing in m^x), m2(x), m3(x) the term x by the term bx we obtain 

m4(x) = x3 + b2x2 + 1 , 

m5(x) = x2 + ò2x2 + Ь2х + b2 , 
m6(x) = x3 + Ь2х2 + x + b . 

Finally replacing in mx(x), m2(x), m3(x) the term x by b2x we get 

m7(x) = x3 + bx2 + 1 , 
m8(x) = x3 + bx2 + x + b2 , 
m9(x) = x3 + bx2 + bx + Ь . 

The polynomials m^x), ..., m9(x) are all iV-polynomials of degree 3 over F 4 . 

Example 9. Find all normal bases of G F(36) over G F(3) if G F(36) is represented 
as F3(a), where a6 + a + 2 = 0. 
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There exist 116 irreducible polynomials of degree 6 over F3. The polynomial 
6 + x + 2 is one of them. 

Since A6 - 1 = (A - 1)3 (A + 1)3 over F 3 , there exist v(3, 6) = £ . 36(l - i ) 2 = 
= 54 normal bases ofE129 over F 3 . 

1 + 2a, a9 = a3 + 2a4, We have a0 = 1, a3 = a3, a6 
= 1 + a + a^ and 

/ 1 0 0 0 0 0^ 
0 0 0 1 0 0 
1 2 0 0 0 0 
0 0 0 1 2 0 
1 1 1 0 0 0 

^0 0 0 1 1 l J 

f0 0 0 0 0 0\ 

q>i(C) = C - E = 

/ 2 0 0 0 0 0\ 
0 1 0 1 0 0 

q>2(C) = C + E = 1 2 1 0 0 0 
0 0 0 2 2 0 
1 1 1 0 1 0 

^0 0 0 1 1 2) 

0 2 0 1 0 0 
1 2 2 0 0 0 
0 0 0 0 2 0 
1 1 1 0 2 0 

^0 0 0 1 1 0J 

The matrix C — E is of rank 5, hence V1 has dimension 5 and it is immediately seen 
that Vx consists of all vectors Q = (r l5 r2, r3, r4, r5, 0), where r l 5 ..., r5 run in­
dependently over all elements of F3. 

By elementary row transformations we flnd that the vectors contained in V2 are of 
the form 

(ru r2, r3, r4, r4 - r2 - r3, r6) 

where rl9 r2, r3, r4 and r6 run independently over all elements of F3. (Hence V2 is 
again of dimension 5.) 

The admissible row vectors are all vectors g = (r l5 r2, ..., r6), where r6 Ф 0 and 
r5 Ф ^4 - 2̂ - r3. 

Hence an element ß = r1 4- r2oc + r3oc2 + r4a3 + r5a4 + r6a5 є ^З(а) is а generator 
of a normal basis over F3 if and only if r6 + 0 and r5 ф r4 — r2 — r3. 

This statement enables again to decide immediately whether a given ß e F3(oí) 
generates a normal basis or not. 

The admissible vectors are the vectors 

g = (r l5 r2, r3, r4, r4 - r2 - r3 + a, r6) , 

where r1? r2, r3, r4 run independently over F3 = {0, 1, 2} while a and r6 run in­
dependently over the set { l ,2} . This gives 34 . 22 = 324 admissible vectors. Since 
always 6 vectors give the same normal basis we obtain indeed 54 different normal 
bases. 

If we take, e.g., Qi = (0, 0, 0, 0, 1, 1), which is an admissible vector, we get (by 
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succesive multiplication by C) the normal basis 

(0 0 0 0 1 1Ì ( 
1 1 1 1 1 1 I 

Q, = | 0 0 1 0 0 1 
1 2 0 1 1 1 
2 1 1 1 0 1 

4 0 2 0 0 0 1 
< * \ / 

The remaining 53 normal bases are obtained in the same way. 

Example 10. Rather simple results are obtained if the degree is a power of the 
characteristic. Consider the case G ^(55) over G F(5). 

There are 624 irreducible polynomials of degree 5 over F5. One of them is / (x) = 
= x5 + 4x + 1. Since A5 - 1 = (A - 1)5 (mod 5), there exist ± . 55(1 - | ) = 500 
normalbases. If a satisfies / (a) = 0, we have a0 = 1, a5 = 4 + a, a10 = 1 H-
+ 3a + a2, a15 = 4 + 3a + 2a2 + a3 

Hence 

C = 

(1 0 0 0 0^ 
4 1 0 0 0 
1 3 1 0 0 
4 3 2 1 0 

\1 1 1 1 1 

C ~ E = 

(0 0 0 0 0^ 
4 0 0 0 0 
1 3 0 0 0 
4 3 2 0 0 
1 1 1 1 0 

The vector space V spanned by the rows of C — E consists of all vectors of the 
form (r l5 r2, r3, r4, 0) (rf є F5). The admissible vectors are the 54 . 4 = 2500 vectors 
of form (r1? r2, r3, r4, r5), where r5 + 0. This implies: 

Anelementß = rx + r2a + r3oc2 + r4a3 + r5a4GJP5(a)isageneratorofanormal 
basis of F5(a) over F5 if and only if r5 Ф 0. 

It follows, e.g., that a4 is generator of a normal basis, and this basis is (a4, a20, 
a100, a500, a2 5 0 0). It is of course by far simpler to use our method and to compute 
(0 0 0 0 1) C\ for i = 1, 2, 3, 4. We obtain 

Q = 

The corresponding iV-polynomial (i.e. the minimal polynomial of a4) is m(x) — 
= 4 + x + x2 + x3 + x4 + x5. 

'0 0 0 0 11 

1 1 1 1 1 
1 3 4 2 1 
1 2 4 3 1 

k0 4 1 4 1 ; 

'1 | 
a 
a2 

a3 

k) 
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