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ON COMPLETIONS OF PARTIAL MONOUNARY ALGEBRAS

DANICA JAKUBIKOVA-STUDENOVSKA, KoSice

(Received March 10, 1986)

Partial monounary algebras were investigated by W. Bartol [1]—[3], J. Novotny
[9]. M. Novotny [10]—[11], O. Kopetek [12]—[16] and the author [6]—[8].
In the papers [1]—[3], [9]—[11], [13] and [15] partial monounary algebras are
called machines (because of their relations to the theory of abstract automata).

For a class & of partial algebras we denote by «/* the class of all completions of
elements of /. If o = {4} is a one-element class, then we write A* instead of {A4}*.

H. Héft [S] proposed the question to find conditions under which HSPA* =
= (HSPA)*, where A is a partial algebra (the symbols H, S and P have the usual
meaning). This question was solved by W. Bartol, D. Niwiniski and L. Rudak [4].

We denote by % and %, the class of all monounary algebras or the class of all
partial monounary algebras, respectively. In this paper there are investigated the
classes HSP«/* and (HSPs/)*, where &/ < %,, and the relations between these
classes. In particular, it will be shown that if o/ < %, &/ & % and there is A€ o/
with card A > 1, then we have

(HSP)* = HSPoA* <> HSPoA* = % .

The author is indebted to W. Bartol for the suggestion of performing this in-
vestigation.

1. BASIC DEFINITIONS AND DENOTATIONS |

1.1. Definition. By a (partial) monounary algebra we understand a pair (4, f),
where A is a nonempty set and f is a (partial) mapping of 4 into A.

For a positive integer n the symbol f*(x) has a natural meaning; we put f°(x) = x
for each x € A.

1.2. Definition. Let (4, f)€ %, A monounary algebra (4, g) is called a com-
pletion of (A, f), if g(x) = f(x) whenever f(x) is defined.

1.3. Definition. Let (A,f) €U, x,y€ A Putx =, yifand only if there are m, n e
e N U {0} such that f*(x), f"(y) exist and f"(x) = f"(y). The elements of A/= are
called connected components of (A,f)- If A/=, is a one-element set, then (4,1)
is called connected.
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1.4. Definition. Let (A,f) € %, An element x € A is called cyclic, if there is n e N
with f*(x) = x. The union of all cyclic elements belonging to the same connected
component of (4, f) is called a cycle of (4, f).

If (A,f) € %, and if no misunderstanding can occur, then we sometimes write 4
instead of (4, f).

All classes of partial monounary algebras are assumed to be nonempty (unless
otherwise stated). If o = {(4,;,f;}: i eI} < %,and if no misunderstanding can occur,
we denote all partial unary operations f; by the same symbol f.

We recall the definitions of H, S and P for partial monounary algebras. ‘

If (A4, f), (B, g) e %,, then a mapping h: A — B is said to be a homomorphism
of (A,f) into (B, g) if the following holds: if x € A and f(x) exists, then g(h(x))
exists and g(h(x)) = h(f(x)). If such h is surjective, then (B, g) is called a homo-
morphic image of (4, f). A subalgebra of a partial monounary algebra (A,f) is any
partial monounary algebra (B, g) such that B < A and, for any x € B, either both
f(x) and g(x) exist and f(x) = g(x), or f(x) and g(x) do not exist. Direct products
of partial monounary algebras are defined componentwise in a natural way.

For a class &/ < %, let Hs/ be the class of all homomorphic images of partial
monounary algebras in .7, let S/ be the class of all isomorphic copies of subalgebras
of partial monounary algebras in &/ and let P/ be the class of all isomorphic copies
of direct products of partial monounary algebras in .

2. VARIETIES OF MONOUNARY ALGEBRAS

This section contains some simple auxiliary results concerning varieties of
monounary algebras.

2.1. Definition. Let ne N, ke N U {0}. A connected monounary algebra (4, f)
will be called (n, k)-bounded, if there is n’ € N such that n’ divides n, (A,f) contains
a cycle C with card C = n’ and f*(x) e C for each x € 4.

2.2. Definition. Let ne N, ke N u {0}. A monounary algebra (4,f) will be
called (n, k)-bounded, if each connected component of (4,f) is (n, k)-bounded.
The system of all (n, k)-bounded monounary algebras will be denoted 2/(n, k).
By the symbol (1, k) we denote the system of all connected (1, k)-bounded
monounary algebras.

2.3. Lemma. Let ke N U {0}, (4, f) be a monounary algebra. Then f*(x) = f*(y)
for each x, y € A if and only if (A, f) is connected and (1, k)-bounded.

Proof. It is obvious that if (4, f) is connected and (1, k)-bounded, the identity
S(x) = f*(») holds on A. Assume that f¥(x) = f*(y) for each x, y € A. Then (4, f)
is connected. Let x e A. For y = f(x) we have f*(x) = f*(f(x)) = f(f*(x)), thus
{f*(x)} is a cycle of (4, f) for an arbitrary x € A. Therefore (4, f) is (1, k)-bounded.
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2.4. Lemma. Let ne N, ke N U {0}. Further let (4, f) be a monounary algebra.
Then f"*¥(x) = f"(x)for each x € A if and only if (4,f)is (n, k)-bounded.

Proof. If (4, f) is (n, k)-bounded, then evidently f"4(x) = fX(x) for each x € A.
Assume that f"*¥(x) = f¥(x) holds for each xe 4. Since F(4(x)) = F4x), the
element f*(x) belongs to a cycle with the cardinality dividing n (for an arbitrary
x € A). Therefore (4, f) is (n, k)-bounded.

2.5. Lemma. Let neN, ke N U {0} and let (A,f) be a monounary algebra.
Then f"**(x) = f*(y) for each x, y € A if and only if (A, f) is connected and (1, k)-
bounded.

Proof. It is obvious that the identity f"**(x) = f%(y) hold in a connected and
(1, k)-bounded monounary algebra. Let f"*¥(x) = f%(y) for each x, ye A. Then
(A, f) is connected. If x € A is an arbitrary element, we obtain

fn+k(x) — fk(x) ,
S7Hx) = M)
from which it follows that f*(x) = f(f*(x)). This implies that (4, f) contains a cycle
{f¥(x)} for each x € A, thus (4, f) is (1, k)-bounded.
2.6. Remark. From 2.3 and 2.5 it follows, that if ne N, ke N u {0}, then the
identities
fH(x) =f%y) foreach x,yed,

f¥*(x) = fy) foreach x,ye4
are equivalent.

2.7. Lemma. Let 7~ be a variety of monounary algebras. Then one fo the following
conditions is satisfied:
(i) v =u;
(ii) ¥ = oA(n, k) for some neN, ke N u {0};
(iii) 7" = (1, k) for some ke N U {0}. «
Proof. Let Q be the system of all identities which hold in all algebras (4, f) € 7.
There exist only four types of identities: ’
o f4(x) = f4(x), where keN v {0} ;
Bi: f(x) = (), where keN u {0} ;
Yu: S7TH(x) = f¥(x), where neN, keNu{0};
O ["TH(x) = fX(y), where neN, keNu{0}.
According to 2.6 it suffices to consider only identities of the forms o, f, and V-
There exist Ky, K, < NuU {0}, M3 = N x (N u {0}) such that Q = {a,: kEKl} v
U {Bi: ke Ky} U {yu:(n, k) e M3}. Denote K ={keNu{0}: there is n€N
with (n, k)€ M3}, N3 = {ne N: there is ke N U {0} with (n,k)e Ms}. Let
(4,f)er.
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First let K, U K5 = 0. The only identities in Q are trivial and ¥" = %.
Now let K, = 0, K5 + 0. Then
(1) f"*¥(x) = f*(x) for each (n, k)e M.
According to 2.4, (1) implies
(2) (4, f) is (n, k)-bounded for each (n, k) € M.
By the symbol m denote the least common divisor of the elements of Ny and put
j = min K;. Then (2) yields that (4, f) is (m, j)-bounded, i.e. (4, f) € =(m, j), thus
() ¥ = d(m, ).
Each identity of @ is valid in =/(m, j) (according to 2.4), thus
(4) #(m,j) =7,
and (3) and (4) yield that ¥* = /(m, j).
Assume that K, # 0. From 2.3 it follows that if (4, f) € ¥, then
(5) (4. f) e (1, k) for each k € K.
Further, 2.4 implies
(6) (4,f) e (n, k) for each (n, k)€ M3 = N3 x K.
According to (5) and (6) we get that (4, f) is connected and
(7) (4, f) e # (1, k) for each ke K, U K.
Put | = min (K, U K3). Then (7) yields that (4, f) € (1, I), thus
(8) 7 = (1, 1).
Since each identity of Q holds in &7(1, ) according to 2.3, we obtain
9) Z(1,) =7,
and therefore ¥~ = (1, ).

3. HSPs/*

Let .o/ be a class of partial monounary algebras. Since #/* is the class of all com-
pletions of all partial algebras belonging to o7, we infer that HSP&/* is a variety
of monounary algebras. All varieties of monounary algebras were described in 2.7.
For each variety ¥~ of monounary algebras we shall give necessary and sufficient
conditions (concerning /), under which HSP&/* = 4.

3.1. Lemma. Let ke N U {0}. Then HSPs/* = o/ (1, k) if and only if o/* <
c A (1, k) and o* & o4 (1, k') for k' < k.

Proof. If HSPA* < /,(1, k), then obviously o#* < (1, k). If s£* = (1, k)
for k' < k, then HSPs/* < HSPs/ (1, k') = o£(1, k') = (1, k), which is a con-
tradiction.

Now let &/* = o/ (1,k), #* & o,(1,k') for- k' < k. Then HSP* <
< HSP« (1, k) = o (1, k). Since HSPs/* is a variety of monounary algebras and
it is a subvariety of (1, k), there is k' < k with HSP«/* = o/ (1, k'). From this
it follows that &/* < (1, k'), and therefore k' = k, HSPs/* = s/ (1, k).

3.2. Lemma. Let k€ N U {0}. The following conditions are equivalent:
(i) #* = (1, k) and st* & o (1, K) for k' < k;
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(ii) oA =, U A, where o, = Mc(l, k), oA, & dc(l, k')for k' < k and each
element of s/, is a one-element non-complete partial monounary algebra (here A,
can be empty).

Proof. The implication (ii) = (i) is obvious.

Suppose that the condition (i) is satisfied. Let (4, f) € . If (4, f) is complete,
then (4, f) e &#* = o4 (1, k). Let (4, f) be non-complete. If (4, f) is not connected,
then there is a completion (A, g) of (A,f) such that (A, g) is not connected as well.
But (4, g) e o#* = o/(1, k), which is a contradiction. Hence (4, f) is connected.
If (A, f) consists of more than one element, then there is a completion (4, h) of
(A, f) such that (4, h) contains a cycle C with card C 2 2, a contradiction to the
relation (4, h) e o&* < (1, k). Denote o, = A U, o, = o — . Thus we
have shown that &7, = &/ (1, k) and each algebra belonging to .« is a one-element
non-complete partial monounary algebra. If we suppose that &/, = (1, k') for
some k' < k, we get (since /5 = Z(1,0))

A* = (A Uty =Adiud; A UA(1,0) S
< (1, k)0 #(1,0) = L (1, K),
a contradiction with (i).

3.3. Lemma. Let neN, n > 1, ke Nu {0}. Then HSPs* = of(n, k) if and
only if o£* < a(n, k) and &* & A(n', k) for (W, K) + (n, k), k' <k and n’
dividing n.

Proof. Let HSP&/* = .xzi(n, k). Then obviously «/* < d(n, k). Assume that
of* < of(n', k') for some k' < k, n’ dividing n, (n', k') # (n, k). Then HSPs/* <
< HSPsA(n', k') = o(n', k') = s#(n, k), which is a contradiction.

Conversely, suppose that «* < «/(n, k) and o* & (n', k') for k' =
n’ dividing n, (n’, k') # (n, k). This implies &/* & (1, k') for k' < k (since n +
and thus

(1) wr* & (1, k') for k' < k.

Further, HSPo/* = HSPo/(n, k) = o/(n, k). Hence HSPs/* is a subvariety of
o/(n, k), therefore either there are n’, k' such that HSP«/* = o/(n', k'), k' £ k,
n’/n, or there is k' < k with HSP&/* = szc(l, k'). If HSP/* = M(n', k’), then
A* = of(n, k') and from the assumption it follows that n’ =n, k' = k. If
HSPo* = o (1, k') for k' < k, then &/* = (1, k'), a contradiction to (1).

3.4. Lemma. Let ke N U {0}. Then HSPo/* = s£(1,k) if and only if A* <
c (1, k), &* € A1, K') for k' < k and o/* & (1, k') for k' < k.

Proof. Let HSPY* = .,Qf(l, k). Then «* = ﬂ(l,k). If o* = .,ch(l, k') for
some k' <k, then HSP«/* = HSPoA (1,k') = A (1,k') = (1, k), which js
a contradiction. If o/* < «/(1, k') for some k' < k, then HSPo/* = HSPs#/(1,k') =
= o(1, k') ¢ (1, k), which is a contradiction. ;

Conversely, let o/* = (1, k), &* & A (1,k') for k' < k and 4* & (1, k')
for k' < k. Then HSPs/* = HSPoA(1, k) = (1, k), i.e. HSP/* is a subvariety

k,
1),
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of the variety (1, k). Therefore either there is k' < k with HSPo/* = o/ (1, k'),
or there is k" < k with HSPs/* = o/(1, k"). If HSPa/* = o (1, K'), then o/* <
c o (1,k'), a contradiction. If HSPo/* = o/(1, k"), then o/* < (1, k"), hence
k" = k.

3.5. Definition. Let ne N, k, e N U {0} and let (4, f) be a partial monounary
algebra, 4 = AU A, U ... U A4,, where either 4, =0 or A, is complete, and
Ay, ..., A, are distinct noncomplete connected components of (4, f) (here A— A, = 0
ifand only if I = 0). A partial monounary algebra (4., f) is said to be (n, k)-bounded, if
there are kg, ..., k,e N U {0} such that the following conditions are satisfied:
(a) if Ay * 0, then
(i) (4o.f) € A(n, ko) and (Ao, f) & L(n, k) for ky < ko;
(i) ko + ... +k + [ = k;

(b) if 4 — A, * 0, then
(i) if ie {1, ..., 1}, x € 4, then f**'(x) does not exist;
(iv) Lem. (1,2, .. ky + ..o+ Ky + 1)/n;

(c) if 4g =0 and A — Ay # 0, then k, + ... + k, + | < k + 1. (Let us remark
that this definition of (n, k)-bounded partial monounary algebra for a complete
monounary algebra is in accordance with the definition 2.2.)

3.6. Definition. Let ne N, ke N U {0}. The class of all (n, k)-bounded partial
monounary algebras (complete or non-complete) will be denoted d/z(n, k). The
class of all elements of yi/?(l, k) which are connected, is denoted by the symbol
11, k).

3.6.1. Corollary. /(n, k) < o /(n, k) for ne N, ke N u {0}.

3.7. Lemma. Let ne N, ke N U {0}. If oZ* = </(n, k), then o/ <= of jin, k).

Proof. Let &#* = o(n, k), (A, f) € o.If (4, f) is complete, then (4, f) € o #(n, k).
Let (A4, f) be non-complete. Since (4, f)* = o/* < (n, k), there exist only finitely
many elements x in A for which f(x) is not defined (in the opposite case, after
appropriate completion we could get a component without cycle, and it does not
belong to #(n, k)). Let A = Ay U A, U ... U A;, where either Ay = 0 or A4, is
complete, / = 1 and A4, ..., 4, are distinct non-complete connected components
of (4,f). Since o/* = o#(n, k), each complete connected component of (4, 1) is
(n, k)-bounded. Hence either 4, = 0 or there exists k, € N U {0} such that 4, is
(n, ko)-bounded and it is not (n, ky)-bounded whenever ko < ko. Further let
x; € Ay, ..., x, € A, be such that f(x,), ..., f(x,) are not defined. If we define a com-
pletion (4, g) € (A4, f)* such that g(x,) = x.....g(x;) = x;, from the fact that
(4, f)* = =(n, k) it follows that there are ky, ..., k; with

(1) g*(x) = x, for each x € Ay, ..., g*(x) = x, for each x € 4,. We can suppose
that k, (and analogously for k,, ..., k) is the greatest non-negative integer such that

(2) there exists z; € 4, with g*(z,) = x,, g'(z1) * x, for each 0 < i < k;.
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From this it follows

(3) ff(z) = x
and

(4) if x € A,, then f***!(x) does not exist.
Let (A4, h) € (4, f)* be such that h(x,) = z,, h(x,) = z3, ..., h(x;) = z,. Then (4, h)
contains a cycle

{20, f(z0), oo fzy) = x0, f(22)s s f*¥(22) = X3y oo 20, f(20)s s f21(2)) = X4} s
ve. a cycle with m=(ky + 1)+ (ky + 1) + ... + (k, + 1) =ky + ... + k; +
elements. Since (4, h) e &* = (n, k), we get

(5) m/n.
Analogously as above, we can construct another completions of (A,f) which obtain
cycles with 1,2...., m — 1 elements, hence 1/n, 2[n, ..., m — 1/n, and we get

(6) Lem.(1,2,..., m)/n.
Let (A, h,) be a completion of (A4, f) such that hy(x,) = z,, hy(x;) =
= z3, ..., hy(x,—y) = z;, hy(x;) = x,. Then (4, h,) e o*, (A, h,) contains a cycle
{x,} and

(7) hT—l(Zl) = platethtislg ) o N (D

= Btk ) etk D) o (2 = x,
hy=2(zy) * x, .

Since (A4, hy) € (n, k), (7) yields

B m—-1=k ie m=k+ 1.
If Ay = 0, we are ready with the proof that (4, f) is (n, k)-bounded (according to
the definition 3.5). To complete the proof we ought to prove that k, + k, + ...
.e. + k; + 1 < k, whenever A, # 0. Suppose that 4, £ 0. From the properties
of ko it follows that there is a complete connected component B of (4, f) such that
(B, f) is (n, ko)-bounded and (B, f) is not (n, ky)-bounded for ky < ko. Then there
is a cycle C of B and z, € B with f*(zy) € C, f**7'(z,) ¢ C. Further define a comple-

tion (4, g,) of (4, f) such that g,(x,) = 25, g,(x2) = 23, ..., 9:1(x,=1) = 21, g4(x)) =
= z,. Then

(9) g’;o+k1+...+k1+l(zl) — gl;0+k2+...+k1+l(xl) — gfi'o+k2+...+k1+(l—l)(22) —
_ gl;o+k3+...+k1+(l—1)(x2) - = g’;OH(X,) _ g’{"(zo)e c,
and
(10) g’io+‘..+k1+l—1(zl) — g’;o—l(zo) ¢ C.
From (9), (10) and from the relation (4, g,) € #(n, k) it follows
(11) ko + ... + k, + I £ k.
Therefore (4, f) e o j(n, k).

3.8. Lemma. Let ne N, ke N U {0}. If & < o /n, k), then o/* < (n, k).
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Proof. Assume that & = & (n, k). Let B = (B, g) e &/*, i.e. Be A* for some
A =(A,f)e. Since A is (n, k)-bounded, there are leN u {0}, ko, ...,k €
e N u {0} such that 4 = A, U ... U 4, either 4, = @ or A, is complete, Ay, ..., 4,
are distinct non-complete connected components of 4, and (a)—(c) of 3.5 are
satisfied. Consider a connected component B; of B. Then B, contains a cycle C
which either was contained as a cycle in 4, or has d < k; + ... + k, + [ elements.
In the first case card C/n according to (a) (i) and in the second case card C = d[n
according to (b)(iv). Now let x € B;. Suppose that the first case occurs. If f*(x)
exists, then f¥(x) e C, since ko, < k (according to (a) (ii)) and (a) (i) holds. Then

(1) ¢'(x) = f{x) e C.

If f¥(x) does not exist, then xe A — A,. Since ko + k; + ... + k, + | < k and
B e A*, we obtain

(2) g(x) e C.

Therefore (1) and (2) yield that B, € (n, k). The second case is analogous, the rela-
tion (2) is valid, too. Hence B e #(n, k), i.e. #* < (n, k).

3.9. Lemma. Let ne N, ke N U {0}. The following conditions are equivalent:

(i) «* = A(n, k), Z* & L(n', k') for (n', k') * (n, k), n'[n, k' < k;

(il) o = L p(n, k), £ & Lp(n', k') for (n', k') + (n, k), n'[n, k' < k.

Proof. Let (i) hold. From 3.7 it follows that o = & (n, k). If & = o j(n’, k')
for (n', k') # (n, k), n’[n, k' < k, then 3.8 implies that &/* < (n', k'), a contra-
diction with (i). The proof of the implication (ii) = (i) is analogous, it follows from
3.8 and 3.7.

3.10. Lemma. Let ke N U {0}. If (A, f)e (1, k), then there are Ay, A, = A
such that A = Ay u A, Agn A, = 0, either Ay, =0 or A, is complete, and
card 4, = 1.

Proof. Let (4,f) e o/ 4(1, k). Then 4 = A, U ... U A4, and the conditions of 3.5
are valid, where n = 1. If 4 — A, *+ 0, according to (b) (iv) of 3.5 we obtain

Lem. (1, ..., ky + ..o + kg + D)1,
ie.k;+...+k;+1=1Sincel =1, wegetl =1,k =0.

3.11. Corollary. Let ke N U {0}. If (A, f) € o /o (1, k) — U, then card 4 = 1.

Proof. The assertion immediately follows from 3.10.

3.12. Lemma. Let ke N U {0} Then the following conditions are equivalent:
(i) «&* < (1, k), £* & L [(1,K) for k' < k and" o* & (1, k') for k' < k;
(i) o = 41, k), & § AL p(1,K) for k' < k and o & o /(1, k') for k' < k.
Proof. Let (i) hold. According to 3.7 we get o = A 4(1, k). If o = A 4(1, k')
for k' < k, then 3.8 implies that =&/* < (1, k'), a contradiction with (i). Let & <
[ ch/ﬁc(l, k’) for k' < k. Let B e &/*, i.e. there is A € o/ with Be A*. If A is com-
plete, then B = A e 7 (1, k’). Assume that A is non-complete. Then 3.11 implies
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that card A4 = 1, hence A* < &/ (1, 0). Therefore o/* < (1, k'), which is a con-
tradiction to (i).

Suppose that (ii) is valid. Then 3.8 implies that &/* = (1, k). If o#* < (1, k')
for k' < k, then o < & 4(1, k'), a contradiction to (ii). Let &* < (1, k') for
k' <k, Ae /. Then A is connected. Since A€ (1, k), then we get that Ae
e o /(1, k), a contradiction, thus (i) is satisfied.

3.13. Denotation. Let o/ be a class of partial monounary algebras. For ke N u
U {0}, neN, n > 1 let us consider the following conditions concerning /:

(k) o = o, U o,, whete o, = Z[(1,k), £, & L(1,k') for k' < k, and each
element of </, is a one-element non-complete partial monounary algebra (here oL,
can be empty); ~

(1,k) o = Ayl k), o & Ap(1, k) for k' <k and o & (1, k') for
k' £ k;

(n,k) o <= L pn, k), o & oL f(n', k') for (n, k') + (n, k), n'[n, k' < k.

3.14. Theorem. Let </ be a class of partial monounary algebras, ne N, ke
€N v {0}. Then

o1, k), if (k) holds;
HSPs/* =<{s/(n, k), if (n, k) holds;
AU otherwise .
Proof. Let ¥ = HSP«/*. Since 7" is a variety of monounary algebras, according
to 2.7 we get that one of the following conditions is satisfied:
(i) ¥ = (1, k) for some ke N U {0};

(i) ¥ = (1, k) for some ke N v {0};

(iii) ¥ = (n, k) for some neN, n > 1, ke N u {0};

(iv) v = .

Then 3.1, 3.2 and 3.13 imply that (k) is valid if and only if (i) holds; 3.4, 3.12 and 3.13

imply that (1, k) is valid if and only if (ii) holds; 3.3, 3.9 and 3.13 1mply that (n, k)
is valid if and only if (iii) holds, which completes the proof.

4. (HSPst)*

Let o be a class of partial monounary algebras. If each element of &/ is complete,
then obviously HSPs/* = HSPs/ = (HSP</)*. We shall now consider the case
when & & %.

4.1. Lemma. Let card A = 1 for each Ae «Z. Then
(HSP)* = o (1,0) = HSPA* .

Proof. Let & be the class of all one-element partial monounary algebras. It is
obvious that if A€, then H(4)e¥, S(4)e . Further, if {4}, S &, then
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[lict 4, e &. Since o# = &, this implies

(1) HSP« < &.

The system #* consists of all one-element complete monounary algebras, i.e.

(2) &#* = o (1,0).

From (1) and (2) it follows
(3) (HSP«)* = o* = A (1,0).
The relation Z(1,0) = HSP</ is obvious, therefore

(4) (HSP)* = 4 (1,0).

According to 3.14 we have HSPs/* = o/(1,0), thus HSP«/* = o/ (1,0) =
= (HSPA)*.

4.2. Lemma. Let i be a cardinal number, o/ & % and assume that there is A € o/
with card A > 1. Then there is Be HSPs/ such that card B = i and each con-
nected component of B is a one-element non-complete partial monounary algebra.

Proof. Since o & %, there exists B; € o/ such that B, is not complete. Let b € B,
such that f(b) is not defined. Put C = B; x A’ and let p be the natural projection
of C onto B,. Denote B, = {z e C: p(z) = b}. Then f(z) does not exist for each
ze B, and card B, = card A' = i. Therefore there is Be S(B,) with i elements.
Hence B e HSP.</ and B fulfils the assertion of the lemma.

4.3. Lemma. Let o/ & % and assume that there is A € o with card A > 1. Then
(HSP)* = 2 .

Proof. Suppose that C € %. Let i = card C. According to 4.2 there is B€ HSP.o/
such that card B = i and each connected component of B is one-element and non-
complete. Therefore there is a completion (B, g) if B such that (B, g) is isomorphic
to C. Since Be HSP./, then we have (B, g) € (HSP.«Z)*, and therefore C € (HSPs/)*.

4.4. Theorem. Let o/ be a class of partial monounary algebras.
(i) If o < U, then HSPs/* = (HSPs/)*.
(i) If o &%, cardA =1 for each Ae s/, then HSPoA* = (HSPA)* =
= (1,0).
(iit) If o & % and there is A€ o/ with card A > 1, then (HSPZ)* = 4.
Proof. The assertion is the consequence of 4.1 —4.3.

4.5. Corollary. Let of be a class of partial monounary algebras. Then

(i) HSPs#* = (HSPA)*,

(ii) HSPo/* = (HSP/)* if and only if o < or card A = 1 for each Ae o
or HSP/* = 9.

Proof. The assertion follows from 3.14 and 4.4.

4.6. Corollary. There exists a partial monounary algebra (A, f) with
HSP(A, f)* + (HSP(A, f))*.
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Proof. Let A = {x, , z}, where f(x) = f(y) = y, f(2) is not defined and x, y, z
are distinct. Then 4.4 (iii) implies

(1) (HSP(4, f))* = «.
We shall show that (A4, f) is (1, 2)-bounded (cf. Def. 3.5). If we put [ = 1, ko = 1,
ky =0, A4y = {x, y}, A; = {z}, then A = A, U A, A, is complete and 4, is a non-
complete connected component of A. Further

(i) (4o, f) is (1, 1)-bounded and it is not (1, 0)-bounded;

(i) ko + ky +1=1+0+1=2;

(i) f****(z) = f(z) does not exist;

(iv) Lem. (1, ..., ky + I) = Le.m. (1) = 1/1.
Hence 3.5 yields that (4, f)is (1, 2)-bounded. According to (ii) it is not (1, 0)-bounded
or (1, 1)-bounded. From 3.14 we get '

(2) HSP(A, f)* = s#(1,2).

5. CLASSES OF PARTIAL MONOUNARY ALGEBRAS CLOSED UNDER H, S, P

In connection with the investigations performed above it seems to be natural to
consider the question which classes of partial monounary algebras are closed with
respect to H, S and P.

5.1. Definition. For a class &/ of partial monounary algebras denote V.eZ the class
of partial monounary algebras such that

(i) & = Vet

(ii) V.o is closed under homomorphisms, subalgebras and products (H, S and P);

(iii) if & = 7 and ¥ is a class closed under H, S, P, then VoZ < ¥".

For completeness let us introduce the following (known) assertion:
5.2. Lemma. If &/ is a class of complete monounary algebras, then Vs/ = HSPs/.

5.3. Lemma. If A is a class of partial monounary algebras, &/ & % and card A =
= | for each A€ o, then

(i) Vo consists of all one-element partial monounary algebras;

(i) Vo/ = Ho.

Proof. Let 7 be the class consisting of all one-element partial monounary algebras.
It is obvious that ¥ is closed under H, S, P and &/ < ¥°, hence V.&/ < ¥". Since
o/ & U, there is A € o such that 4 = {x}, f(x) does not exist. If Be ¥, then B =
= {y} and the mapping ¢:x — y is a homomorphism of A4 onto B, therefore
Be Ho/. Hence ¥ < He/ < Vo, which completes the proof.

5.4. Lemma. Let o < U,, &/ & U and assume that there is Ae of — U with
card A > 1. Then :
Ved = HSPsl = U, .

Proof. Let Ce %, card C = i = card I for some set of indices I. Denote B = A’
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Since A ¢ %, there is a € A such that f(a) does not exist. For each jel let p; be
the natural projection of A’ onto 4 and denote

B, = {xe B: pj(x) = a for some jel}.
If x € By, then f(x) does not exist. Further, card B, > i. Thus there is Be S(4’)
such that card B = i and f(x) does not exist for each x € B. Since card B = card C,
there is an injective mapping ¢ of the set B onto the set C. Obviously, ¢ is a homo-

morphism of a partial monounary algebra B onto a partial monounary algebra C,
therefore C € H(B). Thus we have proved that

Ce H(B) < HS(A') < HSP« ,
ie. %, < HSPo/. Hence HSPs/ = %, and HSPo = V.

5.5. Lemma. Let &/ < %,, o/ & %. Assume that there is A € o/ with card A > 1
and that, whenever A, € &/ — %, then card A, = 1. Then we have

Ved = HSPof = U, .

Proof. Let Ce %, card C = i = card I for some set of indices I. There exists
a complete monounary algebra A € o with card 4 > 1. Next there exists 4, €
€ o/ — U with card A, = 1. Put B; = A, x A’ Then B, is a partial monounary
algebra with card B, = card 4’ and if x € B,, then f(x) is not defined. Since i <
< 2’ < card 4, there is Be S(B;) such that card B = i and f(x) does not exist
whenever x € B. Analogously as above, C € H(B), i.e. HSPo/ = U, = V.

5.6. Theorem. Let &/ be a class of partial monounary algebras.
(i) If & = U, then Vof = HSPoA.
(i) If o & % and card A = 1 for each A€ o, then Vof = Hof and Vo con-
sists of all one-element partial monounary algebras.
(iii) If o & % and card A > 1 for some Ae s, then Vol = HSP = U,

Proof. The assertion follows from 5.2—5.5.

5.7. Corollary. If </ is a class of partial monounary algebras, then Vof = HSP<.
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