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INTRODUCTION 

In Section 1 we study a-paracompact subsets, defined by C. E. AuU. We obtain 
some covering properties of a-paracompact subsets which are similar to the properties 
of paracompact spaces. In particular, we characterize a-paracompact subsets in 
regular spaces. Moreover, we study the behaviour of a-paracompact subsets under 
perfect mappings* 

In Section 2 we consider R. Telgarsky's well-situated subsets. The properties of 
a-paracompact subsets of Section 1 yield properties of well-situated subsets. Well-
situated subsets are related to Tamano's problem (i.e.: to give an intrinsic description 
ofT2 spaces X such that X x 7 i s paracompact for each paracompact T2 space Y) 
which remains open. 

In Section 3 wesolve a problem ofTelgársky. We establish that in the realm ofT2 

spaces, the class Я* is perfect. 

1. of-PARACOMPACT SUBSETS 

C. E. Aull in [1] defined the notion of an a-paracompact subset. A subset E of 
a topological space X is said to be a-paracompact in X if every covering of E by 
open subsets of X has a refinement by open subsets of X, locally finite in X, which 
covers E. We continue in this paper the study of a-paracompact subsets. We omit 
the proofs in this section. 

1.1. Proposition. LetX be a topological space. Then: 
1) IfX is Г2, E is an a-paracompact subset in X and F is a closed subset oJ E, 

then F is a-paracompact in X. 
2) If {Ej}jej is a set of subsets ofX, locallyfinite in X and such that Ej is a-

paracompact in X for every j є J and there exists a locally finite family of open 

*) Part of this paper is contained in the author's Doctoral Thesis written under the super-
visionofProfessorE.Outerelo. Thispaper has been publishedinashorted versioninQuest. 
& Ans. Gen. Topology 5 (1987), 293-302. 

191 



subsets {Uj]jcj ofX such that E} c Ujfor everyj e J, then U Ej is a-paracompact 
jeJ 

in X. In particular, everyfinite union ofa-paracompact subsets is a-paracompact. 

1.2. Remark. In Proposition 1.1, point 2), the hypothesis "{Uj}^ is a locally 
finite family" cannot be replaced by the hypothesis "{Uj}jej is a locally finite set". 
Indeed, in the Niemytski plane X = {(x, y) eR2jy ^ 0} (in which for y0 > 0 the 
neighbourhoods of (x0, y0) are the usual neighbourhoods in the plane relativized 
with respect to X, while for y0 = 0 the neighbourhoods of (x0, 0) consist of open 
circles with center (x0, y) and radius y with the point (x0, 0) for each y > 0), {Eq}qeQ 

where Eq = [(q, 0)} is a locally finite set of a-paracompact subsets of X such that 
U Eq is not a-paracompact ([1] p. 50), and {Uq

x
qeQ where Uq = X for each q e Q 

qeQ 
is a locally finite set such that Eq c Uq for each q є Q. 

1.3. Theorem. Let X be a regular spaceand E a subset of X. The following 
conditions are equivalent: 

a) E is an a-paracompact subset in X. 
b) 1) Every covering % ofE by open subsetsofX has a refinementi^ by open 

subsets ofX, G-locallyfinite in X, which covers E, and 2) Every open subset U ofX 
such that E cz U hasan open subset Vsuch that E cz Va V c JJ. 

c) Every covering 41 of E by open subsets of X has a refinement sé = {^ s e s 
by arbitrary sets ofX, locallyfinite in X, such that E c ( y As)°. 

seS 

d) Every covering 41 of E by open subsets of X has a refinement ŽF = {Fj^jcj 
by closed subsets ofX, locallyfinite in X, such that E cz ( U Fj)0. 

jeJ 

Remark . Theorem 1.3 implies Corollary 3 and Theorem 4 of [1]. 

1.4. Proposition. Let X be a regular space and E an a-paracompact subset in X. 
Then: 

1) Every covering % ofE by open subsets ofX has a refinement by open subsets 
ofX, barycentricin X,which covers E. 

2) Every covering % of E by open subsets of X has a star refinement by open 
subsets ofX, which covers E. 

1.5. Proposition. Let X be a regular space and E an a-paracompaet subset in'X. 
Thenfor everyfamily {Fs\seS ofsubsets ofE, locallyfinite (discrete) inX, there is 
afamily {Us}seS ofopen subsets ofX, locallyfinite (discrete) in X and such that 
Fs c Us for every s є S. 

We pass now to the study of the behaviour of the a-paracompact subsets under 
perfect mappings. 

1.6. Proposition. Let X and X' be topological spaces and f: X ^ X' a perfect 
mapping. IfE' is an a-paracompact subset in X' thenf~~1(E') is an a-paracompact 
subset in X. 
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1.7. Remark. Proposition 1.6 implies that i fX and Yare topological spaces, E is 
an a-paracompact subset in X and Y is compact, then E x Y is an a-paracompact 
subset in X x Y. 

However, i f Z and 7 a r e topological spaces, E is an a-paracompact subset in X 
and F is an a-paracompact subset in Y, E x F is not necessarily an a-paracompact 
subset in X x Y. Indeed, Q is an a-paracompact subset in the Michael line (R, Ť) 
R \ Q is an a-paracompact subset in R \ Q, but Q x (R \ Q) is not an a-paracompact 
subset in (R, T) x (R \ Q). (Since the sets Q x (R \ Q) and C = {(x, x)|x e R \ Q} 
are disjoint closed sets which are not strongly separated, it follows from Theorem 5 
in [1] that Q x (R \ Q) is not an a-paracompact subset.) 

1.8. Proposition. Let X and X' be topological spaces,whereX is regular, letf 
be a perfect mappingfrom X onto X' and E' a subset ofX'. J / / "* (E ' ) is an oc-para-
compact subset in X then E' is an a-paracompact subset in X'. 

1.9. Remark. InProposition 1.8 the hypothesis " / is a mapping onto" cannot 
be omitted. Indeed, let {R, T) be the Michael line. Then the mapping i: Q x 
x (R \ Q) ^^ (R, T) x (R \ Q) is a perfect mapping but is not onto, Q x (R \ Q) 
is an a-paracompact subset in Q x (R \ Q) with the usual topology, and Q x (2? \ Q) 
is not an a-paracompact subset in (R, T) x (R \ Q) (see 1.7). 

1.10. Proposition. Let X and X' be topological spaces andf a perfect and open 
mapping from X onto X'; if E is an a-paracompact subset in X then f(E) is an 
a-paracompact subset in X'. 

1.11. Remark. Let X and X' be topological spaces a n d / a perfect mapping fromX 
onto X'; ifE is an a-paracompact subset in X,f(E) is not necessarily a-paracompact 
in X'. Indeed, let (R, T) be the Michael line, j x : Q x (R\Q) ^ ^ Q x (R\Q) + 
+ (/?, T) x (R\Q) and j 2 : (R, T) x (R\Q) ^ Q x (R\Q) + (Я, Г) x 
x (R \ Q). Then the mapping onto / : Q x (R \ Q) + (R, T) x (R \ Q) ^ (R9 T) x 
x (R \ Q) such that 

/0*i(x, y)) = & У) if & У) є Q x (R \ Q) 
fO2(x,y)) = (x,y) if (x,y)eRx(R\Q) 

is a perfect mapping, f(j,(Q x (R\Q))) = Q x (R\Q), jx(Q x (R\Q)) is an 
a-paracompact subset in Q x (R\Q) + (R, T) x (R\ Q) and Q x (R\ Q) is not 
an a-paracompact subset in (R, T) x (R\ Q) (l.7) . 

2. WELL-SITUATED SUBSETS 

The concept of a well-situated subset was introduced by R. Telgársky in [4]. 
Using the notion of an a-paracompact subset, H. W. Martin phrased the definition 
of a well-situated subset of a space X as follows: a subset E of a space X issaid 
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to be well-situated in X if for every paracompact T2 space Y, E x 7 i s an a-para-
compactsubset inX x У([3]). 

If E is a well-situated subset of a space X then E is an a-paracompact subset in X, 
but Q is a-paracompact in (R, T), the Michael line, and Q is not a well-situated 
subset in (R, T) (cf. 1.7). 

From Section 1 we easily obtain the following theorems. 

2.1. Proposition. Let X be a topological space. Then: 
1) lfX is T2, E is a well-situated subset in X and F is a closed subset ofE, then F 

is a well-situated subset in X. 
2) If{Ej}jeJ is a set ofsubsets ofX, locallyfinite in X and such that Ej is a well-

situated subset in Xfor every] є J, and there exists a locallyfinitefamily ofopen 
subsets {Uj]jej ofX such that Fj c Ujfor everyj e J, then U Ej *s a welUsituated 

JeJ 
subset in X. In particular, everyfinite union ofwell-situated subsets is well-situated. 

2.2. Theorem. Let X be a regular space and E a subset of X. The following 
conditions are equivalent: 

a) E is a well-situated subset in X. 
b) For every paracompact T2 space Y: 1) Every covering % of E x Y by open 

subsets of X x Y has a refinement f by open subsets of X x У, a-locally finite 
in X x У, which covers E x У, and 2) Every open subset U of X x Y such that 
E x Y c U has an open subset V such that E x Y c V c V c U. 

c) For every paracompact T2 space У, every covering °U ofE x Yby open subsets 
ofX x Yhas a refinement sé = {^sìses by arbitrary sets ofX x Y, locallyfinite 
in X x У, such that E x У c ( (J As)°. 

seS 

d) For every paracompact T2 space Y, every covering of E x У by open subsets 
ofX x Yhas a refinement ^ = {Fj}jeJby closed subsets ofX x У, locallyfinite 
in X x Y9 such that E x У c ( U Fj)0. 

jeJ 

2.3. Proposition. Let X be a regular space and E a well-situated subset in X. 
Then: 

1) For every paracompact T2 space Y, every covering % ofE x Yby open subsets 
ofX x Yhas a refinement by open subsets ofX x У, barycentric in X x У, which 
covers E x У 

2) For every paracompact T2 space Y, every covering of E x У by open subsets 
of X x У has a star refinement by open subsets of X x У which covers E x У 

2.4. Proposition. Let X be a regular space and E a well-situated subset in X. 
Thenfor every paracompact T2 space Y,for everyfamily {F^seS ofsubsets ofE x У, 
locallyfinite(discrete)inX x Y,thereisafamily{Us)seSofopensubsetsofX x У, 
locallyfinite (discrete) in X x Yand such that Fs c= Usfor any s є S. 

2.5. Proposition. Let X and Xі be topological spaces andf:X ~*X* a perfect 
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mapping. IfE' is a well-situated subset in X' thenf 1(E') is a well-situated subset 

in X. 

Proof. For every paracompact T2 space 7, fx 17: X x Y^> X' x 7 i s a perfect 
mapping. Now 1.6 implies tha t / "*(E ' ) is well-situated. 

2.6. Proposition. Let X and X' be T2 topological spaces where X' is paracompact, 

let E be a well-situated subset in X and F a closed subset ofX'. Then E x F is an 

a-paracompact subset in X x X'. 

Prooffollowsfrom 1.1. 

Remark . In [4] R. Telgársky denoted by Я the class of all T2 spaces X such that 
X x 7is paracompact for each paracompact T2 space 7 Let X and 7be T2 topological 
spaces, E a well-situated subset in X and Ye П. Then E x 7is well-situated in X x 7. 
(indeed, for each paracompact T2 space Z, 7 x Z is paracompact and T2, hence 
(E x 7) x Z is a-paracompact in (X x 7) x Z.) 

2.7. Proposition. Let X and X' be topological spaces, where X is regular, letf be 
a perfect mappingfrom X onto X' and E' a subset ofX'. Iff" 1(E') is a well-situated 
subset in X then E' is a well-situated subset in X'. 

Proof. For every paracompact T2 space 7, / x 17 is a perfect mapping from 
X x 7onto X' x 7. It follows from 1.8 that E' is well-situated. 

2.8. Remark. In Proposition 2.7 the hypothesis " / is a mapping onto" cannot 
be omitted. In deed, let (R, T) be the Michael line. The mapping i: Q ^>^> (R, T) 
is perfect but is not onto, Q є П ([4] p. 66) but Q is not well-situated in (R, T) 
(cf. 1.7). 

2.9. Proposition. Let X and X' be topological spaces and f a perfect and open 
mapping from X onto X': If E is a well-situated subset in X then f(E) is a well-
situated subset in X'. 

Proof. For every paracompact T2 space Y, f x 17is a perfect and open mapping 
from X x 7on to X' x 7. Now 1.10 implies tha t / (E) is well-situated. 

2.10. Remark. Let X and X' be topological spaces a n d / a perfect mapping fromX 
onto X'. If E is a well-situated subset in X, f(E) is not necessarily a well-situated 
subset in X'. (See 1.11). 

3. THE CLASS П* 

In [4] R. Telgársky denoted by П* the class of all paracompact T2 spaces which are 
well-situated in every paracompact T2 space in which they are embedded as closed 
subsets. 

R. Telgársky showed that # * is a very wide class containedin the class П, and 
raised the following questions: 
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1. Is the class Я* perfect? ([4], Problem 2.1.) 
2. Does the class of all paracompact C-scattered spaces coincide with the class Я*? 

([4], Problem 2.3.) 
In the present paper, we shall give an affirmative answer to question 1. 

3.1. Proposition. Let E and E' be topological spaces where E is T2, and letf be 
a perfect mapping from E onto E'. If E' є Я* then E є Я*. 

Proof. Let X be a paracompact T2 space such that E is embedded in X as a closed 
subset. Let7\:Jf ^ X + E', j 2 : E' ^ X + E' be the embeddings of the subspaces X 
and E' in the sum X + E', let X uf E' be the adjunction space determined by X, 
E' and / and let q: X + E' -• X uf E' be the natural quotient mapping. As the 
mapping / is closed, q is a continuous and closed mapping; since X + E' is para­
compact and T2, X Uf E' is paracompact (this follows from the Michael Theorem) 
and T2. Further, q 0j2: E' ->- X uf E' is a homeomorphic embedding and (q oj2)(E') 
is closed in X u / E'. Since E' є Я* and X uf E' is paracompact and T2, (q oj2) (E') 
is a well-situated subset in X uf E'. 

Let / = q oji:X ^ X u r E'. Clearly / is a perfect mapping. 
/ 

X > X u , E' 
t t 
{ f \<l°J2 
E —>E' 

Since (^f0j2)(E') is a well-situated subset in Xvj>E', Proposition 2.5 implies 
that f~x((q 0j2) (E')) is a well-situated subset in X. However, 

f-\(q 0;2) (£')) = rA^{*W)))) = E . 
Thus E is a well-situated subset in X. Hence E є Я*. 

3.2. Proposition. Leř E and E' fee topological spaces and f a perfect mapping 
from E onto E'. / / E є Я* řuerc E' є Я*. 

Proof. S i n c e / i s continuous, Gf = { ( х , Д х ) ) є Е x E'|xeE} is homeomorphic 
to E, hence Gf є Я*. 

Since E is r3 a and / is a perfect mapping from E onto E', G / is a closed subset 
ofßE x E' (see [5], proofofTheorem 3.10). 

Let X' be a paracompact T2 space such that E' is embedded in X' as a closed subset. 
Then G r is a closed subset of ßE x Z ' which is paracompact and T2. Thus G r is 
a well-situated subset in ßE x Z ' . 

The projection p2: ßE x Z ' ^ X' is perfect and open, and p2(Gf) = E'. It follows 
from 2.9 that E' is a well-situated subset in X'. 

3.3. Theorem, i>z řfte realm ofT2 spaces, the class Я* is perfect (i.e., ifE and E' 
are topological spaces where E is T2, andf is a perfect mapping from E onto E' 
then E e Я* if and only if E' є Я*). 

Prooffollows from 3.1 and 3.2. 
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A d d e d in p r o o f s . The author learned, after writing this paper, that J. D. Wine 
[in: Locally paracompact spaces, Glasnik Mat., 10(30) (1975), 351-357] has 
obtained Proposition 1.1.2), andthat I. Kovacevič [in: Subsetsand paracompact-
ness, Zbornik Radova PMF Univ. u Novom Sadu, ser Mat. 14 (1984), 7 9 - 8 7 ] 
has obtained also the implication a) => b) of the Theorem 1.3. The author thanks 
toProfessors J. D. Wine and I. Kovacevič for making available theirpapers to him. 
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