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Czechoslovak Mathematical Journal, 38 (113) 1988, Praha 

ON CONJUGATE POINTS OF SOLUTIONS OF NON-SELFADJOINT 
DIFFERENTIAL SYSTEMS 

ONDŘEJ DOŠLÝ, BrnO 

(Received November 25, 1985) 

1. INTRODUCTION 

The aim of the presentpaper is to study the oscillation properties of solutions of 
linear differential systems 

(1.1) y' = B(x)z, z' = C(x)y, 

where J5(x), C(x) are n x n matrices of continuous real-valued functions and y(x), 
z(x) are n-dimensional vectors of real-valued functions. The principal method used 
here is the method oftransformations ofsystems ( l . l ) , which is described in Section 2. 
In Section 3 it is shown that the oscillation behaviour ofsolutions of (l . 1) can be studied 
by means of oscillation behaviour of solutions of certain selfadjoint differential 
systems. Section 4 involves application of the results of the preceding sections to 
investigation of scalar differential equations of the even order. 

The following notation is used. Identity matrices are denoted by the symbol E9 

the symbol 0 is used for the zero matrix of any dimension. The transpose of a matrix A 
is denoted by AT, and A is said to be symmetric whenever AT = A. I f ^ i s a symmetric 
n x n matrix, we write A > 0 ( ^0 ) to indicate that the matrix A is positive (non-
negative) definite. Cm(l) denotes the space ofreal-valued functions having continuous 
m-th derivatives on the interval J, C0 means continuity. If A(x) is matrix of real-
valued functions we write A(x) e Cm(l) if all entries of this matrix are of the class 
Cm(l). Throughout the paper I denotes a subinterval ofthe real line of an arbitrary kind. 
A pair of n-dimensional vectors (y(x), z(x)) is a solution of ( l . l ) on I if y(x), z(x) e 
є C1^) and equations (1.1) are indentically satisfied on L If Y(x), Z(x) e CX(J) are 
n x n matrices for which Y'(x) = B(x) Z(x), Z'(x) = C(x) Y(x) on /, we refer to the 
pair of matrices (Y(x), Z(x)) as to a 2n x n solution of (1.1). 
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2. TRANSFORMATIONS OF NON-SELFADJOINT SYSTEMS 

Consider the following transformation of system (1.1) 

(2.1) y = H(x)u, 

z = K(x) u 4- L(x) v , 

where Я(х), K(x), L(x) є C*(/) are n x n matrices of real-valued functions, H(x)r 

L(x) being nonsingular, for which 

(2.2) H'(x) - B(x) K(x) = 0 , 

L'(x) + K(x) Я _ 1 (х ) B(x) L(x) = 0 . 

Transformation (2.1) transforms system (1.1) to the system 

(2.3) u' = Bi(x) v , v' = Ci(x) u , 
where 
(2.4) Bi(x) = Я _ 1 (х ) B(x) L(x), 

Ci(x) = L _ 1 (x ) ( -K ' (x ) + C(x)H(x)). 

Indeed, from (1.1) and (2.1) it follows y' = H'u + Hu' = BKu + BLv and hence 
M' = H " * ( - # ' + БК) M + H-'BLv = B ^ . Further, z' = K'u + Ku' + Lu + 
+ Lu' = CHu. This implies ^ = L"*[ ( -K ' + CH)w - Ku' - Lv] = L~\-K' + 
+ CH) u - L-^KH'^L + L) v = Ctv. 

System (1.1) is uniquely determined by the pair of matrices B(x), C(x). For this 
reason we shall sometimes denote this system by (B, C). If(J5, C) and (JBl9 Cj) are two 
differential systems of the form (1.1), there exist n x n matrices #(x),iC(x),L(x) 
of the class Cl(l), Я(х), L(x) being nonsingular, satisfying (2.2), and the matrices 
jB(x), C(x) and #i(x), Ci(x) are connected by relations (2.4), we say that transforma­
tion (2.1) transforms system (J3, C) to system (Bu Сг). This fact will be denoted by 
(£, C) ^>H'K,L (J5b Ci). It would perhaps be more suitable to say that transformation 
(2.1) transforms (Bl9 C±) to (ß, C) since a solution (y(x), z(x)) of (B, C) is in (2.1) 
expressed by means of a solution (u(x), v(x)) of (Bl9 Cj). But for our purpose it is 
more convenient the former terminology and the following statement shows that 
this minor inaccuracy is immaterial. 

Lemma 1. Let (B, C) ^H>K>L (Bu Ct) ^M>N>P (Bz. C2). Then 
(Bl9 Cx) ^-^-L- iKH-i ,L- i ( B j C) ^HM,KM + LN,LP ^ ^ 

Proof. Let (B, C) ^>H>K>L (Б І9 Ci), i.e. the matrices #(x) ,K(x), L(x) satisfy (2.2), 
(2.4) and (w, tf) is a solution of (Bl9 Cx) if and only if (y, z) = (H(x) w, K(x) u + 
+ L(x) tf) is a solution of (Б, C). As 

[ Я 0 ] Г Я " 1 0 = p E 0 ] 

Lx LJ L - L ~ l x f r l L ~ j L0 £J' 
we have u = В'ХУ9 v = -LT*KH-*y + I" 1 *; Further, (Я" 1 ) ' -
- B^L''KH'1) = -H-^'H-1 + H-*BLL-^H-1 = 
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- -H-\H' - BK)H'1 = 0 , ( L " 1 ) ' + {-L-'KH-')HB,L-1 = -U^LL' 
~ L-'KH-"BLL-1 = -U'(L + KH''BL)L-1 = 0, В = Я ^ Ь " 1 and C = 
= LCiH-1 + K'H'1 = Ь ^ Я " 1 + ^ Я " 1 - (L' + KH-'BL)L-'KH-1 = 
= ЬС^Я" 1 - (L 'L^X + KH-'BK - K')H"1 = L C ^ - 1 -
- L{L-*LL'iKH-1 + L-'KH-'H'H-1 - Ь ^ К ' Я " 1 ) = L(~(-L~1KH-ly + 
+ C ^ - 1 ) , hence ( B ! , d ) ^ " ' ^ " * " " * ^ " * ( B , C ) . Nowlet 

(В, С) ^H>*>L (Б1? d ) ^ м ^ ' р (Б2 , C2). Then (ЯМ)' - Б(КМ + LN) = H'M + 
+ Я М ' - BKM - BLN = (Я7 - БХ) M + Я(М' - H-*BLN) = 
- Я(М' - B tN) = 0, (LP)' + (KM + LiV) (ЯМ)" 1 B(LP) = LT + LP' + 
+ KH-^LP + LNM-'H-*BLP = (L + KH'*BL)P + L(P' + NM'^,P) = 0, 
Б 2 = M'^^P = M-*H-^LP = (HM)'1 B(LP) and C2 = P~\~Nr + СгМ) = 
= - P " * N ' + P-\L-1CH - L-^')M = (LP)"1 С(ЯМ) - (LP)"1 (X'M + 
+ LiV' + JKĴ JV - KH-*BLN) = (LP)"1 [C(HM) - (K'M + LN' + KM' + 
4- LN)] = (LP)"1 [-(KM + LN)' + С(ЯМ)]. The proof is complete. 

Directly can be proved this statement. 

Lemma 2. J/ transformation (2.1) transforms (1.1) řo (2.3) řftew ř^e transforma­
tion y = Ь г _ 1 (х)м, z = -(L~1(x)K(x)H~í(x))Tu + HT~x(x)v transforms the 
system 

(2.5) / = BT(x) z, z' = C r(x) y 

to the system 

(2.6) u' = J5[(x) y , ü' = C[(x) w . 

In the sequel the principal role is played by the following statement. 

Theorem 1. There exist n x n matrices H(x),K(x),L(x)e&(l), H(x), L(x) 
being nonsingular, satisfying (2.2) andsuch that transformation (2.1) transforms 
system ( l . l ) to the system 

(2.7) u' = Q(x) v , y' = - QT(x) u . 

T^e matrix Q(x) is given by the relation 

(2.8) Q(x) = H-'(x)B(x)L(x). 

Proof. Let (Ui(x), Vi(x)), (Yi(x), Zi(x)), i = 1, 2, be the 2n x w solutions o f ( l . l ) 
and (2.5), respectively,for which (U^a), Vx(a)) = (Y^a),Z^a)) = (0,E), 
(U2(a), V2(a)) = (Y2(a\ Z2(a)) = (£, 0), where aeL Denote 

(-) ^M--'*-M-4^4n.*]-
<*o> *_[J,J]. *_ßfJ. 
Then (U;, 33;) are solutions of the 4n-dimensional selfadjoint system 

(2.11) U' = B0%, SB' = C0U 
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and by differentiation we can verify that 
(2.12) 

Consequently 
(2.13) 

(2.14) 
: obtain 

ulz,-
Y?V2 -
Ylv2 -
v\z2-

U[®2 

Hf»i 
ът

2и2 

502U[ 

u,ul 
»!»;[ 

V[Yt = 
zT

2u2 = 
z\u2 = 
V[Y2 = 

- s[u2 = -
- »iut = 
- VLT

2%2 = 

- » х и ї = -
- H2"I = 
- эз2*Г = 

0, 721/Г 
о, v2z[ 

-E, ZJU\ 
-E, V2Yl 

-E, 
o, 
0 . 

-E, 

o, 
o, 

- Y,Ul = 

- nzì = 
- ztu

T
2 = 

- vjl = 

o, 
o, 

-E, 

-E. 

Now let A = UiU[ + U2H^ = diag {4 l9 Л2}, where Лі = ^ U [ + U2Ul, A2 = 
= Y ^ 7 + Г2У2 • By means of identities (2.13) it can be proved, see e.g. [2], that 
the matrix A is positive definite, and hence the matrices Ai9 A2 are also positive 
definite. Let Dt > 0, i = 1,2, be the symmetric nxn matricesforwhich D] = At 
and let Ti(x), T2(x) be the solutions of the differential systems 
(2.15), TÍ = [D^B(V,Ul + Kaü5) О!"1 - D^D[] Tt , Ц(а) = E, 
(2.15)2 4 = [D^(B*(Ztf + Z a ^ ) DJ1 - D^D^ T2 , T2(«) = E . 
Further, let 

-rU'-py-
Then T = [Я~Чво»іИі + B0S2U£) # " 1 - D_1D')] T, T(a) = £, and by a direct 
computation we can verify that [D~1B0($S1Ul + 932U£)D_1 - D"*D']7, + 
+ D - % ( $ i U [ + $2н£ - Z)"1^') = 0, hence the matrix T(x) is orthogonal 
(i.e. T~1(x) = TT(x)) which implies that the matrices T^x), T^x) are also orthogonal. 
Let us set 
(2.16) H(x) = D,{x) T,(x) , 

K(x) = {V,{x) иЦх) + V2(x) Ul{x)) Нт-\х) , 
Цх) = D2\x)T2{x). 

Then HHT = DlT1T[D1 = Dl = A1 = VXV\ + U2UT
2, LLT = D2

lT2TlD2
l = 

= D2
2 = A2

l = (y t yr + Y^y1, H' - BK = D[Tt + DtTl - B(V^l + 
+ V,Ul)H7-1 - D[Tj, + D,[D^B{V,Ul + V2UT

2) D^ - D^D[] T, -
- В(ѴХѴ\ + V,Ul)H*-1 = B(V,Ul + V2UT

2) D;1 Tt - B(V,Ul + 
+ V2UT

2)D1 % ^ 0, L' + KH~lBL= -D^D'D71^ + D^% + 
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+ (VxUl + V2Ul)H*-*H-^D^T2 - -D^D'2D^T2 + ЩХТ2ТТ
2Т2 + 

+ (ViUl + F 2 ^ )H r - 1 H" 1 BDJ 1 T 2 = ~D2
lD'2D2

lT2 -ЩХТ2ТІ'В2ЩХТ2 + 
+ (V,Ul + Ka^)(HH11)-1 SL = -D^D,D;% - D^T^(-D^D,1 + 
+ D^foZl + Y2Zl)BD2

x) D2L+ (Fiuï + 7 2 ^ ) ( Я Я Г ) " 1 £L = 
= - D J ^ L + D2

lD'2L- DÏ2(YXZÏ + Y2Z£)£L + ( ^ t / [ + V2U
T

2)D;2BL = 

- D i * [ - ( n z [ + ^ І ) ( ^ У Ї + U2UÏ) + ( Y ^ + y 2 Y j ) ( ^ r + 
+ ^ ) ] D ^ L = D ^ [ ^ ( - Z [ i 7 , + r*Vx) Uj + ^ ( - Z [ C / , + YT

XV2) UT
2 + 

+ 7 , ( - Z ^ + Y*VjUl + y2(-ZlL/2 + YÏV2)U
T

2] D;*BL= D2
2(Y2Ul -

- Y^l)D^BL= 0. Finally, let Q(x) = H-*(x)B(x)L(x). According to (2.4) it 
remains to prove that LT\-K' + CH) = -QT. L~\-K' + CH) = 
= L-'[-{V{Ul + VtUÏ + ГгѴ\ + Ѵ2ит

2')Нт-' + (VJJl + 
+ к2и^яг-1яг'яг-1 + ся] = L^[-c(^ui + щи^н^1 -
- (v^ï + vxvl)BTnT~x + {vxul + ѵ2ит

2)нт~1ктвтнт~1 + с я ] = 
= L'1[-CHHTHT'1 - (VtVf + V2Vl)BTHT^ + (Ѵ±иІ + 
+ 72иї)(ЯЯ г)-1(и1К1

т + U2Vl)BTHT~x + СЯ] = L r[-L r-1L-1(K1Fi r + 
+ F2F2

T) + L ^ L - ^ F i t f ï + ^ ^ ( Я Я 7 ) " 1 ( ^ F f + U^)] B*H7"1 = 
- tf[-(Y^ + 7,yJ)(F,Fi + F2FJ) + ( Y ^ + У2У2

т)(Пи[ + 
+ V2Ul) (HHT)~i {U,Vl + tf2Fj)] ^ # r - i = L ' [ - ( ^ y f + Y2YT

2) (V,V[ + 
+ W ) + (Y,Zl + Y2ZÎ)(L/^Î + U2U

T
2)(HHT)-i {U,Vl + U27j)] J W " 1 = 

= L^Y,(-Y^V, + Z [ ^ ) VI + n ( - r ^ + Z[t/2) Vl + У2(-ї?Кі + 
+ ZT

2UX) V, + Y2(- y2
rF2 + ZT

2U2) if] BTHT~* = U{Y,Vl - Y2VX
T) BTHT~X = 

= -LfBTHT~x = - ß r . In the last computations the identities (2.13) have been 
used. The proof is complete. 

Remark 1. Let L{x) = HT~l(x) in (2.1) and let the matrices H(x),K(x) satisfy 
the identities H'(x) = B(x) K(x), HT(x) K(x) = KT(x) H(x). It can be verified that 
in this case the matrices B^x), Cx(x) are symmetric if and only if the matrices B(x), 
C(x) are symmetric. Consequently, in this case the transformation form Theorem 1 
transforms selfadjoint systems to selfadjoint system and Theorem 1 generalizes the 
main result of [3]. This theorem also generalizes the main result of [4], where 
transformations of differential systems of the second order (F(x) Y')' + G(x) Y = 0 
are investigated. 

3. CONJUGATE POINTS 

Let (7(x),Z(x)) be the 2n x n solution of (l.l) satisfying (Y(a),Z{a)) = (0, E) 
for some a eI. A point b > a (b < a) is said to be a right (left) conjugate point 
of a with respect to (l.l) if there exists an n-dimensional constant vector c such 
that Y(b) c = 0 and the vector function y(x) = Y(x) c is not identically zero between 
a and b. Further, we say that b is a conjugate point of multiplicity k (1 g k ^ n) 
if there exist linearly independent vectors cl9...,cfc for which Y(b)ci — 0 and 
Уі(х) = Y(x) ch i = 1, ..., k, are not identically zero between a and b. It is obvious 
that b is a right conjugate point of a if and only if a is a left conjugate point of b. 
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Lemma 3. Let (Sj(x), C^x)), (S2(x), C2(x)) be 2n x n solutions of the differential 
systems 
(3.1)! / = ß(x)z , z' = -QT(x)x, 

(3.1)a / = ôT(x)z, z' = -Q(x)j>, 

respectively, where ß(x)e C°(7) is an n x n matrix of real-valued functions. If for 
some a eI, (S,(a), C,{a)) = (0,£), i = 1, 2, then the following identities hold. 

(3.2) ST
2S2 + С\СХ = E , SXST

X + C,Cl = £ , 

S±Si + C2C2
 == " 5 ^ 2 ^ 2 "Í" ^ 1 ^ 1 = : ^ • 

Proof. See Kreith [6]. 

Theorem 2. Lei a eI and let a < rt ^ r2 й ••• > « < î á ř2 šs ... (я > h ž 
è /2 = ••• > я > î = h = •••) be the sequences of its right (left) conjugate points 
with respect to (1.1) and (2.5) respectively, every point repeated a number of times 
equal to its multiplicity. Then гг — ft (Zř = lt). 

Proof. Let (U(x), V(x)), (Y(x),Z(x)) be the 2n x n solutions of (1.1) and (2.5) 
respectively, for which (U(a), V(a)) = (7(a), Z(a)) = (0, E). By Theorem 1 and 
Lemma 2 there exist n x n matrices #(x), K(x), L(x) є C*(/), Я(х), L(x) being 
nonsingular, and an n x и matrix ß(x) such that 

(3.3)i (t/(x), F(x)) = (Я(х) Si(x), K(x) Si(x) + L(x) Q(x)) , 

(3.3)2 (F(x), Z(x)) . (LT-\x) S2(x), ( - L - \x) K(x) H'\x)f S2(x) + 
+ HT'\x)C2(x))9 

where (<S^x), Ci(x)), (S2(x), C2(x)) are 2n x n solutions of(3.l)i and (3.1)2 respec­
tively. Let b be a fc-multiple (left or right) conjugate point ofa with respect to (1.1). 
By (3.3)i there exist k linearly independent unit vectors cl9..., ck such that <Si(b) ct = 
= 0, i = 1,..., k. By (3.2) cJCl(b) C2(b) ct = 1, which implies the existence of unit 
vectors dl9..., dk for which dJ C2(b) Cj(b) dt = 1 and by (3.2) dJ S2(b) ST

2(b) dt = 
= 0, hence Sj(b) dt = 0. It follows S2(b)fi = 0, i = 1,..., k, where/i are linearly 
i dependent unit vectors. Consequently, by (3.3)2 b is a fc-multiple conjugate 
point of a with respect to (2.5). By the same method we prove that every fc-multiplied 
conjugate point of a with respect to (2.5) is also the fc-multiplied conjugate point of 
a with respect to (l.l). The proofis complete. 

Theorem 3. Two points a, b eI are conjugate with respect to (1.1) if and only if 
they are conjugate with respect to (2.11). 

Proof. Let a, b eI be conjugate with respect to (1.1). Then by Theorem 2 these 
points are also conjugatewithrespect to (2.5). This impliesthatfor the2n x n solutions 
(U(x), V(x)), (Y(x),Z(x)) of (1.1) and (2.5) respectively, satisfying (U(a), V(a)) = 
= (Y(a), Z(a)) = (0, E), we have TJ(b) cx = 0, Y(b) c2 = 0, cl9 c2 being nonzero 
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n-dimensional vectors. Set 

"W-[V1- *>"^U 
(U(x),S(x)) is the 4n x 2n solution of (2.11) satisfying (U(a),S(a)) = (0 ,£) and 
U(b)c = 0, where c = (cl,cl)7. Hence a, Ь are conjugate with respect to (2.11). 
As all arguments can be reversed, the proof is complete. 

R e m a r k 2. There exists relatively large theory concerning oscillation properties 
of solutions of selfadjoint differential systems of the form (1.1), see e.g. [1], [4]. 
Theorem 3 enables us to use some results of this theory for the investigation of non-
selfadjoint systems. 

4. SCALAR DIFFERENTIAL EQUATIONS OF THE EVEN ORDER 

Let Pij(x) e Cl(l), 1 ̂  f, / ^ n, be real-valued functions, рП)П(х) Ф 0 and con­
sider a scalar differential equation of the 2n-th order 

(4-І) i(-l)'[ZftjW**"P-0. 
i = 0 / = 0 

B 

Setting y = uu . . . , / " _ 1 ) = un9 v„ = YPnj(x)yU\ vn_k = -v'n_k+1 + 
n j = 0 

+ Y<Pn-kj(x)yU)> к = 1, . . . , n - 1, we have 
jf = 0 

(4.2) u' = A(x) w + B(x) v , u' = C(x)u + D(x) ü , 

where u = (w l 5 . . . , un)
T, v = (vl9..., vn)

T and 

1 for i =j + 1 , 1 g z,; ^ n - 1 , 
Л м = ̂  0 for і Ф 7 + 1 , 1 ̂  J J g n - 1 , 

-Pň,n(x) PnJ-t(x) > f o r * = n> 1 Ž J й n , 

Б t = /Pň,n(x) for M = n> 
í J \ 0 otherwise , 

Cij = P i _ ! j _ i ( x ) - Pi-i,n(x)PnJ(x)pnj^(x), 1 g ř,7 g n9 

- 1 for 7 = i + 1 , 1 S Uj й n - 1 , 
Du = ̂  0 for j Ф i + 1 , 1 ̂  f,j g n - 1 , 

Pi~iÁx)Pň,n(x) for ; = n, 1 g ï й n . 
Similarly, the adjoint equation 

(4.3) t(-i)4Zp^)^F = o 
j = 0 j=0 

can be written in the form 

w' = - DT(x) w + BT(x) z , z' == CT(x) w - AT(x) z , 
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where w = (wu ..., wny, z = (zl9 ..., z„) and и^ = y, ..., wn = y(" 1}, zn -
и и 

= L ^ > ( * ) j ^ > Zn-k = -z'n-k+i + lPj,n-k(x)yU\ 1 S к S n - 1. 
j = 0 j=0 

Now let us set 
p Ы_П> лЛ*Л 
Р,Ах)~Шх)о У 

0 ^ i,7 й n, and consider the 2-dimensional selfadjoint diíferential system 

(4.4) .i(-l)'ElPj*)^)]<0-.0. 
i = 0 j = 0 

Recall that two po in t sa ,b є і а г е saidto be conjugate with respect to (4.4) ifthere 
exists a nontrivial solution y(x) = (ух(х), y2(x))T of (4.4) for which y[j\a) = 0 = 
= y\J)(b)9 0 ^ j S n — 1, i = 1, 2. The conjugate points with respect to equation 
(4.1) are defined analogously. 

Theorem4. Two points a,beI are conjugate with respect to equation (4.1) if 
and only if they are conjugate with respect to system (4.4). 

Proof. Let a,beI be conjugate with respect to (4.1). By the definition of conjugate 
points with respect to (4.1) and according to transformation which enables to write 
equation (4.1) in the form (4.2), these points are also conjugate with respect to (4.2). 
Set u = Ri(x)u1, v = R2(x)vl9 where R[ = A(x)Ru Rf

2 = D(x)R2. By a direct 
computation we obtain 

(4.5) u\ = Ri\x) B(x) R2(x) v1 , 

v[ = R^(x)C(x)R^x)u! . 

Similarly, if we set w = #f"*(x) wl5 z = R^x(x) zl9 we have 

(4.6) w[=Rl(x)BT(x)RrXx)z^ 

z[ =Rl(x)C^x)Rl-'(x)w,. 

Using Theorem 2 and the nonsingularity of the matrices #i(x), R2(x) we see that a, b 
are conjugate with respect to (4.5) and (4.6), and thus they are also conjugate with 
respect to (4.3), i.e. there exist nontrivial solutions Уі(х), y2(x) of (4.1) and (4.3) 
respectively, for which y\j)(a) = 0 = y\J)(b), i = 1, 2, 0 ^ j ^ n — 1. If we set 
У(х) = (Уі(х)> У2(х))т> w e c a n verify that y(x) is a solution of (4.4), hence a, b are 
also conjugate points with respect to (4.4). As all arguments can be reversed,the 
proof is complete. 
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