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ALGEBRAIC SPECTRAL SUBSPACES AND AUTOMATIC CONTINUITY 

K. B. LAURSEN, Copenhagen 

(Received July 29, 1986) 

1. INTRODUCTION 

In introducing the super-decomposable operators, [14] also gave an algebraic 
description ofthe spectral maximal subspaces. This algebraic characterization, which 
has later been extended to the larger class of well-decomposable operators [1], has 
found use in the applications to automatic continuity [1, 14]. 

However, the defining algebraic description of these subspaces makes sense for 
an arbitrary linear operator and this paper attempts to gain further insight into what 
may be said about an operator in terms of these algebraic spectral subspaces. 

We begin by establishing, in Section 2, some of the basic properties of the class 
{ET(F)} (definitions are given there), among them f|-stability. Then Section 3 studies 
what more might be said if the £r(F)-spaces are assumed closed whenever F a C 
is closed. It turns out that for many closed sets F, the closedness of ET(F) ensures 
that this space be spectral maximal (Proposition 3.3). Thus, in these cases the ET(F) 
space coincides with the space XT(F) of all elements of X with local spectrum in F 
(Proposition 3.4). The generality of these notions is tempered by the observation 
that if all ET(F), F closed, are closed, then the operator Tmust have the single valued 
extension property (Corollary 3.6). This section concludes with some remarks on the 
closedness of ET(F) when T is well-decomposable. 

In Section 4 is proved a general continuity result for linear maps that intertwine, 
in a certain general sense, two given decomposable ( + a bit more) operators. This 
result (Theorem 4.1) follows a rich tradition of work on intertwining maps and 
their continuity, going back to [10], but the applicability ofthis result is considerable. 
Notably we obtain, in Section 5, a necessary and sufficient condition for the existence 
of discontinuous module derivations. 

I would like to thank Niels Gronbaek, Pavla Vrbová, and, particularly, Michael 
Neumann for many helpful comments on this work. Much of this was done in con­
nection with my participation in the 17th Functional Analysis Seminar, held in May 
1986 in Jilemnice, Czechoslovakia, under the chairmanship of Professor V. Pták. 
I would like to express my appreciation for all the hospitality and good company 
that this meeting provided. 
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2. ALGEBRAICALLY SPEAKING 

We begin by establishing some of the basic properties of the T-invariant subspaces 
that this paper deals with. Here X is a vector space, T: X ™ X a linear mapping and 
A £ C any proper subset of the complex plane. 

Definition. Consider the class of linear subspaces Y of X with the property that 
(Г - A) Y = Yfor every X є C\A. Let 

ET(A) :== span Y. 
Evidently ET(Ä) is the largest linear subspace of X on which all the restrictions 
of T — X, X є С \ Л , are surjective. 

Thus, ET(0) is the largest T-divisible subspace of X. 
Remarks, a) These spaces were introduced in [11] via atransfinite sequence of 

spaces: with X, Tand A as above, let X(A, 0) : = X; for a non-limit ordinal a + 1 
X(A, a + 1) := fi (Г - Л) X(A, a) 

ЛєС\Л 

and for a Hmit ordinal a 
X(A,a):= f)X(A,ß). 

ß<a 

Standard cardinality arguments show that this decreasing sequence is eventually 
constant; on its constant eventual value T — Л must be surjective, for each k є C\A. 
Since ET(A) c X(A, a) for every a, the eventually constant value of{X(^, a)} is ET(A). 

b) If X is а Hilbert space and T is a bounded normal operator then it is a con­
sequence of [15] that for every closed set F с С the eventually constant value of 
{X(F, a)} is reached at X(F, 1); in other words 

Er(F)= П ( T - A ) X . 
ЛєСЧР 

First some elementary and basic facts. 

Lemma 2.1. £r(y4) l s hyperinvariant, so that ET(A) is S-invariant,for any linear 
map S commuting with T. 

Proof. For к ф A, (T - X) SET(A) = S(T - X) ET(A) = SET(Ä), so that 
SET(A) c ET(A), by maximality, 

Corollary. For every proper A c C, 

ВГ(А) = ET(A n a(T)) , 
where a(T) is the complement of the set ofpoints X є Cfor which T — X is a bijection 
onto X. 

Proof. ІїХ є A \ сг(Т) then (T — Я)"1 is a well defined linear map which commutes 
with T. Hence, (T- X)-1 ET(A) £ Er(4) and so £r(v4) = ( Т - А)£Г(Л) for all 
Я є A \ ö-(T), as well as for all X ф A. Hence ET(A) c £r(A n ог(Г)). The other 
inclusion is immediate. 
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Corollary. IfX is a Banach space and Tis bounded, thenfor 

Y:= ЩЩ 
wehavea(T\ Y) c a(T). 

Proof. If X ф cr(T) then (T - Д) ET(A) = ET(Ä) and consequently, (T - Д) Y = Y; 
since T — X is l - l , t h i s s h o w s A e ^ | ^ ) . D 

• 
The next result is basic to much of the following discussion. Its proof is related 

to the proof of [7, Proposition 1.3.5]. Note that the statement is purely algebraic; 
no topological assumptions. 

Proposition 2.2. With X, Tand A as above, let X0 є A and let 

Е,о:={хєХ\(Т-Х0)хєЕт(А)}. 
Then 

EXo = ET(A) . 

Proof. Since ET(A) = (T — X) ET(A) for every X ф A, we see that for x є ET(Ä), 
(T - X0) x = (T - X) x + (X - Д0) x e ET(A) so that ET(Ä) c EXo. Let y0 є £Яо, let 

Y:=ET(A) + Cy0 

and let z = y + ay0 є Y. With X ф A, consider 

y-^L-~(T-X0)y0eET(A) 
X0 — X 

and choose yx e ET(A) so that 

(Т-Х)у1 = у-г^1(Т-Х0)у0. 
ÁQ A 

Now let 

zo •= Уі +- -Уоє Y 
ÁQ A 

and compute 

(T-X)z0 = (T-X)yi + T^~(T-X)y0 
ÁQ — A 

= У - * iT - ^o) Уо + —^^7 (T - A0) y0 + ay0 = y + ccy0 = z . 
ÁQ — A И»о — A 

Thus Y с (Г - Д) Y c У, and since X є C\A is arbitrary, ЕЛо с ET(A) follows. 

Remark . This shows that ET(A) is T-absorbent [17, Definition IV, 4.1]. 

Corollary 2.3. ker (T — Д0) c= ET(Ä), for every X0 є A. 

Also from Proposition 2.2 we may prove ET{A1 n A2) = £ r ( ^ i ) n ^ г О ^ ) for 
any proper subsets A l9 Л2 of C: 
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Proposition 2.4. ET(AX n . . . n A^ = Ет(Аг) n . . . n ET(An), for any finite col­
lection {Au . . . , Л„} of proper subsets of C. 

Proof . By finite induction only the case oftwo sets At and A2 needs consideration. 
Also, by the Corollary of Lemma 2.1 we may assume that Ax and A2 are subsets 
of a{T). 

Suppose first that we have established our claim whenever A± u A2 — &(T). 
For arbitrary Al9 A2 in <r(T), let A3 : = A2 u (а(т) \ A^. 

ET(At) n ET(A2) c J5r(^i) n ЕГ(Л3) = 

= E r ( ^ n Л3) = Е г(Лі n i42) c: ^ r ( ^ i ) n ^r(^2) • 

Thus there is no loss in assuming that At u A2 = v{T). Let F : = ET(A^) n ET(A2) 
and let X ф A1 n Л2. As we saw (in the proof of the first corollary of Lemma 2.1) 
ET(A) = (T — X) ET(A), for any A, if X ф o*(T} so we may assume X є o*(T), hence 
X є Ax \ A2, say. If x0 e 7then there is у є ET(A2) so that x0 = (Г — X) y. But since 
Я є Ai and x0 e Ej>(A^, Proposition 2.2 implies that y є Ey(^ ) .Hence (T — X) Y = 
= Yfor every X ф Ax n A2 and by maximality Y c E r ( ^ ! n Л2). As the other inclu­
sion is immediate, the proof is complete. 

Before proving f|-stability for arbitrary families of subsets of C we also need this 
next observation. 

Lemma 2.5. Let F c G be proper subsets of C, let Q: X r* X\ET(F) be the quotient 
map and let Ť: X\ET(F) r* X\ET(F) be the map induced by T (thus ŤQ = QT). 
Then 

EŤ(G)=QET{G). 

Proof. If X ф G then (Ť - X) Q ET(G) = Q(T - X) ET(G) = Q ET(G), so 
Q ET(G) c Ef(G). For the reverse inclusion, suppose Qx є EŤ(G) and choose 
Qy є Ef(G) so that (T - A) Qy = Qx. Thus Q(T - X) y = Qx so that x -
- (T - X) y e ET(F) and x, у є Q'^Ef(G)). Since X ф F there is z є ET(F) c ET(G) 

so that x = (T - X) y + (T - X) z = (T - X) (y + z). It follows that (T - X) . 
. Q-\EŤ{G)) = Q-*(Ef(G)), hence Q~x ET(G) d ET(G). 

Theorem 2.6. Suppose {Fô]ôeD is afamily ofproper subsets of C. Then 

4 П F,) = fi ET(FÔ) . 
ÔeD ôeD 

Proof. Let Y:= ftET(Fô). Evidently ET(ftFô) c Y. Since stability under finite 
ÔeD 

intersections has been established there is no harm in replacing the index set D by 
the set of finite subsets of D, ordered by inclusion. Thus we may assume, with no 
loss ofgenerality, that D is a directed set and that ôt ^ ö2 implies Fôl ç FÔ2. 

Let X ф ftFô and choose ö0 so that X ф FÔ0. Let 

Z : = H ET(FÔ); 
agáo 
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then Y £ Z is trivial. On the other hand if z є Z and if ET(FÔ) is given, then there 
is o' ^ ô0 for which ô' ^ 5 also holds. Consequently z є ET(F5) c ET(Fa), so that 
z є Y, To show that (T — Я) 7 = 7for every Я £ Ç\FÔ it is enough, therefore, to show 
that (T — Я) Z = Z for the Я chosen above. 

Suppose first that E r(0) = {0}. Since Я ф C\Fs w e may, to our given z є Z, choose 
z3 є ET(FÔ) such that (Г - A) zb = z, for each 5 ^ č0. Consider S', 6" ^ 50 and 
select d'" ^ c', <5W ^ c>". If z^ Ф zr then z ^ Ф z3,, say. Hence zr. - zò, є 
є ker (Г - Я) Я ET({X}). Hence z ^ - zò. e ET(FÔ,) n ET({X\) = Ет(ф) = {0}. It 
follows that if (Г - A) z3 = z then zô є ET(FÔ) is independent of ö ^ 50. Thus 
zô є Z and surjectivity of T - Я on 7has been established for every Я ф f]Fò. 

This completes the proofofTheorem 2.6 i f£ r (0) = {0}. To remove this additional 
assumption invoke Lemma 2.5. In X/E r(0) we have that ET(0) = QET(0) = {0}. 
Hence by the work already done 

Ef(f]Fô) = CiEf(F,) 
and so 

ET(Wd) = o^(^(0^)) « CiQ-*Etpt) = riBr(^) • D 

3. CLOSED ET{F) 

In this section we shall consider the implications of assuming ET(F) to be closed, 
when F is a closed subset of C. Throughout this section we assume X to be a Banach 
space and Tto be a bounded linear operator on X. 

First let us remark that if ET(F) is given then there is a smallest closed subset F 0 , 
say, of C which we may think of as the support of the space. Specifically 

F 0 := supp (ET(F)) := ft{F' | F' closed and ET(F') = ET{F)} ; 

For the support we have the following observation: 

Lemma 3.1. Let F0 be the support of ET(F) and suppose ET(F) is closed. Then 
S cr(T| ET(F)) с ^ o c °{T\ FT{F)) (where ö denotes the topological boundary). 

Proof. I f l e Sa(T\ ET(F)) then (T - Я) £ r (F ) Ф E r(F) (cf. e.g. [11, Lemma 2.2]). 
Consequently Я cannot belong to C\F0. For the second inclusion simply observe 
that 

(T-X)ET{F) = ET(F) 

for every Я є C \ o-(T| £ r(F)) , hence F 0 c cr(T| E r(F)), by minimality of F 0 . 
For a compact subset F of C let £ denote the polynomially convex hull of F; 

it is a standard fact that P equals the union of F and all bounded components of 
C\ F. Thus P is F together with all the holes in F. We then have 

Corollary 3.2. <r(T| F r(F)) c F 0 . 

Proof. ôa(T\ ET(F)) c F 0 c * ( r | E r(F)) с £ 0 . 
We now recall the notion of spectral maximality. [7, p. 18]. 
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Definition. Let Lat (Т) denote the closed Г-invariant subspaces of X. A subspace 
Z є Lat (T) is then said to be spectral maximal if Ye Lat (T) and a(T\ Y) c a(T\ Z) 
imply that Y c Z. 

In light of the maximality condition in the very definition of ET(F) the next result 
is not surprising. 

Proposition 3.3. If F is compact and F = F and if ET(F) is closed then ET(F) is 
spectral maximal. Moreover, if ET(0) is zero then ET(F) is spectral maximal 
whenever ET(F) is closed and F closed. Conversely, ifET(F) is closedfor all closed F 
and ifZeLat (Т) is spectral maximal then Z = ET(a(T\ Z)). 

Proof. From Corollary 3.2 it follows that a(T\ ET(F)) c F 0 c F = F, hence 
if Ye Lat (T) and &(T\ Y) <= а(Т\ ET(F)), then а(Т\ Y) с F. But then Y e ET(F), 
since (T - Я) 7 = 7for all Я £ F. 

To show spectral maximality ofET(F) for arbitrary closed F, when £ r(0) = {0}, 
it is enough to show that a(T\ET(F))czF. If Xea(T\ET(F))\F then 
( Г - X)ET(F) = ET(F), so k e r ( ( r - A)|Er(F)) * {0} (otherwise keo{T\ ET(F)), 
by the open mapping theorem). Since ker (T — Я) с ET({X\), by Corollary 2.3, 
we conclude that 

{0} Ф ET(F) n ET({X\) = E r(0) . 

This contradicts our assumption about E r(0). 
Finally, suppose ZeLat (T) is spectral maximal. Since (Г— Я)Z = Z for all Х$о(Т\ Z) 

we get that 
Z c E r (o - ( r |Z ) ) . 

Since cr(T | ET(a(T | Z)) c a{T | Z), spectral maximality of Z gives the other inclusion. 
The notion oflocal spectrum allows another description ofthe closed £r(F)-spaces. 

Recall [17, p. 185] that if x e X then the local resolvent set QT(x) is defined as the 
union of all open subsets of C on which the equation 

(Г - Я) x(A) = x 

has an analytic solution х(Я). The local spectrum aT(x) of x is then 

aT(x) := C\QT(x) . 

It is easy to see that if F c C and if 

XT(F) := {xeX\aT(x) c F} 

then X r (F) is a linear subspace o f Z . Moreover, if 

(T - Я) :c(A) = x 

for all Я є QT(x) then о"г(х(Я)) = аг(х) for each Я є ^г(х). Hence if x e XT(F), then 
х(Я) є X r (F) for every Я £ F. In other words, since XT(F) is easily seen to be Г-
invariant, 

(T-X)Xr(F)=:Xr(F). 
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It follows that 
XT{F) c ET{F) 

for any F cz C. There is a converse. 

Proposition 3.4. If F is compact and F = P and if ET(F) is closed, then ET(F) = 
= XT(F). If E r(0) = {0} then closedness of F and of ET(F) are sufficient that 
Er(F) = XT(F). 

Proof. As we saw in the proof of Proposition 3.3 under either set of assumptions 
we have that а(Т\ ET(F)) cz F; hence, if x є ET(F), (T - A |ET(F))_1 x 1S a n analytic 
solution on C\F of the equation (T — X)x(X) = x. Consequently, o>(x) c F 
for every x є ET(F). This gives ET(F) c XT(F) and the reverse inclusion always 
holds. 

Proposition 3.5. Suppose G cz C is an open and connected set on which the equa­
tion (T— X)f(X) = 0 has an analytic solution f(X) ф 0. J / F cz C is closed and 
ET(F) isclosed and ifFn G Ф 0 then G cz a(T\ ET(F)). 

Proof. Let A0 e F n G. By T-absorbency (Proposition 2.2) ДЛ0) є ET(F). More­
over, since Tf(X) = Xf(X) for a l U e G , differentiation yields Tfn\X) = Xfn)(X) + 
+ nf~l)(X) for all XeG, n = 1 ,2 , . . . , so that ( T - X)fn\X) = nf"-"(X) for 
all XeG a n d n = 1,2, . . . . In particular ( T - A)/(n)(A0) = w/^^^(Ao), so, again 
by T-absorbency, fn)(X0)eEr{F), n = 0, 1, ... . If {A| \X - X0\ < 0} c G, then 

00 

/(A) = S/ ( n )(^o) (A - A0)n/n! є E r(F) (since ET(F) is closed) for all X with |A - A0| < 
и = 0 

< 5. By analytic continuation it follows t h a t / ( A ) G £ r ( F ) for all XeG and since 
(T - X)f(X) = 0 we conclude that if/(A) Ф 0 then X e a(T\ ET(F)). Consequently, 
s i n c e / ф 0 it follows that G c cr(T| ET(F)). 

The operator Tis said to have the single valued extension property (SVEP) if the 
only analytic so lu t ion / to the equation (T — X)f(X) = 0, where A ranges over some 
open set G c= C, is the zero solution. The previous Proposition then yields this 
next result. 

Corollary 3.6. / / ET(F) is closed for every closed F cz C, then T has the single 
valued extension property. 

Proof. Actually, it will be enough to make the formalJy weaker assumption that 
ET(D) is closed whenever D is a closed disc in C: suppose (T — X)f(X) = 0 for every 
X є G, where G is open and connected. If/(A0) Ф 0, choose ô > 0 so that/(A) ф 0 
for all A with \X - A0| < S. Let D = {X e C\ \X - X0\ ^ 3/2}. Then (Proposition 3.3): 

a(T\ET(D)) c D. • 

But D ф G and G cz cr(T| ET(D)), by Proposition 3.5. This contradiction implies 
that / must be zero. 

It is of obvious interest now to display some instances in which ET(F) is closed. 
Consider the following class of operators, introduced in [1]. 
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Definition. A bounded linear operator T on the Banach space X is called well-
decomposable, if for every open covering {U, V} of C there is a bounded linear 
operator R on X, an integer n and subspaces У, Z є Lat (T) for which 

a(T\ Y) a U, ff(T|Z) с К 

jR(X) c У, ( J - R)(X) c Z 

and 
С(Г)М (R) = 0 , 

(where C(T) (R) = TR - RTand C(Tf R = C(Tf'1 (TR - RT), for k = 2, 3, . . .) . 
If T i s well-decomposable and if ET(0) = {0} (which means that Thas no non-

trivial divisible subspace) then it is shown in [1, Proposition 3.2] that ET(F) is closed 
whenever F is closed. We give a simpler version of the proof here. 

Proposition 3.7. Suppose T is well-decomposable and ET(0) = {0}. If F cz C 
is closed then ET(F) is closed. 

Proof . Let U be an open neighborhood of F and choose R so that for certain 
Y, Z є Lat (T) we have o{T\ Y) c U, a(T\ Z) c C\F, RX c 7and (I - Я) (X) c 
c Z, and let n be chosen so that C(T)n (R) = 0. We then have that R ET(F) c F r(F) . 
This is proved in [1], so we do not reproduce the details here. 

Since ff(r| Z) c C \ F it follows that Z c ET(C\F). Hence (/ - # ) ET(F) c 
cz ( l - R) X c Z c F r ( C \ F ) . But # F r (F) cz ET(F) implies that (J - jR) ET(F) c 
cz ET(F), hence 

(/ - jR) F r (F) c F r (F) n JS r (C \F) = {0} . 

It follows that ET(F) = R ET{F), so that ET(F) с У from which F ^ F J с У Since 
cr(T | У) c tf and since (T - A) E r(F) = £ r (F ) for all X ф U it follows that 
a(T | F r (F) cz U. Since L̂  is an arbitrary neighborhood we conclude that 
a(T\ ЩЩ) cz F, hence E^Fj cz E r(F), by maximality. 

In numerous cases an algebraic description of the largest T-divisible subspace Ет(ф) 
yields a similar algebraic formula for ET(F), for any closed set F. Such results have 
been obtained for generalized scalar operators by Vrbová [18] and by Foias and 
Vasilescu [8] and for normal operators on Hilbert space byPták and Vrbová [15]. 
Here is a more general version for super decomposable operators. Recall that 
a bounded linear operator T is super-decomposable if it is well decomposable and 
the commutation index n = 1 for any covering {U, V} of C and the corresponding 
operator jR. In other words, RT = TR. 

Proposition 3.8. Suppose T is super decomposable, and suppose there is an in­
teger qfor which 

f](T-XyX = Er(0). 
ЛєС 
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Then for every closed F <= C we have 
Ej(F) = C]{T-XyX. 

k$F 

Proof. Let F c C be closed. Since ( Г - A) ET(F) = £ r(F) for every A^F the 
inclusion FT(F) £ W0 : = П (T — X)q X is trivial. Let U be an open neighborhood 

X<£F 

of F and choose R so that RT = T# and such that there are spaces Z, Ує Lat (Г) 
with a(T| У) c t/, <x(T| Z) c C \ F , ДХ с У, (I - JR)X c Z. Suppose хеЖ 0 
and note that y : = (/ — R) x e Z so that yx : = (T — X)~q y is well defined for every 
A є F. Moreover, since x = (T — X)q xk for every X ф F we may define, for X ф F, 
yx : = (j - R) xA. Then, for X є F, (T - A)« yx = y and for X ф F (T - X)q yk = 
= (Г - X)q (I - R) xx = (/ - #) (T - A)* xA = (I - R) x = y. It follows that j ; є 
є П (T - X)q X = Fr(0). Hence if x є Ж0 then x = (I - Д) x + Ял: є Fr(0) + У с 

Л£С 

c= ET(U). U being arbitrary we conclude that W0 Я ET(F). 
A readily accessible example to which this description applies is that of a com­

mutative semi-simple and regular Banach algebra A. If a є A then the multiplication 
operator Ma is super decomposable [14, Corollary 2.4]. Moreover, if x e 
e П (Ma — X) A and h is a multiplicative linear functional on A let A = ft(a) and 

ЛєС 

select ая so that x = (a ~- A) aA. Then ft(x) = 0, hence x = 0 by semi-simplicity. 
Consequently we obtain for F closed in C 

EMa(F)=Ç]{a-X)A. 
A£F 

Remark. At this stage it is tempting to add to the large collection of definitions 
of families of operators whose spectra possess some kind of local decomposability 
one expressed in terms of the ET(F) spaces. This matter will be pursued in a future 
paper so suffice it here to suggest that a bounded linear opeiator Tbe called alge­
braically decomposable if every open cover {U, V} of C yields a splitting of the 
Banach space 

X = ET(U) + ET(V) . 

Evidently, this class of algebraically decomposable operators is rather large, con­
taining not only all decomposable operators but also all operators satisfying property 

(8) [1]. 
On the other hand, if we further require that ET(F) be closed whenever F is closed, 

then we obtain a subclass ofthe decomposable operators without non-trivial divisible 
subspaces, possibly exactly this class. 

4. AUTOMATIC CONTINUITY 

There is a series of results in the literature describing classes of operators Te B(X) 
and SeB(Y), where X, Y are Banach spaces, for which every linear map Ѳ: X ^* Y 
intertwining S and T (i.e. S6 = ѲТ, or equivalently C(S, T) Ѳ = 0) is continuous 
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exactly when every eigenvalue X of S has the property that codim (T — X) X < 00 
and, additionally, either T is algebraic or S has no non-trivial divisible subspace 
[11], [14], [1]. 

The significant feature of many of these arguments is that 6XT(F) c ES(F) for 
every closed F. Moreover, it is necessary to assume closedness of {XT(F)} and of 
{ES(F)} to be able to "localize" the possible discontinuity of Ѳ to some finite set. 
The natural set ofassumptions that emerge are that Tbe decomposable and that ES(F) 
be closed whenever F is closed. As a result Es(0) = {0} becomes part of the assump­
tions of our present result. On the other hand the intertwining condition is relaxed 
considerably, namely to C(S, T)n Ѳ = 0 for some n. 

Theorem 4.1. Suppose T is a bounded decomposable operator on the Banach 
space X, and that S is a bounded linear operator on the Banach space Yfor which 
ES(F) is closedfor all closed F. 

Consider the class of linear maps Ѳ: X ^ Yfor which C(S, T)n Ѳ = 0 for some n 
(depending on 6).Then every Ѳ in this class is continuous if and only if (S, T) has 
no critical eigenvalues (this means that if X is an eigenvaluefor S, then 
c o d i m ( T - X)X < 00.) 

Proof . The necessity of the condition that (S, T) have no critical eigenvalues is 
classical and easy [11]. So let us assume that (S, Ť) have no critical eigenvalues and 
consider 0: X ^ 7 f o r which C(S, T)n Ѳ = 0 for some n. 

We first establish that 6Xr(F) c ES(F), for any closed F s C; actually the proof 
of this is sufficiently similar to that given in [1, proof of Proposition 3.2] that we 
skip the details (as we also did in the proof of Proposition 3.7). 

Now, by [2, Theorem 4.3 e)] there is a finite set F c C such that if 

т(Ѳ) := {y e Y\ 3xn ^ 0 and Ѳхп ~> y} 
then т(0) cr ES(F). 

Arrange the points ofF = {Xu ..., Am} in an infinite sequence {fij} (in which each X} 

appears infinitely often) and let Tj := Г — ш, j = 1, 2 , . . . . 
By [12], there is an N e N so that 

T(0^...r,) = T(0T,...r^) 

for all q ^ N. Thus, if p(T) : = Tx ... Гл then we have found a polynomial p with all 
its roots in F for which 

<0p(T)) = < 0 K T ) ( r - A , . ) * ) 

forjf = 1, . . . , m and for any q e N. Letting ф : = Ѳ p(T) we actually have a bit more: 

(*) т(ф) = т(ф(Т-ЛУ) 
for any X e C and any q e N. 

For XeF this has just been established. And if X$F choose {Ul9 U2] open so 
that C = U1 u U2 and so that X ф Uu while F c U.t and F n U2 = 0. Since T 
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is decomposable 
X = x^Ui) + XT(Ü2) 

and since 
yXT(Ü2)czeXT(Ü2)czEs(Ü2) 

it follows that 
<Ф\хтіѵ2)) S Es(F).n ES(Ü2) = {0} , 

so that ф is continuous on XT(Ü2). It follows that т(Ф) = r(^|xT(^i)) and since 
T — Я is invertible on Хт(иг), (*) follows. 

Next, with T : = r(^) let 

Z := [т + Sx + S2x + ... + S""V^ . 

It is an easy consequence of C(S, T)n Ѳ = 0 that Z is S-invariant. We also note that 
Z c £S(F). We want to establish that 

{sz)- = z. 
Since 

t = х(фг) = {z)-^(i)s--V^) = [^( l / -^(k) 5""^" 1^)] -

and since 

rÇi\-ï)kQs"-<k+i^Tk\ я <s"-V) + r(s"-**T) + ... + т^г»-1) = 
= (S"-h)- +(S"-h)- + ...+T 

(remember that z = г(фТк), к = 0,..., n - 1) we conclude that 

S""*t + S"-2r + ... + T 

is dense in r(E(-l)*GD 5"-<*+1ѴГ*). Thus 
k = 0 

x c (SZ)- . 
But then 

r + Sr + ... + Sn~h s (SZ + Sr + ... + Sn~4)~ = 
= (SZ + S(x + ... + Sn~2r))- = (SZ)-

so that Z = (SZ)". 
Precisely the same argument would have shown that Z = ((S - Xj) Z)~, j = 

= 1, ..., m. Hence, by the Mittag-Leffler theorem [16] there is a dense linear sub-
space W cr Z on which 

(S-Xj)W= W, j = l , . . . ,m . 
Thus 

WcEs(C\F) 
so that 

^ e £ 5 ( F ) n £ 5 ( C \ F ) = {0}, 

This shows that Z = {0}, hence x(y) = {0). 
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We have proved that 0 p(T) is continuous. 
Consider now two possibilities: if Al5..., Xm all are eigenvalues of S then p(f)X 

is of finite codimension in X. Let G be a closed neighborhood of F. Then p(T) X n 
n Xr(G) is of finite codimension in XT(G). But XT(G) is T-absorbent [17, Theorem 
IV.4.2], hence p(T)XnXT(G) = p(T)XT(G) is of finite codimension in XT(G) 
(and closed). Since 0 p(T) is continuous, the continuity of 0 on XT(G) is established. 
As we saw before (in connection with establishing (*)), that is enough to ensure 
continuity of 0 in this case. 

If there is Àj є F for which S — Xj is 1-1, we argue first by induction to reduce the 
number of such points in F to one: suppose there are q > 1 non-eigenvalues for S 
in F and suppose continuity of 0 has been established whenever S is a mapping with 
less than q eigenvalues in the singularity set F. If {Al5 ..., Xq} is an enumeration of the 
non-eigenvalues in F, write {Al5..., Xq} = F^ u F2 as a disjoint union ofnon-empty 
sets and let Gj <= Fj be disjoint closed neighborhoods. Since 

tt)) c *s(Gy) 
and 

< * U W c= ES(F) n £S(G,) c E s(F4F3-j) 

it follows by inductive hypothesis that Ѳ\Хт(во a n d ö\xT(G2) a r e continuous. But 
Z r(Gi u G2) = Ir(Gi) © XT(G2) so by the open mapping theorem continuity 
of Ѳ on XT(G1 u G2) follows. The continuity of Ѳ then follows as before. 

We still have left to establish the result for the case F = {Л,} = {0}, say, and S 
assumed 1-1. From the preceding parts of the proof we know that ѲТГ is continuous 
for some r. Since C(S, Tf Ѳ = 0 implies that C(S, T)n+r Ѳ = 0 we may assume that 
C(S, T)n Ѳ = 0 and ѲТп is continuous. From the next lemma it then follows that Ѳ 
is continuous. This completes the proof. 

Lemma 4.2. Suppose ѲТп = а^ѲТ"'1 + ... + u„Sn9, where <xu ...,ая are all 
non-zero. Suppose ѲТп is continuous and S is 1-1. Then Ѳ is continuous. 

Proof. Since 
a^S6T1-1 + ... + ocnSne 

is continuous we have 
{0) = T(oqS0"-1 + ... + anSn0) = ST(uJT"-1 + ... + a,,S"-*0) 

and hence a^T"" 1 + ... + a/îS
/l~10 is continuous (5 being 1-1). Multiply this 

equation by Tn~x and observe that all but the last term 

a,,S"-!0r"1 

contain 0Tm, where m ^ n. Hence sn~1BTn~l and so 0T""1 are continuous. We 
then obtain that 

oi2S
2eTn-2 + ... + oLnS

ne 

is continuous and hence that 
а2ѲТп~2 + ... + anSn'29 
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is continuous. Repeat the argument; we end up with both 

a, ,_i0T+ oc,,S9 

and ѲТ2 being continuous, hence also S6T, and therefore ѲТ, continuous. It follows, 
finally, that <S0, and consequently Ѳ, are continuous. 

5. MODULE DERIVATIONS 

As an application of Theorem 4.1 and its proof consider a commutative Banach 
algebra A with identity to which [14, Theorem 2.3] applies; thus, A may be regular 
and semi-simple, or A may have a totally disconnected maximal ideal space ФА. 
In particular, A may be radical with identity adjoined. Consider also a Banach 
Л-module ffî; thus we have a continuous algebra homomorphism д:А^В(Ш) 
which maps the identity o f ^ t o the identity on УЯ. Suppose D: А^Ш is a derivation; 
this means that D is linear and 

D{aiai) = Q(ai) Da2 + Q,(a2) Da1 for all aL, a2 є A . 

Quite a few results on continuity ofderivations are already in the literature [3, 4, 5, 9, 
13]. More follow from Theorem 4.1. This is because if a0 є A then С(@(а0), a0)2 D = 
= 0: if a є A then 

С(д(а0), aQ)2 Da = C(^(a0), a0) [д(а0) Da - D(a0a)] = 

= g(al) Da — o(a0) D(a0a) — д(а0) D(a0a) + D{ala) = 0 . 

A special case of derivations is the point derivations, where Ш is the complex 
plane (in which case the module action Q is given by some X є Фл). 

To phrase our result we also need the notion of a scalar module: a Banach Л-
module N is scalar if 

g(a) m = Xam for all a e A , m є N , 

where Xa є C This means that the module action q is given by a linear functional, 
necessarily multiplicative (and continuous). Note that a Banach A-module Ш 
contains scalar submodules if and only if it contains one-dimensional submodules. 
We then have 

Theorem 5.1. Suppose A is a singly generated commutative Banach algebra 
with identity e and generator z. Suppose Ш is a Banach A-module on which g(z) 
is an operator for which EQiz)(F) is closed for every closed F cz C. Suppose also 
that multiplication by z in A is a decomposable operator. 

Then there are discontinuous derivationsfrom A to Ш if and only if there is 
a multiplicative linearfunctional Хе ФА with respect to which Ш contains a scalar 
submodule and with respect to which A possesses discontinuous point derivations. 

This result is an analogue of [10, Corollary 4.2]. It is also related to [5, Theorem 
3.3] and to [3, Corollary 4.6]. 

169 



Proof. It is easy to see that if A є Фл, if Cs с Ш is a one-dimensional submodule 
with module action A and if <5: A™ C is a discontinuous linear functional for which 
S(axa2) = X(at) ô(a2) + X(a2) a{a^ for all al9 a2 є A, then 

Da : = o(a) s 
is а discontinuous derivation into 9Л. 

Suppose conversely that D:A^$R is a discontinuous derivation. Our assumptions 
are exactly what Theorem 4.1 requires. We conclude that the pair [z,g(z)) has 
a critical eigenvalue. In particular g(z) has an eigenvalue, say A0. Let s ф 0 be an 
eigenvector. It is straightforward, using the single generation of A, and the con­
tinuity of Q, to conclude that Cs is a submodule of 9Jl. This provides us with a multi­
plicative linear functional X є ФА (for which X(z) = A0). 

We must show that A has a discontinuous point derivation at Mx : = ker A. 
Suppose not. Since point derivations are characterized by their vanishing on e and 
on M\ this means that M^is closed and offinite codimension. 

For a derivation D we may introduce the continuity ideal 
l(D):={aeA\Q(a)ï(D) = {0}}y 

which is easily seen to be a closed ideal. In [13, Proposition 2.8] is shown that there 
is a constant C > 0 so that 

[|^(^i^2)|| S ^\\aí\\ ||а2І| f ° r all аъ a2 e /(D) ; 
moreover, if A is separable (which it is here, by single generation) then D is con­
tinuous on I(D)2 [13, Corollary 2.11]. We shall change the given derivation D to 
a derivation D± for which l(D^ = Мл but such that Fx is still discontinuous. This 
cannot be, however, since M\ is closed and of finite codimension. The derivation Dx 

may be obtained by means of the prime ideal theorem [4], but we can get it directly 
from the proof of Theorem 4.1. Early in that proof we obtained a polynomial p 
(which we may take to have minimal degree) for which D(p(z) •) is continuous. From 
the definition of a derivation it then follows that p(g(z)) D is continuous. We also 
noted that the roots of p are located in some finite set F for which 

t(D) e EiW{F) . 

We may even assume that F is exactly the set of roots of p: since p(Q(z)) t(D) = {0} 
we may cancel all factors g(z) - A which are 1-1; moreover, if 

p(Q(z)) = (Q(z)-X^...(Q(z)-l^, 

then by the absorbency of EQ{z)({Xu . . . , An}) it follows that since p{u{z)) z{D) = {0}), 

T(D)czEe(g)({Xu...9Xn}). 
We can say more: let 

pM-P(t)l(t-W*> fc-l,...,n. 
Then 

ркШ) <D) Œ ker te(z) - хІЇк > k = 1. • • • > n . 
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and since {pl9...,pn} has greatest common divisor 1 we can find polynomials 
4i> •••> q„ so that PtQ + ••• + pnqn = U consequently 

x(D) = ker ((e(z) - Ax)ri | t(D)) ® . . . Ѳ ker ((g(z) - Aw)'» | < D ) ) . 

We may assume that F = (Al5 . . . , An} is minimal with respect to containing t(D). 
Then each of the maps 

(e (z) -Ay)* , fc=l,...,r,., ; = l , . . . , n , 

acting on r(D) cannot have dense range (if one of them did, the Mittag-Leffler 
theorem would imply the existence of a dense subspace on which g(z) — X} would 
be surjective, contradicting the minimality of F). 

These remarks show that if Q(t) = p(t)|(t — A/) for some j , then 

Q ( e ( z ) ) < D ) * { 0 } , 

which means that the derivation SG?(Z)) D is discontinuous, but also 

( e ( z ) - l , ) e f e ( z ) ) ( D ) = {0}, 

which means that the continuity ideal l{Q{q{z)) D) is ker X, where Я є Фл is chosen 
so that X(z) = Xj. Thus D± = Öfe(z)) ^ i s the discontinuous derivation with con­
tinuity ideal Mx : = ker A, that we want. 
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