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0. The following result is known, see [1]: Let (M, g) be a closed, connected 2-
dimensional manifold with curvature K. Let (i) § £ K < 1 or (ii) $ < K < § resp.
If 6: M — S™(1) is a minimal isometric immersion then K = 1 or K = % in the case
(i) and K =% or K =} in the case (ii). For K =4, o(M) = S*(1) = S¥(1) is
a Veronese surface.

Here, I study minimal immersions a: M — S*(1). To each such immersion, I as-
sociate a normal vector bundle of ¢(M) and its curvature k. If K apd k satisfy certain
inequalities, a(M) is a Veronese surface as well.

1. Let M be a 2-dimensional manifold, 6: M — S%(1) an immersion into the
4-dimensional unit sphere of the real Euclidean space R>. To each point m,e M,
let us associate an orthonormal frame {m; v,, ..., vs} of R® such that m = o(m,);
vy, v, € T,(6(M)); m + vs = the center of S*(1). Then we have the fundamental
equations of our moving frames

(1.1) dm = o'v, + w?v,,
dv, = wlv, + 0dv; + ofv, + ©'vs, dov, = —a)fv1 + wiv; + oiv, + 0’vs,
doy = —oiv; — 030, + W30y, do, = —wjy, — wiv, — w3y,
dvs = —w'v; — 0,

with the integrability conditions (0! = —w})

(1.2) do' = o’ A 0}, do} = o} A of.

From

(1.3) P =0t=0"=0,

we get

(1.4) ' A} AD =0 Aot + 02 Al =0

and the existence of the functions ay, ..., by such that

(1.5) 0} = a,0' + a,0%, o} = b0 + bw?,

4
03 = a,0' + a;0?, 05 = bo' 4+ byw?.
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From (1.1) and (1.5), we get
(1.6) Am = (a; + az) vy + (by + bs) vy + 205,

4 being the Laplace operator. The mapping o is called a minimal immersion if the
vector Am is a multiple of vs, i.e., if

(1.7) a, +a3;=>b;, +by;=0.

In what follows, let us restrict ourselves to minimal immersions.
Around the point m, consider a field of tangent unit vectors

(1.8) t=xv, + yv,; x4+ y2=1.

By V, we denote the symbol of the covariant differentiation associated to the induced
metric ’

(1.9) ds? = (0')? + (0?)?.
Then it is easy to see that
(1.10) Vit = (1)vy + (1) va + (+) vs + {ay(x* — ¥?) + 2a,xy} vs +
+ {by(x* — y?) + 2b,xy} v, .
Each unit vector ¢ (1.8) is thus mapped into the point
(111)  m + Evs + oy &= ay(x* — y?) + 2a,xy, n = by(x* — y?) + 2b,xy
of the plane v,, = {m;vs, v,} of the normal bundle v of o(M). The points (1.11)
form, for m fixed and all ¢’s, the ellipse
(1.12) (b} + b3) €% — 2(a by + ayb,) &n + (ai + a3)n* = (ab, — ayby)?,

the so-called indicatrix of normal curvature.
The Gauss curvature K and the curvature of the normal bundle k are defined by

(1.13) do? = —Ko' A 0?, dot = —ko' A 0?
resp; we get
(1.14) K=1-aj—a}—bi— b3, k=2ab, — ayby).

The Veronese surface is defined as follows: In the Euclidean 3-space R*, consider
orthonormal coordinates (x, y, z) and the mapping S*(y/3) — S*(1) given by

(1.15) u, =3J3.yz, u,=%J3.xz, u;=4%4J3.xy,
u, = 53.(x2 = y?), us=Hx*+ y* - 227,
(uy, ..., us) being orthonormal coordinates in R°. To each point of the Veronese
surface, we may associate orthonormal frames such that we get (1.1) with
(1.16) o0} = -0} =1J3.0%, o =0} =1J3. 0", o} = —20];

see [2]. For our Veronese surface, we get
(1.17) K=1, k=-%.
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2. We are going to prove the following (auxiliary)

Theorem 1. Let o: M — S*(1), dim M = 2, be a minimal immersion; let M be
compact. If
(2.1) 2K > k
on M, the indicatrices of normal curvature are circles.

Proof. Let us start with the equations (1.5) + (1.7). The differential consequences
being

(22)  (da, — 2a,07 — by0}) A ©' + (da, + 24,0} — b,0}) A @ =0,
(da, + 2a,07 — b,03) A @' — (da; — 24,0} — byw}) A 0?* =0,
(db; — 2b,07 + a,03) A @' + (db, + 2b,0} + a,03) A ©? =0,
(db, + 2b,w} + a,03) A @' — (dby — 2b,0% + a,0%) A @2 =0,
we get the existence of functions a4, ..., 8, such that
(2.3) da; — 2a,07 — b,0% = q,0' + wo?,
db; — 2b,0} + a,0% = B0 + B0?,
da, + 2a,07 — b,0% = w0 — a,0?,

db, + 2b,07 + a,0% = f0' — B0*.
From this,

(2.9) d(a; + by) — (a; — by) Q0] — 03) = 4,0' + 4,07,
d(a, — by) + (ag + by) Q0] — @}) = 4,0' — 4,07 ;
Ayi=oy + By, Ayi=a, — By
The exterior differentiation of (2.4) yields
(25) {d4; — 4,(30] — 03)} A o' + {d4, + A4,(30] — 03)} A @?
= (2K — k)(ay, — b)) o' A @?*,
{d4, + 4,30} — 03)} A 0! — {d4; — 4,(30] — w3} A 0* =
= (k — 2K)(a; + by) @' A &*.
The function f being defined by
- (2:6) 2f = (ag + by)* + (ap — by)?*,
we have
df = {(a; + by) 4; + (az = by) A5} o' + {(a; + by) 4, — (a; — by) 4,} o?
and
(2.7). dxdf =2{4] + A; + 2K — k) f} o' A 0*.

The supposition (2.1) and the Stokes theorem (or the maximum principle) imply
f=0,ie,

(2.8) by =a,, b,= —a,.

Now, look at (1.12). QED.
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3. Let us prove our main Theorems.

Theorem 2. Let o: M — S*(1), dim M = 2, be a minimal immersion; let M be
compact. If ‘ :
(3.1) 2K > k2 —2K

on M, there are just two cases possible: (i) K = 1, k = 0, and o(M) is a great
sphere; (ii) K = 3, k = —3, and o(M) is the Veronese surface.
Proof. Theorem 1 implies (2.8), and the equations (2.3) reduce to
(3:2) da, — 4,20} + 0}) = y0' + 0,0?,
da, + 4,20} + %) = 0! — 0,0*.
The differential consequences are
(3:3) {do; — 0,307 + @3)} A ©' + {da, + o,(30] + 03)} A @?
= (2K + k) a,0' A @?,
{da, + o,(30] + 03)} A 0 = {do; — 2,30} + w})} A @?

= —(2K + k) a,0' A 0?,
( ) a,

and we get the existence of functions «;; such that
(34) da; — (307 + 03) = 40" + 0,07,
do, + 0,30} + @3) = 00" + ap0% ;
Uyy — gy = (2K + k)a,, oy + oz = (2K + k) a, .
For the function g defined by
(3.5) 29 = a? + a2,
we get
dg = (a0, + aa,) 0" + (a0, — a,0,) ®°
(3.6) dxdg = {2(«} + o3) + 2K + k) (a] + a3)} @' A 0?.
The supposition 2K + k = 0 and the Stokes theorem (or the maximum principle
as well) imply «; = a, = 0 and a} + a} = const.
First of all, let a; = a, = 0. Then the equations (1.1) reduce to
(3.7) dm = o'v; + 0?v,, dv, = 0o, + o'vs, dv, = —wiv, + 0y,
doy = wiv,, dv, = —ojv;, dvs = —olv, — 0?v,,
and o(M) is the sphere S*(1) in the (ﬁxed)' space R* through the center of S*(1)

spanned by the vectors vy, v,, vs.
Now, let a] + a3 #+ 0. Then

(3.8) 2K + k=0
from the integral formula based on (3.6). From (2.8) and (1.14),
(3:9) " K=1-2a}+a3), k=-2(a}+a}).
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Inserting this into (3.8), we get ai + a2 =land K = 1, k = —4%. To the points of
our surface o(M), let us associate the frames {m; v,, v,, v}, v}, vs} with

(3.10) 03 = /3. (a03 — ays), Vi =/3.(a0;5 + ayv,).

By a direct calculation, we get the fundamental equations (1.1) with (1.16), we have
just to replace v;, v, by v3, v} resp. Thus a(M) is the Veronese surface. QED.

Theorem 3. Let o: M — S*(1), dim M = 2, be a minimal immersion; let M be

compact. Suppose, on M, K > 0 and
(3.11) —2 miny K < miny k < max, k £ —2 max, K .

Then o (M) is the Veronese surface.

Proof. From K > 0 and (3.11), we get (2.1), and we may use the equations (3.2)
and (3.4). The prolongation of (3.4, ,) yields

(3.12) {dogy — (015 + 3059) ©F — 0y 05} A ! +
+ {doy, + (og — 30z5) ©F — 05,03} A 0% = (3K + k) 00" A ©F,
{doyy + (Bayg — t25) @0F + 0303} A 0! +
+ {doyy + (opq + 3uy,) @F + 2,05 A 0 = —(3K + k) ¢,0! A @F
and the existence of functions a;; such that
(3.13) doyy — (0y5 + 30p1) ©F — 0,038 = 0, 0! + ;0%
doy, + (g — 3035) ©F — 05,03 = a0 + a;,,0%,
doy, + (3ety; — op,) F + a0t = a211¢‘ + 0,07,
dagy + (031 + 3015) ©F + 0,05 = ay,0" + 055,07 ;
(3-14) Xy21 = Oy12 = (3K +k)ay, oy, — 0y = (3K + k) oy .
The differential consequences of (3.4; ,) are then
(3.15) a1y — Oyaq = 2Ky + ky)a, + (2K + k) oy,
Up12 — 0y22 = 2K, + ky)a, — 2K + k) oy,
Aygq + oy = 2Ky + k() a; + 2K + k) oy,
Uyys + %22z = 2Ky + ky)ay + 2K + k) ay,

the first covariant derivatives of K and k being defined by

(3.16) dK = K,0' + K,0?, dk = k,0' + k,w?
resp.

By a direct calculation, we get, for each r € R,
(3.17) 3d = {d(a} + a3) — 2K + k + r)d(a] + a3)} =

={o}; + a3, + i, + 03, + (BK + k — 2r) (] + o3) —
— (2K + k) (2K + k + r)(a} + a3)} o' A @?,
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and the corresponding integral formula (in the case of M being non-orientable, we
pass to its universal covering M* — M). Let us take

(3.18) r = —4(miny K + miny k).
Then using (3.11),
(3.19) 2K + k < 2max, K + maxy k £0,

3K + k — 2r = 3(K — miny K) + (k — miny k) +
+ 3(miny k + Z miny K) > 0,
2K + k + r = 2(K — miny K) + (k — miny k) +
+ #(miny k + 7 miny K) > 0.
Because of this, our integral formula yields «;; = 0 and
(3:20) oy =0a, =0,
(3:21) (2K + k)(a + a3) =0.

Thus a} + a3 = const. In the case a; = a, = 0, we get K = 1, k = 0, a contradic-
tion to (3.11). Thus af + a3 + 0, and (3.21) implies (3.8). Now follow the proof
of the preceding Theorem. QED.
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