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1. INTRODUCTION

In introducing the super-decomposable operators, [14] also gave an algebraic
description of the spectral maximal subspaces. This algebraic characterization, which
has later been extended to the larger class of well-decomposable operators [1], has
found use in the applications to automatic continuity [1, 14].

However, the defining algebraic description of these subspaces makes sense for
an arbitrary linear operator and this paper attempts to gain further insight into what
may be said about an operator in terms of these algebraic spectral subspaces.

We begin by establishing, in Section 2, some of the basic properties of the class
{EL(F)} (definitions are given there), among them ()-stability. Then Section 3 studies
what more might be said if the E4(F)-spaces are assumed closed whenever F < C
is closed. It turns out that for many closed sets F, the closedness of E4(F) ensures
that this space be spectral maximal (Proposition 3.3). Thus, in these cases the E(F)
space coincides with the space X1(F) of all elements of X with local spectrum in F
(Proposition 3.4). The generality of these notions is tempered by the observation
that if all Ef(F), F closed, are closed, then the operator T must have the single valued
extension property (Corollary 3.6). This section concludes with some remarks on the
closedness of Er(F) when T is well-decomposable.

In Section 4 is proved a general continuity result for linear maps that intertwine,
in a certain general sense, two given decomposable (+ a bit more) operators. This
result (Theorem 4.1) follows a rich tradition of work on intertwining maps and
their continuity, going back to [ 10], but the applicability of this result is considerable.
Notably we obtain, in Section 5, a necessary and sufficient condition for the existence
of discontinuous module derivations.

I would like to thank Niels Grenbzk, Pavla Vrbovd, and, particularly, Michael
Neumann for many helpful comments on this work. Much of this was done in con-
nection with my participation in the 17th Functional Analysis Seminar, held in May
1986 in Jilemnice, Czechoslovakia, under the chairmanship of Professor V. Ptdk.
I would like to express my appreciation for all the hospitality and good company
that this meeting provided.
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2. ALGEBRAICALLY SPEAKING

We begin by establishing some of the basic properties of the T-invariant subspaces
that this paper deals with. Here X is a vector space, T: X ~ X a linear mapping and
A < C any proper subset of the complex plane.

Definition. Consider the class of linear subspaces Y of X with the property that
(T— %) Y= Yfor every Ae C\ A. Let
Ef(A) :=spanY.
Evidently ET(A) is the largest linear subspace of X on which all the restrictions
of T — A, Ae C\ A, are surjective.
Thus, ET((Z)) is the largest T-divisible subspace of X.

Remarks. a) These spaces were introduced in [11] via a transfinite sequence of
spaces: with X, T and A as above, let X(A, O) := X; for a non-limit ordinal o + 1
X(A, 0+ 1):= N (T— 2)X(4, %)

AeCN\A

and for a limit ordinal «
- X(4, a):= ﬂn X(4, B).

Standard cardinality arguments show that this decreasing sequence is eventually
constant; on its constant eventual value T — A must be surjective, for each A € C\ A.
Since Ef(4) = X(4, ) for every «, the eventually constant value of { X(4, «)} is Ex(A).

b) If X is a Hilbert space and T is a bounded normal operator then it is a con-
sequence of [15] that for every closed set F = C the eventually constant value of
{X(F, )} is reached at X(F, 1); in other words

EfF)= N (T-2)X.
AeC\F
First some elementary and basic facts.
Lemma 2.1. E(A) is hyperinvariant, so that Ef(A) is S-invariant, for any linear
map S commuting with T.
Proof. For A¢ A, (T — 2)SEH(A) = S(T — 1) Ez(A) = SE;(4), so that
SE(A) = Ey(A), by maximality.
Corollary. For every proper A < C,
Er(A) = Er(An o(T)),
where o(T) is the complement of the set of points A € C for which T — A is a bijection
onto X.

Proof. If A € A\ o(T) then (T — 1)~ * is a well defined linear map which commutes
with T. Hence, (T — 2)~' Ef(4) < E(4) and so Ef(A) = (T — 1) Ex(A4) for all
Ae ANo(T), as well as for all 1¢ A. Hence Ef(A) = Ef(4 n o(T)). The other
inclusion is immediate.
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- Corollary. If X is a Banach space and T is bounded, then for
Y:= E-(4)
we have o(T| Y) < o(T).
Proof. If 2 ¢ o(T) then (T — 1) E(4) = E(A) and consequently, (T — 1) Y = Y;
since T — 1 is 1-1, this shows 4 € o(T| Y). O

The next result is basic to much of the following discussion. Its proof is related
to the proof of [7, Proposition 1.3.5]. Note that the statement is purely algebraic;
no topological assumptions.

Proposition 2.2. With X, T and A as above, let Ay € A and let

E,, :={xeX|(T - A)xeEf(A)}.
Then
E;, = Ef(4).

Proof. Since Ep(Ad) = (T — ) E-(A) for every 1 ¢ A, we see that for x € E4(4),
(T — ) x = (T — ) x + (A — A) x € Ef(A) so that Ex(4) < E, . Let y, € E,, let

Y:= Ef(A4) + Cy,
and let z = y + ay, € Y. With A ¢ A4, consider

o
Ao — A
and choose y; € Ef(A) so that

(T_}v))’1 =)y -

y — (T — 4) yo € Ex(4)

o

T—- 1 .
).o—l( o))’o

Now let

Zoi= Y1 + Yo€Y

0
and compute
o

Ao — A

(T—2)zo=(T— )y, + (T~ 2) yo

o o

A(T_'lo)yO+°‘YO=}’+“)’o=Z.

T— 14 + —
lo-l( o)J’o do —

Thus Y < (T — 1) Y < Y, and since A € C\ A is arbitrary, E, c Er(A) follows,
Remark. This shows that Ey(4) is T-absorbent [17, Definition 1V, 4.1].

=y—

Corollary 2.3. ker (T — 4,) = E(A), for every Ao € A.

Also from Proposition 2.2 we may prove Ex(4; N 4,) = Er(4;)n ET(Az) for
any proper subsets 4, 4, of C:
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Proposition 2.4. Ex(4; n...N A4,) = Ex(4,) 0 ... " Ef(A4,), for any finite col-
lection {Ay, ..., A,} of proper subsets of C.

Proof. By finite induction only the case of two sets 4; and 4, needs consideration.
Also, by the Corollary of Lemma 2.1 we may assume that A; and A, are subsets
of o(T).

Suppose first that we have established our claim whenever 4, U 4, = o(T).
For arbitrary 4, 4, in o(T), let A; := 4, U (o-(T) N 4.

Er(4;) n Ex(4,;) = Ex(4;) 0 Ex(4;) =
= Ep(A; 0 A;) = Ex(4; 0 A;) < E-(4;) 0 E-(4,).

Thus there is no loss in assuming that 4; U A, = o(T). Let Y:= Ex(4,) N Ex(4,)
and let 2 ¢ A; N A,. As we saw (in the proof of the first corollary of Lemma 2.1)
Er(A) = (T — ) Ex(A), for any A, if A¢¢(T) so we may assume A e o(T), hence
A€ Ay \ A4y, say. If x, € Ythen there is y € Ex(4,) so that x, = (T — 1) y. But since
A€ A, and x, € Ex(4,), Proposition 2.2 implies that y € E4(4,). Hence (T — 1) Y =
= Yfor every 1 ¢ A; n A, and by maximality Y = Ez(4; n 4,). As the other inclu-
sion is immediate, the proof is complete.

Before proving ()-stability for arbitrary families of subsets of C we also need this
next observation.

Lemma 2.5. Let F < G be proper subsets of C, let Q: X ~ X|Er(F) be the quotient
map and let T: X|E((F) ~ X|E(F) be the map induced by T (thus TQ = QT).
Then

Ef(G) = Q E+(G).

Proof. If A¢G then (T — 1) QEH(G) = Q(T — 1) E¢(G) = Q E+(G), so
0 EL(G) = E4(G). For the reverse inclusion, suppose Qx e Ex(G) and choose
Qy € Ex(G) so that (T'— ) Qy = Qx. Thus Q(T — 1)y = Ox so that x —
— (T — ) y € E¢(F) and x, y € Q" *(E4(G)). Since A ¢ F there is z € E¢(F) < E7(G)

so that x =(T—A)y+(T—4)z=(T—24)(y + z). It follows that (T — 1).
- Q7(Ex(G)) = Q7 (Ef(G)), hence Q™" E4(G) < Er(G).

Theorem 2.6. Suppose {F;};.p is a family of proper subsets of C. Then
. ET(ﬂFo) = nET(Fa)‘
oeD deD
Proof. Let Y:= (| Ef(F;). Evidently Ex(\F;) = Y. Since stability under finite
deD

intersections has been established there is no harm in replacing the index set D by
the set of finite subsets of D, ordered by inclusion. Thus we may assume, with no
loss of generality, that D is a directed set and that §, = J, implies F;, < F;,.
Let 1 ¢ (\F;and choose J, so that A ¢ F,,. Let
Z:= () ET(FJ) 5

d=0do
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then Y € Z is trivial. On the other hand if z € Z and if ET(F,,) is given, then there
is 8’ = &, for which &’ = § also holds. Consequently z € Er(F,) = E(F,), so that
z € Y. To show that (T — ) Y = Yforevery A ¢ (\F,itis enough therefore, to show
that (T — 1) Z = Z for the A chosen above.

Suppose first that Ef(9) = {0}. Since A ¢ (\F; we may, to our given z € Z, choose
zy€ E(F;) such that (T — 1)z, = z, for each & > §,. Consider &', 8" = §, and
select 6" = &', 6" = &8". If z; + zz then zg» + z4, say. Hence z5» — z;5 €
eker (T — ) < Ex({A}). Hence zs» — z5 € Ex(F;)n Ef({1}) = E-(0) = {0}. It
follows that if (T — 1)z, = z then z,e E(F;) is independent of § = §,. Thus
zg € Z and surjectivity of T — A on Y has been established for every A ¢ (\F,.

This completes the proof of Theorem 2.6 if E¢(9) = {0}. To remove this additional
assumption invoke Lemma 2.5. In X/E4(@) we have that E(0) = Q E-(0) = {0}.
Hence by the work already done

ET(ﬂFa) = ﬂET(F,,)
and so

ET(ﬂFa) = Q_l(ET(ﬂFa)) = ﬂQ—lET(Fa) = ﬂET(Fa)- Od

3. CLOSED E(F)

In this section we shall consider the implications of assuming Er(F) to be closed,
when F is a closed subset of C. Throughout this section we assume X to be a Banach
space and T'to be a bounded linear operator on X.

First let us remark that if Ex(F) is given then there is a smallest closed subset F,,
say, of C which we may think of as the support of the space. Specifically

Fo := supp (E¢(F)) := N{F' | F" closed and E(F') = E-(F)} ;
For the support we have the following observation:

Lemma 3.1. Let F, be the support of Ex(F) and suppose Ef(F) is closed. Then
0 o(T| E¢(F)) = Fo = o(T| E¢(F)) (where & denotes the topological boundary).

Proof. If A € 60(T | Ex(F)) then (T — 1) Ex(F) + E(F)(cf. e.g. [11, Lemma 2.2]).
Consequently A cannot belong to C\ F,. For the second inclusion simply observe
that

(T~ 2) Ex(F) = Ex(F)
for every 4 € C\o(T| Ex(F)), hence F, = o(T| E4(F)), by minimality of F,.
- For a compact subset F of C let F denote the polynomially convex hull of F;
it is a standard fact that F equals the union of F and all bounded components of
C\ F. Thus F is F together with all the holes in F. We then have

Corollary 3.2. o(T | E¢(F)) = F,.
Proof. 6o(T| Ex(F)) = Fy = o(T| E(F)) = F
We now recall the notion of spectral maximality. [7, p. 18].
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Definition. Let Lat (T) denote the closed T-invariant subspaces of X. A subspace
Z e Lat (T) is then said to be spectral maximal if Ye Lat (T) and o(T| Y) < o(T| Z)
imply that Y < Z.

In light of the maximality condition in the very definition of Ef(F) the next result
is not surprising.

Proposition 3.3. If F is compact and F = F and if E1(F) is closed then E(F) is
spectral maximal. Moreover, if E(0) is zero then EL(F) is spectral maximal
whenever E1(F) is closed and F closed. Conversely, if E¢(F) is closed for all closed F
and if Z e Lat (T) is spectral maximal then Z = E(o(T| Z)).

Proof. From Corollary 3.2 it follows that o(T | Ef(F)) = F, = F = F, hence
if Ye Lat (T) and 6(T| Y) = o(T| Ef(F)), then o(T| Y) = F. But then Y < E4(F),
since (T — 1) Y= Yfor all 1 ¢ F.

To show spectral maximality of E4(F) for arbitrary closed F, when E(0) = {0},
it is enough to show that o(T|Ey(F)) = F. If Aeo(T|E{F))\F then
(T — 2) Ex(F) = E(F), so ker (T — A)|p,r) * {0} (otherwise e o(T|E;(F)),
by the open mapping theorem). Since ker (T — 1) = Ef({A}), by Corollary 2.3,
we conclude that

{0} + Ex(F) n E-({A}) = E£(9) .

This contradicts our assumption about E(0).

Finally, suppose ZeLat (T) s spectral maximal. Since (T— A)Z = Z for all A¢o(T| Z)
we get that
Z < E-(o(T| 2)).

Since o(T| Ex(o(T | Z)) = o(T | Z), spectral maximality of Z gives the other inclusion.
The notion of local spectrum allows another description of the closed Ex(F)-spaces.
Recall [17, p. 185] that if x € X then the local resolvent set o7(x) is defined as the

union of all open subsets of C on which the equation

(T—2)x(2) =x

has an analytic solution x(4). The local spectrum o(x) of x is then

or(x) := Cxog(x).

It is easy to see that if F. < C and if

X(F):= {xe X |o(x) = F}
then X7(F) is a linear subspace of X. Moreover, if
(T—-2)x(2) =x

for all € or(x) then or(x(4)) = o4(x) for each A€ or(x). Hence if x € X1(F), then
x(%) € X1(F) for every 2 ¢ F. In other words, since X(F) is easily scen to be T-
invariant, ’

(T — 2) X1(F) = X(F).
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It follows that
X(F) < E(F)
for any F <= C. There is a converse.

Proposition 3.4. If F is compact and F = F and if E4(F) is closed, then Ef(F) =
= X(F). If E¢(0) = {0} then closedness of F and of E{(F) are sufficient that
E(F) = X(F).

Proof. As we saw in the proof of Proposition 3.3 under either set of assumptions
we have that o(T | Ef(F)) = F; hence, if x € Ef(F), (T — A |g,r)) " X is an analytic
solution on C\F of the equation (T — 1) x(4) = x. Consequently, or(x) = F

for every x € Ef(F). This gives Ex(F) = X(F) and the reverse inclusion always
holds.

Proposition 3.5. Suppose G = C is an cpen and connected set on which the equa-
tion (T — ) f(A) = 0 has an analytic solution f(A) %£ 0. If F < C is closed and
E(F) is closed and if F 0 G + 0 then G < o(T | E((F)).

Proof. Let Ay e F n G. By T-absorbency (Proposition 2.2) (1) € E(F). More-
over, since Tf() = A f(2) for all 1 € G, differentiation yields Tf"(1) = A f™(1) +
+ nfCUV(4) for all 2€G, n=1,2,..., so that (T — ) f®() = nf" (1) for
all \eG and n = 1,2,.... In particular (T — 2) f®(4o) = n f@~V(1,), so, again
by T-absorbency, ()€ E4(F), n =0,1,.... If {2||A — 45| < 8} = G, then

[c¢]

f() = X f™(%) (A = Ao)'[n! € E4(F)(since E4(F)is closed) for all 2 with |2 — 4| <

n=0 .
< §. By analytic continuation it follows that f(1) e E¢(F) for all A€ G and since
(T — ) f(2) = 0 we conclude that if f(2) + 0 then A€ o(T| E4(F)). Consequently,
since f # 0 it follows that G = o(T| E4(F)).

The operator T'is said to have the single valued extension property (SVEP) if the
only analytic solution f to the equation (T — 4) f(4) = 0, where A ranges over some

open set G < C, is the zero solution. The previous Proposition then yields this
next result.

Corollary 3.6. If E,(F) is closed for every closed F = C, then T has the single
valued extension property.

Proof. Actually, it will be enough to make the formally weaker assumption that
E(D) is closed whenever D is a closed disc in C: suppose (T — 1) f(4) = 0 for every
A€ G, where G is open and connected. If f(4,) # 0, choose § > 0 so that f(4) = 0
for all A with |2 — 4| < 8. Let D = {Ae C| |2 — Ao| £ §/2}. Then (Proposition 3.3):

o(T| Ef(D)) = D . -
But D + G and G < o(T| Ef(D)), by Proposition 3.5. This contradiction implies
that f must be zero.

It is of obvious interest now to display some instances in which E(F) is closed.
Consider the following class of operators, introduced in [1].
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Definition. A bounded linear operator T on the Banach space X is called well-
decomposable, if for every open covering {U, V} of C there is a bounded linear
operator R on X, an integer n and subspaces 'Y, Z e Lat (T) for which

oT|Y)<U, o(T|Z)cV
RX)cY, I-R(X)c2Z

and
(T (R) =0,

(where C(T) (R) = TR — RTand C(T)*R = C(T)*"* (TR — RT), for k = 2,3, ...).

If T is well-decomposable and if Er(0) = {0} (which means that T has no non-
trivial divisible subspace) then it is shown in [1, Proposition 3.2] that E(F) is closed
whenever F is closed. We give a simpler version of the proof here.

Proposition 3.7. Suppose T is well-decomposable and E4(0) = {0}. If F = C
is closed then E4(F) is closed.

Proof. Let U be an open neighborhood of F and choose R so that for certain
Y, Z € Lat (T) we have o(T| Y) = U, o(T| Z) = C\F,RX = Yand (I — R)(X) =
< Z, and let n be chosen so that C(T)" (R) = 0. We then have that R EL(F) = E(F).
This is proved in [1], so we do not reproduce the details here.

Since o(T|Z) = C\F it follows that Z < Ef(C\F). Hence (I — R) E¢(F) =
= (I — R)X c Z < E;(C\F). But R Ef(F) = E(F) implies that (I — R) E(F)
< E(F), hence

(I = R) Ef(F) = Ef(F) n Ef(C\F) = {0} .

It follows that E{F) = R E{(F), so that E-(F) < Y from which E-(F) < Y. Since
o(T| Y) = U and since (T — 2) Ef(F) = E(F) for all A¢U it follows that
o(T| Ef(F) = U. Since U is an arbitrary neighborhood we conclude that
o(T| Ex(F)) = F, hence E,(F) = EL(F), by maximality.

In numerous cases an algebraic description of the largest T-divisible subspace E{0)
yields a similar algebraic formula for E4(F), for any closed set F. Such results have
been obtained for generalized scalar operators by Vrbovéd [18] and by Foias and
Vasilescu [8] and for normal operators on Hilbert space by Pték and Vrbovd [15].
Here is a more general version for super decomposable operators. Recall that
a bounded linear operator T is super-decomposable if it is well decomposable and
the commutation index n = 1 for any covering {U, V} of C and the corresponding
operator R. In other words, RT = TR.

Proposition 3.8. Suppose T is super decomposable, and suppose there is an in-

teger q for which
N(T— 21X = Ef(0).

AeC
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Then for every closed F = C we have
EA(F)=N(T—-2'X.
A¢F

Proof. Let F < C be closed. Since (T — 1) Ef(F) = E(F) for every A¢ F the
inclusion E(F) € Wp:= (\ (T — A)? X is trivial. Let U be an open neighborhood
2¢F

of F and choose R so that RT = TR and such that there are spaces Z, Ye Lat (T)
with o(T|Y) = U, o(T|Z) = C\F, RX < Y, (I — R)X = Z. Suppose xe W,
and note that y := (I — R) x € Z so that y, := (T — 4)™? y is well defined for every
A e F. Moreover, since x = (T — 1)?x;, for every A¢ F we may define, for A ¢ F,
y5:=(I — R) x,. Then, for AeF, (F— A)'y, =y and for A¢F (T— )y, =
=(T-2A"(I-R)x;=(I —R)(T— Ax;=(I — R)x = y. It follows that ye

€ N (T — 2)?X = Ef(0). Hence if xe W, then x = (I — R)x + Rxe E(0) + Y <
igC

< E(U). U being arbitrary we conclude that W, < E(F).

A readily accessible example to which this description applies is that of a com-
mutative semi-simple and regular Banach algebra A. If a € A then the multiplication
operator M, is super decomposable [14, Corollary 2.4]. Moreover, if xe

e (N (M, — 2) A and h is a multiplicative linear functional on 4 let 1 = h(a) and
ieC

select a; so that x = (a — 1) a;. Then h(x) = 0, hence x = 0 by semi-simplicity.
Consequently we obtain for F closed in C

Ey (F) =QF(‘1 —A)4.

Remark. At this stage it is tempting to add to the large collection of definitions
of families of operators whose spectra possess some kind of local decomposability
one expressed in terms of the E(F) spaces. This matter will be pursued in a future
paper so suffice it here to suggest that a bounded linear operator T be called alge-
braically decomposable if every open cover {U, V} of C yields a splitting of the
Banach space

X = E(U) + E(V).

Evidently, this class of algebraically decomposable operators is rather large, con-
taining not only all decomposable operators but also all operators satisfying property
(5) [1].

On the other hand, if we further require that E4(F) be closed whenever F is closed,
then we obtain a subclass of the decomposable operators without non-trivial divisible
subspaces, possibly exactly this class.

4. AUTOMATIC CONTINUITY
There is a series of results in the literature describing classes of operators T'e B(X)
and Se B(Y), where X, Y are Banach spaces, for which every linear map 6: X ~ Y
intertwining S and T (i.e. S8 = 0T, or equivalently C(S, T) 8 = 0) is continuous
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exactly when every eigenvalue A of S has the property that codim (T — 1) X < oo
and, additionally, either T is algebraic or S has no non-trivial divisible subspace
[11], [14], [1].

The significant feature of many of these arguments is that 0X4(F) < E¢(F) for
every closed F. Moreover, it is necessary to assume closedness of {X1(F)} and of
{E4(F)} to be able to “localize” the possible discontinuity of 6 to some finite set.
The natural set of assumptions that emerge are that T be decomposable and that E¢(F)
be closed whenever F is closed. As a result Eg(9) = {0} becomes part of the assump-
tions of our present result. On the other hand the intertwining condition is relaxed
considerably, namely to C(S, T)" 8 = 0 for some n.

Theorem 4.1. Suppose T is a bounded decomposable operatdr on the Banach
space X, and that S is a bounded linear operator on the Banach space Y for which
E(F) is closed for all closed F.

Consider the class of linear maps 0: X ~ Yfm which C(S T)" 0 = 0 for some n
(depending on ). Then every 9 in this class is continuous if and only if (S, T) has
no critical eigenvalues (this means that if A is an eigenvalue for S, then
codim (T — 4) X < o0.)

Proof. The necessity of the condition that (S, T) have no critical eigenvalues is
classical and easy [11]. So let us assume that (S, T) have no critical eigenvalues and
consider 8: X ~Y for which C(S, T)" 6 = 0 for some n.

We first establish that 0X (F) = Eg(F), for any closed F < C; actually the proof
of this is sufficiently similar to that given in [1, proof of Proposition 3.2] that we
skip the details (as we also did in the proof of Proposition 3.7).

Now, by [2, Theorem 4.3 ¢)] there is a finite set F = C such that if
©(0) := {y e Y| 3x, > 0 and 0Ox, > y}
then t(6) = E4(F).

Arrange the points of F = {4, ..., 4,,} in an infinite sequence {/l ;} (in which each A;
appears infinitely often) and let T; := T — p, j = 1,2,.
By [12], there is an N € N so that

0Ty ... T,) = 7(0T; ... Ty)

for all ¢ = N. Thus, if p(T) := T; ... T, then we have found a polynomial p with all
its roots in F for which

(0 p(T)) = «(0 p(T) (T — 4;)")
forj = 1,..., m and for any q € N. Letting yy := 0 p(T) we actually have a bit more:
() o($) = (U(T = AY)
for any Ae Cand any g € N.

For A€ F this has just been established. And if A ¢ F choose {U;, U,} open so
that C= U, U U, and so that A¢ U,, while F < U, and FA U, = 0. Since T

166



is decomposable
X = X(U,) + X(U,)

and since
‘pXT(vz) < GXT(UZ) < Es(ﬁl)

it follows that
T(‘/’,XT(Uz)) € Es(F) n Eg(U,) = {0} >
so that y is continuous on X(T,). It follows that ¢(¥) = t(|xr0y) and since
T — J is invertible on X1(U,;), (*) follows.
Next, with 7 := t() let
Z:=[t+St+S%+..+8 .

It is an easy consequence of C(S, T)" 6 = 0 that Z is S-invariant. We also note that
Z < E5(F). We want to establish that

o (52~ =2z.
o1 (S0 (o) [l
and since

(Z(“l)@ §TEyT ) S o(S"N) + o(STHYT) + o+ YT =
= (81" + (S %) " + .t T
(remember that ¢ = t(yT*), k = 0, ...,n — 1) we conclude that
S"lr 4 8" 2% 4 L+

n—1
is dense in 7( ), (—1)* () S"~**DyT*). Thus
k=0
T < (SZ)”.

But then
T+ Sttt + S8 e S (SZ+ St + ...+ ST) =
=(SZ + S(t + ... + 5" %))” = (82)”
so that Z = (SZ)_.
Precisely the same argument would have shown that Z = ((S — 1)) Z2)™, j =
= 1,..., m. Hence, by the Mittag-Leffler theorem [16] there is a dense linear sub-

space W < Z on which
(S—-,{J.)W: W, j=1,....,m.

Thus
W < Es(C\F)

so that
W < Eg(F) A Es(C\F) = {0}

This shows that Z = {0}, hence ';((//) = {O}
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We have proved that 6 p(T) is continuous.

Consider now two possibilities: if 1,, ..., 4,, all are eigenvalues of S then p(T) X
is of finite codimension in X. Let G be a closed neighborhood of F. Then p(T) X n
A X1(G) is of finite codimension in X1(G). But X;(G) is T-absorbent [17, Theorem
1V.4.2], hence p(T)X n X1(G) = p(T) X1(G) is of finite codimension in X(G)
(and closed). Since 0 p(T) is continuous, the continuity of § on X7(G) is established.
As we saw before (in connection with establishing (x)), that is enough to ensure
continuity of 6 in this case.

If there is 4; € F for which S — 1; is 1-1, we argue first by induction to reduce the
number of such points in F to one: suppose there are ¢ > 1 non-eigenvalues for S
in F and suppose continuity of 6 has been established whenever S is a mapping with
less than g eigenvalues in the singularity set F. If {4,, ..., 4.} is an enumeration of the
non-eigenvalues in F, write {1;, ..., 4,} = F; U F, as a disjoint union of non-empty
sets and let G; < F; be disjoint closed neighborhoods. Since

0(X+(G))) = Es(G))
and
©(0x6,) < Es(F) 0 Es(G)) = Es(FN\F;5_))

it follows by inductive hypothesis that GIXT(GI, and glxr(Gz) are continuous. But
X{(G, v G,) = X1(G,) ® X1(G,) so by the open mapping theorem continuity
of @ on X1(G; U G,) follows. The continuity of 8 then follows as before.

We still have left to establish the result for the case F = {1,} = {0}, say, and S
assumed 1-1. From the preceding parts of the proof we know that 6T" is continuous
for some r. Since C(S, T)" 6 = 0 implies that C(S, T)"*" § = 0 we may assume that
C(S, T)Y" 6 = 0 and T" is continuous. From the next lemma it then follows that 6
is continuous. This completes the proof.

Lemma 4.2. Suppose 0T" = o;SOT""* + ... + «,S"0, where ay, ..., q, are all
non-zero. Suppose OT" is continuous and S is 1-1. Then 0 is continuous.

Proof. Since

o, SOT* ! + ... + «,S"0
is continuous we have
{0} = v(«, 80" ' + ... + ,8"0) = St(a,0T" " + ... + «,5"7'0)
and hence «,0T" ' + ... + ,8""'0 is continuous (S being 1-1). Multiply this
equation by T"~! and observe that all but the last term
ansn—leTn—l

contain 0T™, where m = n. Hence S" 107"~ ! and so 8T~ ! are continuous. We
then obtain that

4, S20T" "% + ... + ,5"0
is continuous and hence that

0T 2 + ... + ,8"7%0
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is continuous. Repeat the argument; we end up with both
o, 10T + o,S0

and 0T? being continuous, hence also SOT, and therefore 0T, continuous. It follows,
finally, that S0, and consequently 6, are continuous.

5. MODULE DERIVATIONS

As an application of Theorem 4.1 and its proof consider a commutative Banach
algebra A with identity to which [14, Theorem 2.3] applies; thus, 4 may be regular
and semi-simple, or 4 may have a totally disconnected maximal ideal space & ,.
In particular, 4 may be radical with identity adjoined. Consider also a Banach
A-module IM; thus we have a continuous algebra homomorphism g: 4~ B(ﬂﬁ)
which maps the identity of A to the identity on 9. Suppose D: A~ Mt is a derivation;
this means that D is linear and

D(a,a,) = ¢(ay) Da, + o(a,) Day forall aj,a,eA.

Quite a few results on continuity of derivations are already in the literature [3, 4,5,9,
13]. More follow from Theorem 4.1. This is because if a, € A then C(o(a,), ap)* D =
= 0:if a € A then

C(o(ao), ao)* Da = C(o(ay,), ao) [e(ao) Da — D(aea)] =
= g(a3) Da — o(ay) D(aa) — o(ay) D(aga) + D(aja) = 0.

A special case of derivations is the point derivations, where 9t is the complex
plane (in which case the module action ¢ is given by some A € @,).
To phrase our result we also need the notion of a scalar module: a Banach A4-
module N is scalar if
olaym = Am forall aeAd, meN,

where 4, € C. This means that the module action ¢ is given by a linear functional,
necessarily multiplicative (and continuous). Note that a Banach A-module 9
contains scalar submodules if and only if it contains one-dimensional submodules.

We then have

Theorem 5.1. Suppose A is a singly generated commutative Banach algebra
with identity e and generator z. Suppose M is a Banach A-module on which o(z)
is an operator for which EQ(Z)(F) is closed for every closed F = C. Suppose also
that multiplication by z in A is a decomposable operator.

Then there are discontinuous derivations from A to M if and only if there is
a multiplicative linear functional A € ®, with respect to which M contains a scalar
submodule and with respect to which A possesses discontinuous point derivations.

This result is an analogue of [10, Corollary 4.2]. It is also related to [5, Theorem
3.3] and to [3, Corollary 4.6].
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Proof. It is easy to see that if e @, if Cs = I is a one-dimensional submodule
with module action A and if §: A~ C is a discontinuous linear functional for which
d(ayay) = Ma,) 8(ay) + Ma,) 8(ay) for all ay, a, € A, then

Da := §(a) s
is a discontinuous derivation into 9.

Suppose conversely that D: A~ 3 is a discontinuous derivation. Our assumptions
are exactly what Theorem 4.1 requires. We conclude that the pair (z, o(z)) has
a critical eigenvalue. In particular Q(z) has an eigenvalue, say A,. Let s & 0 be an
eigenvector. It is straightforward, using the single generation of A, and the con-
tinuity of g, to conclude that Cs is a submodule of 9. This provides us with a multi-
plicative linear functional A € ®, (for which A(z) = ;). '

We must show that 4 has a discontinuous point derivation at M, := ker A.
Suppose not. Since point derivations are characterized by their vanishing on e and
on M? this means that M2 is closed and of finite codimension.

For a derivation D we may introduce the continuity ideal
I(D) := {ae 4] g(a) «(D) = {0} ,
which is easily seen to be a closed ideal. In [13, Proposition 2.8] is shown that there
is a constant C > 0 so that
[D(aya,)| = Cllay|| |az| forall ay,a,eI(D);

moreover, if A is separable (which it is here, by single generation) then D is con-
tinuous on I(D)? [13, Corollary 2.11]. We shall change the given derivation D to
a derivation D, for which I(D;) = M, but such that F, is still discontinuous. This
cannot be, however, since M? is closed and of finite codimension. The derivation D,
may be obtained by means of the prime ideal theorem [4], but we can get it directly
from the proof of Theorem 4.1. Early in that proof we obtained a polynomial p
(which we may take to have minimal degree) for which D(p(z) *) is continuous. From
the definition of a derivation it then follows that p(g(z)) D is continuous. We also
noted that the roots of p are located in some finite set F for which

T(D) < Ee(t)(F) .

We may even assume that F is exactly the set of roots of p: since p(o(z)) ©(D) = {0}
we may cancel all factors Q(z) — J which are 1-1; moreover, if

ple(2)) = (e(z) = 40" .. (e(2) = 4)™,

then by the absorbency of ({41, ..., 4,}) it follows that since p(e(2)) ©(D) = {0}),

(D) © Eg({Ass -+ Au}) -
We can say more: let

put) 1= p(O))(t = A*, k=1,...n.

pie(2)) ©(D) = ker (o(z) — W)™, k=1,...n,

Then
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and since {Pyy s p,; has greatest common divisor 1 we can find polynomials
qy»---, 4, so that p1q + ... + p,g, = 1; consequently

(D) = ker ((e(z) = 4)" [ (D)) ® ... ® ker ((e(2) — 2, | «(D)).

We may assume that F = {4,,..., 4,} is minimal with respect to containing (D).
Then each of the maps

(o(z) = 4, k=1,..,r;, j=1,..,n,

acting on ¢(D) cannot have dense range (if one of them did, the Mittag-Leffler
theorem would imply the existence of a dense subspace on which o(z) — 4; would
be surjective, contradicting the minimality of F).

These remarks show that if Q(r) = p(1)/(t — 2;) for some j, then

Q(o(2)) (D) + {0} ,
which means that the derivation Q(g(z)) D is discontinuous, but also
(e(z) = 4)) Qe(2)) (D) = {0},
which means that the continuity ideal 1(Q(¢(z)) D) is ker A, where 4 € &, is chosen

so that A(z) = ;. Thus D, = Q(e(z)) D is the discontinuous derivation with con-
tinuity ideal M, := ker A, that we want.
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