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SEQUENCES, WEDGES AND ASSOCIATED SETS 
OF COMPLEX NUMBERS 

DANiEL HERSHKOWiTZ and HANS ScHNEiDER*), Madison 

(Received June 4, 1986) 

1. INTRODUCTION 

Let R = (r1? r2 , . . .) be a finite or infinite (strictly increasing) sequence of positive 
integers and let (Wl9 W2,...) be a sequence of wedges in the complex plane. Consider 
the following problem: Characterize those complex numbers c for which 

(1.1) <f*eWk> 
for k = 1,2,.... 

It is shown in [1] and [4] that, under certain assumptions on the wedges and on the 
density of the sequence R, the set of all complex numbers satisfying (1.1) for к = 
= 1, 2 , . . . is finite. The set itselfis not identified there. 

In this paper we assume that 
W= Wt = W2 = . . . , 

where Wis the open wedge W(ot) (the closed wedge TF[a]) ofwidth 2a symmetrically 
located around the nonnegative real axis. We then discuss the set S(R, a, n) 
(S[R, a, n]) of nonzero complex numbers c which satisfy (1.1) for к = 1,..., n9 
where n is either a positive integer or oo. 

Section 2 is devoted to the case of finite n. Let W = W(a). Obviously, W(ot|r^) £ 
ç 5(jR, a, n). We prove а necessary condition (Proposition 2.14) and a sufficient 
condition (Proposition 2.22) for 

(1.2) FF(a/r,) = S(R, a, n) . 

These results are then combined to obtain a characterization of the case (1.2) 
(Theorem 2.29). In the case that (1.2) does not hold, we give a necessary condition 
(Proposition 2.39), a sufficient condition (Proposition 2.53) and a characterization 
(Theorem 2.63) for 

(1.3) S(R,*,n)sW(a|r,-i). 

*) The research of this author was supported in part by NSF grants DMS-8320189 and 
DMS-8521521. 
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Our conditions involve a and two or three consecutive terms of R. Similar results 
hold for closed wedges. 

Let Tbe a subset of the set C of complex numbers. In Section 3 we introduce the 
concept of(T, oc)-forcing ((Г, ct)-semiforcing) sequence. A sequence R with cardinality 
|jR| is said to be such a sequence if W = W[of] (W = W(a)) and if S n T is contained 
in the positive real axis, where S = S(R, a, n) (S = S[jR, a, n]). We prove several 
sufficient conditions for R to be (T, a)-(semi)forcing (Theorems 3.4, 3.10, 3.11, 3.14; 
Corollaries 3.15, 3.16, 3.28; Proposition 3.27). Section 3 is concluded with a discus­
sion of an interesting relation between (semi)-forcing sequences and continued 
fractions. 

Examples of (C,rc/2)-forcing sequences are (fc,fc + 1, k + 2,...), where k is 
a positive integer, (1,2,3,8,...) and (1,3,10,31,94,...). Examples of (C,rc/2)-
semiforcing (but not forcing) sequences are (1, 3, 9, 27,...) and (l, 3, 4, 8, 16,...). 
Additional examples are given in Section 4, which also contains examples pertaining 
to the results in Section 2. 

Applications of forcing and semiforcing sequences to linear algebra are contained 
in [3]. These applications motivated the present investigations. In view ofthe results 
presented here and their applications it would be of interest to characterize forcing 
and semiforcing sequences. 

2. WEDGES 

In this paper we shall use the notation (rl5 r2,...) for an infinite sequence of in­
tegers and the notation (r1? r2,..., rt) for a sequence of integers which is finite if t 
is a positive integer and is the infinite sequence (r l 5r2 , . . . ) if t = oo. Further, 
"sequence of positive integers" will always mean "strictly increasing sequence of 
positive integers". 

The cardinality of a set (or sequence) R is denoted by |JR|. The set of all complex 
numbers is denoted by C. We assume that the argument of a nonzero complex 
number is chosen in the half open interval (-rc, тс]. 

Definition 2.1. Let —7Г ^ a, ß ^ тс. If a ^ ß then we define the closed wedge 
(excluding 0) W[a, ß] of width ß - a to be the set 

{ceC:c Ф 0, a й arg(c) й ß} • 

If ß < cc then we define the closed wedge PF[a, j8] of width 2% + ß - a to be the set 

{c є С: с Ф 0, a ^ arg (c) S к or —7c ^ arg (c) ^ ß} . 

Remark 2.2. Consider the rays la nad lß which form angles oc and ß respectively 
with the nonnegative real axis. Observe that TF[a, ß\ is the wedge covered when we 
move from la to lß counter-clockwise. 

Definition 2.3. Let —тс ̂  a, ß S я. We define the open wedge W(oi, ß) to be the 
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interior of the closed wedge W[oc, ß] in the Euclidean topology. The width of W(<*> ß) 
is defined to equal the width of W[oc, ß]. 

Remark 2.4. (i) By Defìnition 2.1 we have W[oc, ß] = C \ {0) ifand only ifa = -n 
and ß = к. 

(ii) By Defìnition 2.3, for every a and ß, —n ^ a, ß ^ n, we have W(a, ß) ? 
cCs{0}. 

Notation 2.5. For 0 ^ a S % we denote: 

W[u] = W[oc, a] , 

Tf(a) = W(a, a) . 

Notation 2.6. Let R = (rl5 r2,..., rř) be a sequence of positive integers. Let n be 
either a positive integer or oo, where n <^ t, and let 0 ^ a ^ тс. We denote: 

S[R, a, n] = {c є C: c* є Pf[a], fc = 1, ..., n} , 
S(#, a, n) = {c є C: сГк є Jf(a), fc = 1, ..., n} . 

Notation 2.7. Let 0 ^ a ^ n and let и be a positive integer. We denote: 

Є Й = { с є С : с " є а д , 
ß„(a) = {c є С: си є Tf(a)} . 

Let n be а positive integer and let m be the largest nonnegative integer such that 
m й (n — l)/2. Let 0 fg a ^ тс. It is easy to verify that 

m 

(2.8) Q,,[a] = ( U Wt(2rcfc - a)/« , (2rcfc + a)/n]) u TF* , 
Jt= —m 

where 

(2.9) ^* = j t ' r , , n " 0 d d ' 4 y L^L71 ~~ a / n ' *"^ + a/nJ 9 n e v e n • 
Also, Q«(a) is the interior of QnM-

For example, the sets б4[тс/3] and 6s[^/4] are the darkened areas in the figures 1 
and2 onpage 141. 

The following observation is immediate. 

Observation 2.10. Let R = (rl5 r2, .-•) be a sequence of positive integers, let n 
be a positive integer and let 0 ^ a S %. Then 

S[R, a, n] = Г) QrM 
fc=i 

яна 

S(R, a, n) = П Qjfl) • 
* = i 

Since # is an increasing sequence we now obtain from (2.8) and Observation 2.10 
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W[oc|rJ s S[R, ос, n] 
that for 0 ^ a è к, 
(2.11) 
and similarly 
(2-12) W(a|r.) S S(J?, a, „) . 

We now find а necessary condition and a sufficient condition for ecualirv nf л 
sets i„ (2.11) and (2.12). We prove our assertions for open w e d g e s . T h e r l Ï 
the case of closed wedges are similar, and will be stated later S Ш 

The case n = 1 is easy. 

Q4!n/3] 

Figure 1 

Qc/nr/4/ 

Figure 2 
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Theorem 2.13. Let R = (r1? r2 , . . . ) be a sequence of positive integers and let 
0 < а й n. Then 

W(<x|rJ = S(R, a, 1) 
ifand only ifrí = 1. 

Proof. In view of (2.8) and Observation 2.10, the set S(R, a, 1) consists of the 
single wedge W{ajr^) ifand only rx = 1. • 

Proposition 2.14. Let R = (ru r2 , . . . ) be a sequence of positive integers, let n 
be a positive integer, n > 1, and let 0 < a ^ n. If 

(2.15) W{zjrn) = S(R, a, n) 

then 
(2.16) arn й (2n - a ) r ^ . 

Proof. Observe that 

(2.17) S(R, a, n) = S(R, a, n - 1) n Qrn(a). 
Assume that 
(2.18) a ^ > ( 2 r c - a ) ^ _ ! , 
or equivalently, 

(2тс - a)/r„ < a / r ^ . 
Let ß = min {(2л: + a)/r„, a/r , ,_J, and let JF = W((2n - a)/rn, j3). By (2.8) we have 
W Ç Or>) . Also, by (2.12), 

P f c ^ a / r ^ ) c ^ , a , n - l ) . 

Therefore, it follows from (2.17) that 

W <= S(#, a, n). 

Since ß > a/r„ it follows that TF ф W(a|r^ and we now have a contradiction to 
(2.15). Hence, our assumption (2.18) is false and we have proved (2.16). • 

Remark 2.19. Inequality (2.16) is equivalent to 

(2.20) a a 2 * r . _ ! / ( r , - x + r , ) . 

Therefore, in view of Proposition 2.14, the equality (2.15) yields an upper bound 
on a. In particular, since rn ^ rn_t + 1, it follows from (2.20) that 

a s 2 * r , _ i / ( 2 r , _ ! + 1). 

The converse of Proposition 2.14 is in general false, as demonstrated by Example 
4.1. 

In order to prove a sufficient condition for (2.15) in terms of (2.16) we introduce 
the following notation. 

Notation 2.21. Let T Я C, T\ {0} ф 0. 
We denote: 

fi(T) = sup {|arg (c)|: c e Г, с Ф 0} . 
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Proposition 2.22. Let R = (rl9 r2,...) be a sequence of positive integers, let n 
be a positive integer, n > 1, and let 0 < oc ^ n. If 

(2.23) rfS(*>*>"))U*|rn-i> 
and if 
(2.24) o r . a ( 2 * - a ) r . _ ! , 
ifcen 

TF(a/r,) = S(R, a, и) . 

Proof. It is easy to verify, by (2.8), that if (2.24) holds then 

(2.25) WTa/r.-J n ß J a ) == tF(a/r.). 

Our assertion now follows from (2.23) and (2.25). • 

The following corollary clearly follows from Proposition 2.22. 

Corollary 2.26. Let R = (rl9 r2,...) be a sequence of positive integers, let n be 
a positive integer, n > 1, and let 0 < a ̂  n. If 

(2.27) S ( R , a , n - l ) = fT(a/r._0> 

and if 
otrn й (2тс - a)r,-jL, 

ґйеп 
(2.28) S(Ä, a, n) = FF(a/r,) . 

The converse of Corollary 2.26 is not true in general. Example 4.2 demonstrates 
that (2.28) does not imply (2.27). Example 4.2 also shows an application of Corollary 
2.26. 

Propositions 2.14 and 2.22 yield the following theorem. 

Theorem 2.29. Let R = (rl5 r2 , . . .) be a sequence of positive integers, let n be 
a positive integer, n > 1, and let 0 < a ̂  n. Then 

(2.30) S(R, a, n) = W{oLJr,) 
ifand only if 

(2.31) fi(S(R,a,n))ux|r,>-! 
and 
(2.32) ar.u(2K-a)r.-t 

Proof. Obviously, (2.30) implies (2.31). The implication (2.30) => (2.32) is proved 
in Proposition 2.14. Inequalities (2.31) and (2.32) imply (2.30) by Proposition 2.22. 

D 
For a sequence R = (r1( r2 , . . .) of positive integers and for 0 < a ̂  7C, (2.12) 

implies that 
(2.33) fi{S(R, a, n) ^ a/r„, 
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Furthermore, by (2.8) and Observation (2.10) equality in (2.33) holds if and only if 
(2.15) holds. 

We now assume that strict inequality holds in (2.33) and we seek an upper bound 
for the left hand side of (2.33) under additional conditions. 

We start with the case n = 2. 

Theorem 2.34. Let R = (r1? r2t...) be a sequence of positive integers, and let 
0 < a 5i ти. Then 
(2.35) a/r2 < p(S(R, a, 2)) ^ a/rx 

if and only if 
Г і - 1 

arcd 
ar2 > 2n — a . 

Proof. If rx = 1 then by Theorem 2.13 

pt(S{R, a, 2)) й p(S(R, a, 1) = ocjri . 

Furthermore, if ar2 > 2л; — a, it follows from Proposition 2.14 that 

(2.36) p(S(R, a, 2)) > a/r2 . 

Conversely, assume that (2.35) holds. Since we now have (2.36), in view of the right 
hand inequality in (2.35) it follows from Proposition 2.22 that 

(2.37) ar2 > (2тг — a) rx . 

By (2.8), every open wedge of width greater than (2тг — 2oc)/r2 has a nonempty 
intersection with Qr2(a). Observe that ß r i (

a ) is a union of rt wedges, each of width 
2ocjr1. By (2.37) we have 2ocjr1 > (2я — 2a)/r2, and hence, each of the rt wedges 
contained in ßrXa) has a nonempty intersection with Qr2(<x). By the right hand 
inequality of(2.35), only the wedge W(<x|r^ has such a nonempty intersection, and 
hence we necessarily have rt = 1. Q 

Notation 2.38. Let T £ C and let m be a positive integer. We denote by Tm the set 
{cm:ceT}. 

Proposition 2.39. Let R — (r l9 r 2 , . . . ) be a sequence of positive integers, let n 
be a positive integer, n > 2, and let 0 < a ^ n. If 

(2.40) ajrn < v(S(R, a, n)) й фп-і , 
then either 
(2.41) агп_! ^(2тс - a ) r w _ 2 

or 

(2.42) g i ^ , . _ ^ , . s * < f e + l ) - S . _ , , 
2ти — a a 

/or some positive integer k. 
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Proof. Let (2.40) hold. By Proposition 2.22, the two inequalities in (2.40) yi^d 
that 
(2.43) ar„ > (2n - a) r„_x . 
We assume that (2.41) is not satisfied, namely 
(2.44) (2тг - a ) / r . - i <a / r„_ 2 , 
and we shall prove (2.42). Assume first that 

(2.45) (2тг + i)raj.t йфп-г-
By (2.8) and Observation 2.10 we now obtain 

(2.46) W= W((2n - a)|r.-u (2тс + a)|r^) Я 
Я S(R, a, n - 2) n бгп-Х«) =-S(A, a, и - 1) . 

It now follows from the right hand inequality in (2.40) and from (2.46) that 
(2.47) Wrn n W(a) = 0 . 
Observe that Wrn is an open wedge of width d = 2агп\гп^1 if d ^ 2тс and Wr» = ç 
ifd > 2%. Hence it follows from (2.47) that d ^ 2ти — 2a and so (ті — a) rn„x g ocr , 
which contradicts (2.43). Therefore, our assumption (2.45) is false and consequently 
we deduce that (27c + а)/гл_х > а/ги_2. In view of(2.44) we now have 

V = Ж((2тг - а)/ги_1? а/ги_2) c S(#, а, n - 2) n Ôrn-X«) = S(R9 a, n ~ 1). 

As before 

(2.48) V» n W{a) = 0 . 

Let k be the integer such that 

(2.49) 2%k - а < аг„/ги_2 ^ 2n{k + 1) - а . 
Observe that since rn > rn„í it follows from (2.44) that k ^ 1. By (2.48) and the 
lefthandinequaity of (2.49) we have 

(2.50) (2n - а) rJrn_1 ^ 2%k + а . 
Inequalities (2.42) now follow from (2.49) and (2.50). • 

We remark that (2.40) implies neither (2.41) nor (2.42), as demonstated by Examples 
4.3 and 4.4. 

Remark 2.51. As in Remark 2.19, we note that (2.40) yields some upper bound on a. 
The precise computation of such a bound in general might be tedious. However, 
to demonstrate our assertion we now show that if(2.40) holds with r t = 1 and n = 3 
then а < Зтт/4. By Proposition 2.39, (2.40) implies either (2.4l) or (2.42) for some 
positive integer k. If (2.41) holds then, since r2 ^ 2, we have 2a ^ (2тс — a), or, 
equivalently, а ^ 2n|3. If (2.42) holds and if we assume that 
(2.52) * а ^ Зтг/4 
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then we obtain 
16fc + 6 < 2кк + a 2rc(fc + 1) - a < 8fc + 5 

5 27i — a " a 3 

which implies that k ^ 7/8, in contradiction to the fact that k is a positive integer. 
Thus, our assumption (2.52) is false and we have a < 3n|4. 

The converse of Proposition 2.39 is false in general as demonstrated by Example 
4.1 in which (2.41) is satisfied for n sufficiently large. Another example which in­
volves (2.42) is Example 4.7. 

If we add an additional hypothesis then we obtain the following converse to 
Proposition 2.39. 

Proposition 2.53. Let R = (rl9 r2,...) be a sequence of positive integers, let n 
be a positive integer, n > 2, and let 0 < a g n. If 

(2.54) fi(S(R,x,n))u*|rn-2, 
and if either 
(2.55) *r ,_i ^ ( 2 я - а ) г и _ 2 , 
or 

(2.56) *£±± ra.x S rn Í 2<k + 9 - «- rn_2 

2% — a a 

for some positive integer k, then 

tfS(R,a,n))ua|r.^. 
Proof. Let 

(2.57) c є S(R, a, n) , 

and let ß = arg (c). We have to prove that 

(2.58) Hae/r.-!_. 
By (2.54) we have 

(2.59) | ^ | g a / r n _ 2 . 

If (2.55) holds then by (2.59) we obtain 

(2.60) \ßrn„t\ й (2тг - a) |j3r„_2|/a й 2тг - a . 

Since ßrn_ x = arg (c) (up to addition or subtraction of 2n), it now follows from (2.57) 
and (2.60) that | j 9 r ^ | < a and (2.58) follows. 

Suppose that (2.56) holds. By (2.57) we deduce that either 

(2.61) | 0 r , - x | < a , 

or 
(2.62) \ßr„~t\ > 2n - a . 

If (2.61) holds then (2.58) follows. To complete the proof we show that (2.62) leads 
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to a contradiction. Observe that (2.56), (2.59) and (2.62) yield 

27ifc + a й (2n - a) rn\rn_, < \ßrn\ ^
 2п{к + $ - л \ßrn„2\ й 2n(k + 1) - a , 

a 
which means that сГп ф W(ot), in contradiction to (2.57). • 

Propositions 2.39 and 2.53 yield the following theorem 

Theorem 2.63. Let R = (r l9 r 2 , . . . ) be a sequence of positive integers, let n be 
a positive integer, n > 2, and let 0 < a ̂  n. Then 

(2.64) a/r„ < p(S(R, a, n)) S *\rn-x, 
ř/ and only if 
(2.65) tfS(R>*>n))ua|r,-2, 

(2.66) ar„ > (2тг - a)r,,_! , 
tmd either 
(2.67) ar„_! ^ (2ти - a)r„_ 2 

or 
(2.68) ^ L J ^ . _ ^ . ^ + * ) - " r . _ , , 

27i — a a 

/o r some positive integer k. 

Proof. Obviously, (2.64) implies (2.65). The implication (2.64) => (2.67) or (2.68) 
is proved in Proposition 2.39. In view of Proposition 2.22, the two inequalities in 
(2.64) imply (2.66). Conversely, by Proposition 2.53, (2.65) and (2.67) or (2.68) 
imply the right hand inequality in (2.64). The left hand inequality in (2.64) follows 
from (2.66) by Proposition 2.14. • 

In the case of closed wedges we have the following similar theorems. The proofs 
are essentially the same as the proofs of the corresponding theorems for open 
wedges. 

Theorem 2.69. Let R = (r1? r2, ...) be a sequence of positive integers and let 
0 ^ a ̂  л. Then 

W[a|r^ = S[R, a, 1] 
if and only if rx = 1. 

Theorem 2.70. Let R = (r l5 r2, ...) be a sequence of positive integers, let n be 
a positive integer, n > 1, and let 0 ^ a ̂  n. Then 

S[R, a, n] = W[a/r_] 
ifand only if 

# , M ] ) l " | r , - , 
and 

ar„ < (2ті - a) r„_ , . 
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Theorem 2.71. Let R = ( r b r2 , . . .) be a sequence of positive integers, let n be 
a positive integer, n > 2, and let 0 < a ^ к. Then 

a\rn < fi(S[R, a, n]) й ос)гп^1 , 
if and only if 

n(S[R,oc,n]) й oclrn^29 

arn ^ (2тг - cc)rn_i , 
and either 

or 
ar, и_! < (2к - a)r„_ 

2nk + a 2ти(̂  + 1) - a 
rn-l < rn < ~ .. ^ » ' n - 2 

2% — a a 
/or some positive integer k. 

For a = 0 we also have the following immediate theorem. 
Theorem 2.72. Let R — (rl5 r2,...) be a sequence of positive integers and let n 

be a positive integer. Then 
S[R, 0, n] = W[0] 

if and only if the greatest common divisor of rl9 r2,..., rn is 1. 
Proof. Notice that, for a positive integer m, the set Qw[0] consists of all positive 

multiples of the m-th roots of unity. Our assertion now follows from Observation 
2.10. • 

3.FORCING AND SEMIFORCING SEQUENCES 

Let Я+[^?°] be the set ofall positive [nonnegative] numbers. 

Definition 3.1. Let T Я C, let R be a (finite or infinite) sequence ofpositive integers, 
and let 0 ^ a ^ n. 

(i) The sequence R is called a (Г, oc)-forcing sequence if 
Tn S[R, a, |K|] s R+ . 

(ii) The sequence R is called a (T, oc)-semiforcing sequence if 
Tn S(R, a, |jR|) s R+ . 

(iii) The parameters T and a in definitions (i) and (ii) are optional, where the 
defaults are C and n|2 respectively. Thus for example: 

a-forcing sequence = (C, a)-forcing sequence , 
T-forcing sequence = (T, Tc/2)-forcing sequence , 

forcing sequence = (C, 7c/2)-forcing sequence , 
and similarly for semiforcing sequences. 
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Remark 3.2. (i) Clearly, every sequence is (T, a)-(semi)forcing if T £ R°+, 

(ii) If T ф R°+ then there exists no (T, 7t)-forcing sequence. 
(iii) Let n be an odd positive integer. If Tcontains a number c which is a nonreal 

n-th root of some positive number, and if a >̂ n(n — l)/n [a > n(n — l)/n] then 
there exists no (T, a)-forcing [(T, a)-semiforcing] sequence, since all the powers 
of c are in W[oc] [Pf(a)]. In particular there is no a-forcing [a-semiforcing] for 
a ^ 2jc/3[a > 2rc/3]. However, it is easy to verify that the sequence (1, 2,...) is 
a-forcing [a-semiforcing] whenever a < 2тг/3 [a ^ 2rc/3]. 

(iv) Let T ф ^?+. IfTcontains no nonreal odd root of a positive number then there 
exist (T, a)-(semi)forcing sequences whenever 0 ^ a < тс. An example for such 
a sequence is (l, 2, ...): Let c e T. If arg (c) is an irational multiple of 71 then the 
observation follows from Kronecker's theorem, e.g. [2, p. 375, Theorem 4.38]. 
Otherwise, c is a root fo a negative number and so some power of c is negative. 

(v) Let T ç C and let 0 ^ ß < a ^ 71. Observe that every (T, a)-semiforcing 
sequence is (T, ß)-forcing. 

Notation 3.3. Let T ç C, T ф R°+. We denote: 

v(T) = inf{|arg(c)|: cє T\R^} . 

The following assertion follows from the results of the previous section. 

Theorem 3.4. Let 0 < a ^ n and let R = (r1? r2 , . . .) be a sequence of positive 
integers with 
(3.5) rt = 1, 
and such thatfor every m, m — 3, 4 , . . . , either 
(3.6) arm_x g(2rc - a)rw_2 5 

or 
f v 2nk+ a 27r(fc + 1) - a 
W-'J ~ rm-l ^ rm = rm-2 

2% — a a 
for some positive integer k (which depends on m). Then R is an a-semiforcing 
sequence. 

Furthermore, let T £ C, T $ R%, be such that v(T) > 0, and suppose that t is the 
(smallest) positive integer such that 

(3.8) rt v(T) ^ a -

Then the sequence (rl5 r2 ,..., rt+1) is (T, oty-semiforcing. 

Proof. By Theorem 2.13 and Proposition 2.53, it follows from (3.5) and (3.6) 
or (3.7) that 

(3.9) fi(S(R, a, m) й фт-1 > m = 2, 3 , . . . . 

Clearly, it follows from (3.9) that S(R, a, 00) Я ff+, which proves that R is a-
semiforcing. 
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Now let Т е с , Т ф R%, be such that ѵ(Г) > 0. By (3.8) and (3.9) we have 
S(R, a, t + 1) s W(v(T)), and by the definition of v(T) we obtain Tn S(R, oc, f+1) s 
S #?+, which proves the second part of our theorem. • 

We remark that for the secpnd part of Theorem 3.4 it is enough to assume that 
(3.6) or (3.7) are satisfied for m = 3, 4 , . . . , t + 1. A similar remark holds for Theorem 
3.11 below. 

An application of Theorem 3.4 is demonstrated in Example 4.9. 
We remark that condition (3.5) cannot be omitted from Theorem 3.4, as demon­

strated by Examples 4.1 and 4.7. Another example will be given later in this section. 
If in Theorem 3.4 we have (3.6) for every m, m = 3, 4, . . . , then we can strengthen 

the second part of the theorem. 

Theorem 3.10. Let T є C, T ф R°+9 be such that v(T) > 0, let 0 < a <; к and let 
R = (r l5 r 2 , . . . , rt) be a finite sequence of positive integers such that rt v(T) ^ a. 
Suppose that rt = 1 and that 

arm_! й (2n - a) rm_2 , m = 3, 4 , . . . , t + 1 . 

Then R is a (T, a)-semiforcing sequence. 
Proof. The proof is essentially the same as for the previous theorem using 

Corollary 2.26 instead of Proposition 2.53. Here we obtain the equality 

S(R,a,m)= W(*|rJ, m = 1 ,2 , . . . , 

which is stronger than (3.9) and which yields the better result. • 

Example 4.10 shows applications ofTheorem 3.10. 
For forcing sequences one can similarly prove the following. 

Theorem 3.11. Let 0 ^ a ^ к and let R = (ru r 2 , . . . ) be a sequence of positive 
integers with rx = 1 and such thatfor every m, m = 3, 4, ... , either 

(3.12) arw_! < (2n - a ) r m _ 2 , 
or 

(3 i3i 2 n k + a r < r < 2n(k + 1 ) ~ a r уэлэ) — rm_1 < rm < гш_2 
2к — a a 

for some positive integer k (which depends on m). Then R is an &-forcing sequence. 
Furthermore, let T ç С, Т ф R°+9 be such that v(T) > 0, and suppose that tis 

the (smallest) positive integer such that rtv(T) > a. Then the sequence (ru r 2 , . . . 
. . . , r ř + 1 ) is (T,a)-forcing. 

Theorem 3.14. Let T Я C, T ф R°+9 be such that v(T) > 0, let 0 ^ a ^ тс and let 
R = (ru r 2 , . . . , rt) be a finite sequence of positive integers such that rt v(T) > a. 
Suppose that r1 = 1 and that 

arw_! < (2тс - a ) r m _ 2 , m = 3 ,4 , . . . , r + 1 . 

Then R is a (T, a)-forcing sequence. 

150 



The conditions in Theorem 3.11 cannot be weakened by replacing an arbitrary 
strict inequality in (3.12) by equality, as demonstrated by Example 4.8. 

Let 0 й oL й я and let T є С, Т $ R°+. If v(T) > 0 then the theorems above 
show that there are finite (T, a)-(semi)forcing sequences. On the other hand, if 
v(T) = 0 then it easy to prove that every (T, a)-(semi)forcing sequence is infinite. 

The following is а corollary to Theorems 3.4 and 3.11. 

Corollary 3.15. Let pbe a positive integer, p > 1. The sequence R = (1, p, p2, ...) 
is a-forcing [u-semiforcing] if and only if a < 2n|(p + 1) [a ^ 2n|(p + 1)]. 

Proof. Let c be а nonzero complex number such that arg(c) = 2nj(p + 1), and 
let m be a nonnegative integer. Since p + 1 divides pm — 1 [pm + 1] when m is 
even [odd], it follows that 

a r f f M P - n „ J 2кІ(Р+ !)> weven, 
arg(c J - | _ 2 * / Q > + 1 ) , modd. 

Thus, if a ^ 2rc/(p + 1) [a > 2n|(p + 1)] then c є S[K, a, oo] [c є S(R, a, oo)], 
and so R is not an a-forcing [a-semiforcing] sequence. 

Conversely, notice that if a < 2%|(p + 1) [a ^ 2rc/(p + 1)] then R satisfies (3.12) 
[(3.6)] for every m, m = 3, 4 , . . . , and hence, by Theorem 3.11 [3.4], R is a-forcing 
[a-semiforcing]. • 

Another interesting Corollary to Theorem 3.11 is: 

Corollary 3.16. Let p be a positive integer, p g; 3, and let the sequence R = 
= (ru r2,...) be defined by r± = 1, r2 = p, and rm = prm_t + 1, m = 3, 4, — 
Then R is a 2n|(p + iyforcing sequence. 

Proof. Since p ^ 3 we have 
(3.17) p2 = pr2 < r3 = p2 + 1 < (p2 + p - 1) rt = / + p - 1 
and 
(3.18) prrn_i < rm = prm^i + 1 = p2rm„2 + ,p + 1 < (p2 + p - l)rm_2 , 

m = 4, 5, . . . . 
Observe that inequalities (3.17) and (3.18) are exactly (3.13) for a = 2n|(p + 1), 
choosing k = p — 1. Therefore, by Theorem 3.11, R is а 2rc/(p + l)-forcing se­
quence. 

In view ofCôrollary 3.15, Corollary 3.16 is somewhat surprising. The f-th element 
and the ratio between the f-th and the (f — l)-th elements of the sequence in Corol­
lary 3.16 are greater than the corresponding quantities in Corollary 3.15 for f > 2 
(the first two elements are identical in both sequences). But still, the sequence in 
Corollary 3.15 is only 2n|(p + l)-semiforcing while the one in Corollary 3.16 is 
2n|(p + l)-forcing. 

We now observe that the fact that in theorem 3.4 [3.11] we have either (3.6) 
(3.12)] or (3.7) [(3.13)] for every m may limit the selection of the fe's possible in 
(3.7) [(3.13)]. 
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Observation 3.19. (i) Assume that (3.7) is satisfied for m = n and m = n + 1, 
namely 

(3.20) ^ г , ^ г , ^ + 1)-'г,.„ 
27Г — a 

and 

(3.2!) ^,s,.,s*lib,.,, 
2тс — a a 

where fe and fc' are positive integers. 
It follows from (3.20) and (3.21) that 

/^ л^ч 2nk + a ^ ^ 2тс — a 
(3'22) *rT"*''*-*W^.. 
where 

r / ч 2n(x + lV — a 
/(*) = ~—T— • 

2%x + a 
Inequalities (3.22) imply that 
(3.23) 2nk + a й (2П " ^2 f(k') . 

a 
Since a g тс, the function f(x) is а monotonie decreasing function for x > 0 and 
hence, (3.23) yields 
(3.24) к й ( 2 * ~ a ) 2 / ( i ) _ A = (27C Z a ) 2 (47C Z a) _ iL. 

27ta 2к 2ш(2п + a) 2я 
For example, for a = n|2 we obtain from (3.24) that k S 2.9, so the possible values 
for k in (3.20) are 1 and 2. For a = 2rc/3 we obtain k ^ 4 / 3 , so the only possible 
value for k in (3.20) is 1. 

(ii) Assume that (3.7) is satisfied for m = n while (3.6) is satisfied for m = n + 1, 
namely, we have (3.20) and 
(3.25) a r ^ ( 2 7 i - a ) r , , _ ! . 
It now follows from (3.20) and (3.25) that 

2nk+ a . ' 2n — a 
rn-i й rn й Ги_! , 

2% — a a 
which imphes that 
(3.26) fcgP*-*P-iL. 

2ла 2я 
Since а ̂  7i, we have (4ті — а)/(2ти + а) ^ 1, and so (3.26) yields (3.24). Thus, in 
this case too we have (3.24). 

(iii) It follows from (i) and (ii) above that ifwe have either (3.6) or (3.7) for every m, 
m = 3, 4 , . . . , then (3.24) provides an upper bound for the k in (3.7). 
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(iv) If one replaces (3.6) and (3.7) in the discussion above by (3.12) and (3.13) 
respectively, then one can obtain the upper bound (3.24) for k with the weak ine­
quality replaced by strict inequality. 

Another sufficient condition for (semi)forcing sequences is the following 

Proposition 3.27. Let 0 g a ^ n and let R = (rl5 r2 , . . .) be an a-forcing [a-
semiforcing] sequence. Let p be a positive integer and let R* be a (T, a)-forcing [(T, a)-
semiforcing^ sequence, where T is the set of p-th roots of unity. Then the sequence 
(obtained by reordering) (pr1,pr2,...) u jR* is an a-forcing [ot-semiforcing] sequence. 

Proof. We give the proof for forcing sequences. Denote by pR the sequence 
(pru pr2 , . . .), and by R' the sequence pR u #*. Clearly, S[R', a, |jR'|] = S[pR, a, 
|jR|]nS[jR*,a,|R*|]. Let ceS[pjR,a,|jR|]. Since R is an a-forcing sequence, it 
follows that ď > 0. Without loss ofgenerality we may assume that \c\ — 1, and hence 
c є T. Since jR* is a (T, a)-forcing sequence, it now follows that if c є S[JR*, a, |#*|] 
then c > 0. • 

As mentioned in Remark 3.2. (iv), there exists no 2Tc/3-forcing sequence. However, 
for a < 2rc/3 we obtain the following, using Proposition 3.27. 

Corollary 3.28. Let p be a positive integer and let 0 ^ a < 2тс/3 [0 ^ a ^ 27c/3]. 
Then the infinite sequence (p,p + l,p + 2,...) is an a-forcing [a-semiforcing] 
sequence. 

Proof. Observe that by Theorem 3.11, the sequence R = (1, 2,...) is a-forcing 
[a-semiforcing]. Thus, we may assume that p > 1. Let c be a nonpositive p-th root 
ofunity. Since 0 ^ a < 2rc/3 [0 ^ a ^ 2rc/3], some fc-th power ofc, 1 ^ fe ^ p — 1, 
is outside W[a] [W(a)]. Hence, since cp = 1, the sequence R* = (p + 1, p + 2, . . . 
..., 2jp — 1) is а (T, a)-forcing [(T, a)-semiforcing] sequence, where Tis the set of 
p-th roots of unity. The result follows from Proposition 3.19. • 

We remark that Corollary 3.28 can be proved directly using arguments similar 
to those in parts (ii) and (iv) of Remark 3.2. 

We conclude the section with a discussion of an interesting relation between 
(semi)forcing sequences and continued fractions. For a real number d we shall use 
tne notation |d|| for the distance between d and the nearest integer, viz. ||d|| = 
= min {|d — fc|: k an integer}. Let (2, 3, 5, 8, 13, ...) be the sequence of Fibonacci 
numbers (omitting 1) obtained by setting rx = 2, r2 = 3 and recursively rk = 
= rk_2 + 7*fc_j, k = 3, 4,... . Then it is well known that the rk are the denominators 
ofthe regular continued fraction for d = (^/5 — l)/2, [5, p. 125]. Hence, by a theo­
rem due to Lagrange, see [6, p. 37, Formula (9) and Satz 2.10]or [5. p. 74, Theorem 
3.8], we have 
(3.29) | M | | < l / r* , fc=l,2,..., 
and hence 
(3.30) |M| < 1/4 
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for к = 3, 4 , . . . Since d = .6180 . . . , we also have (3.30) for k = 1, 2 and hence 

(3.31) d*eW(n|2), k= 1 ,2 , . . . , 

where c =a е2пы xhus, the Fibonacci sequence satisfies condition (3.6) for m = 
= 3, 4 , . . . where a = я/2, but is not forcing (nor even semiforcing).(This is another 
example showing that condition (3.5) cannot be omitted from Theorem 3.4). More 
generally, by [6, p. 3 and p. 33, Satz 2.6], [5, p. 21, Theorem 1.3], a sequence 
(ru r2> •••) of positive integers is a sequence of regular denominators of a continued 
fraction expansion of some irrational number d if and only if 

(3.32) 0*fc+2 — rk)lrk+i is a positive integer , k = 0, 1, 2 , . . . , 

where r0 = 1. Therefore, no sequence satisfying (3.32) and rt g 4 can be a semi-
forcing sequence for then, by (3.29), we have (3.30) for k = 1, 2, ... , and hence 
(3.31) holds for c = Q2nid. 

4. EXAMPLES 

This section contains examples to illustrate the results of the previous sections. 
The relevant assertions are referred to in each example. 

Example 4.1. (for Proposition 2.14, Proposition 2.39 and Theorem 3.4). Let 
R = (2, 4, 6,...) and let a be any number 0 < a < я. Then forn sufficiently large 
we have arn й (2я — a)\rn.1. However, 

- 1 є S(R, a, n) \ Tf(a, rn) , n = 1, 2 , . . . .. 

Example 4.2. (for Corollary 2.26). Let R = (2, 3, 6, 18,.. .) where rm = 2(3m"2), 
m = 3, 4, . . . , let a = я/2 and let n = 3. Öbserve that 

S(R, a, n - 1) = TF(rc/6) u РГ(Зя/4, 5я/6) u W(- 5я/6, -Зтс/4) ф W(a|r,-t) , 
but 

S(R, a, и) = W(n|l2) = fF(a/r.) . 

Furthermore, applying Corollary 2.26 repeatedly we obtain 

S ( A , a , m ) = PF(a/rm) 

for all m, m ^ 3. Thus, R is a semiforcing sequence. 
Example 4.3. (for Proposition 2.39). Let a =' я/2, let n = 3, and let rx = 1, r2 = 3, 

r3 = 12. Observe that 2я — a = 3a. By Theorem 2.13 and Corollary 2.26 we have 

S(R, a, 3) s S(jR, a, 2) = FF(a/r2) . 

Further, since r3 > r2 it follows from Proposition 2.14 that 

W(afo) S 5:(^, a, 3) . 
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Hence, (2.40) is satisfied. Clearly, (2.41) holds. However, there exists no integer k 
such that 

2nk+a ^ _ 2 j u ( f c + l ) - a A1 t 
4k + 1 = r2 й r3 = 12 g —і * r1 = Ak + 3 . 

2тс — a a 
Example 4.4. (for Proposition 2.39). Let a = тс/2, let n = 4, and let 74 = 1, r2 == 3, 

r3 = 10, r4 = 31. By Theorem 2.13 and Proposition 2.22 we have 

(4.5) v{S(R, a, 4)) й ft(S(R, a, 2)) = a/r2 . 

Also observe that (2.41) does not hold. Nevertheless, (2.42) holds for k ==: 2: 

/л *\ , л 2тс& + a ^ 01 ^ 2n(k + 1) ~ a л 
(4.6) 30 = r3 ^ r4 = 31 ^ —* Z r2 _ 33 . 

2тс — a a 
By Theorem 2.53 it follows from (4.5) and (4.6) that (2.40) holds. 

Example 4.7. (for Proposition 2.39 and Theorem 3.4). Let a = тс/2 and let R = 
= (ri> r2> •••) be defined by 

r1 = 4 , 

rm = 3rm_! + 2 , m = 2 , 3 , . . . . 

Since 2тс — a = 3a it follows that for every n, n > 2, (2.41) does not hold. However, 
(2.42) does hold for every n, n > 2, choosing k = 2: 

_ 27ifc + q < r _ 9 r g ^ 2K(fc + 1) - q 
ôrn-l — ~ 'n-l = 'n — У'п-2 + ö ^ rn-2 — t l r , , _2 -

2тс — a a 

Since гл is always even, it follows that 

- l e S ( A , a , n ) , n = 1 ,2 , . . . , 

so (2.40) does not hold in this case. 
Example 4.8. (for Theorem 3.4 and 3.11). Let T = C and let a = тс/2. The sequence 

R is defined by r1 = 1, r2 = 3, and rm = 2m~1 , m = 3, 4 , . . . . Notice that (3.13) 
is satisfied for m = 4, 5 , . . . and that equality holds for m = 3. This sequence is not 
forcing since і є S[R, тс/2, 00]. However, the sequence R is semiforcing by Theorem 
3.4. 

Example 4.9. (for Theorem 3.4). Let a = 2xc/3 and let R = (1, 2, 4, 9, 19, . . . ) , 
where rm = 2rm_! + 1, m = 4, 5 , . . . . It is easy to verify that inequalities (3.7) 
are satisfied for m = 3, 4 , . . . , choosing k = 1. Hence, by Theorem 3.4, R is a 2тс/3-
semiforcing sequence. Also, by Remark 3.2. (v), R is a ß-forcing sequence whenever 
0 й ß < 2тс/3. 

Example 4.10. (for Theorem 3.10). Let T b e the set of all 150-th roots of unity. 
By Theorem 3.10, the finite sequence (l , 5,25) is (T,Tc/3)-semiforcing and the se­
quence (1, 3, 9, 27, 81) is T-semiforcing. 
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