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DUAL SPACESOF TOTALLY ORDERED RINGS 

R. H. REDFIELD, CHntOn*) 

(Received December 2, 1985) 

1. INTRODUCTION 

For any abelian o-group, one may define a dual space which reflects the structure 
of the group to the extent that the evaluation map into the second dual is a one-to-one, 
order-preserving group-homomorphism. Such a dual space may be defined for any 
o-ring and it is natural to ask whether convolution may be used to define multiplica­
tion on the second dual and, if so, whether the evaluation map then preserves multi­
plication. In this paper, we will give conditions on an o-ring which will allow us to 
give an affirmative answer to both these questions. In particular, a power series 
ring always satisfies these conditions, and because its evaluation map is always onto, 
multiplication of power series is always abstract convolution of functions. 

In what follows, we assume that all rings are associative. We also adopt the notation 
and definitions of [6] which we apply to rings in the following way. An o-ring 
(T, + , •, g ) is an abelian o-group (Г, + , g ) and a ring (Г, + , •) such that if a < b 
and 0 < x in T, then ax < bx and xa < xb. (This definition is somewhat stronger 
than the definitions in [1] and [2].) The construction ofthe dual space in [6] depends 
on a Banaschewski function r. One would expect that in the case of rings the 
Banaschewski function and the ring multiplication would have to interact in some 
way; the appropriate way turns out to be the following. For t є Tand P e P, we write 
t > P to mean that t > p for all p є P, and for P, Q є P, we let 

p <> Q = {z e т\ z < xy for all x > P and y > Q} . 

A ß-ring (T, + , ., Ss,r) is then an o-ring (Г, + , ., ^ ) together with a function 
т: P -^ D such that (Г, + , ^ , т) is a ß-group (see [6]) and т satisfies the additional 
condition 

(iii) for all P, Q є P, x(P) r (ß) £ r(P 0 Ö). 
The foremost example of a ß-ring is the power series ring (pttAR, + , ., ^ , x) 

formed as follows (cf. [5]): A is a totally ordered semigroup which satisfies the con-
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dition: ctö < ßö and <5a < Sß whenever a,ß,öeA satisfy a < ß. ( х П л й, + , g ) 
i s the lexicographically ordered group of functions from A to the real numbers R 
with inversely well-ordered support (cf. [6]). Multiplication on ^ П ^ is defined by 

{fd)o — LiOLß = o\roL,ßfaQß) ? 

where the r^ß form a factor system: (i) raß > 0 for all a, ß e A and (ii) r<xßora ß = 
= raß0rßio for all a, ß, ô є А. It is then easy to see that not only is ( Х П ^ , + , <£, %) 
a strong jß-group (cf. [6]) but also ( * П ^ , + 5 .5 <^ ^) is a ß-ring. 

Suppose finally that Tis a ß-ring and let x, y є Tand A, B, C є A. We use M[x, y9 C] 
to denote the product of all m(x, L/) m(y, V), where L/ є S(x), Ve S(y), and L^F c C; 
we use M[x, j ; , Л, £, C] to denote the product ofall m(x, U) m(y, V), where L̂  є S(x) 
Ve S(y), UV s C, but E/ Ф A and F ф B. (Note that M[x, y, C] and М[х,у,Л,Б, C] 
are well-defined because S(x) and S(j) are inversely well-ordered by Proposition 2.2 
of [6].) It was shown in [7] that if т: P ~> D for an o-ring T, then (Г, т) is a ß-ring 
if and only if (i) (T, r) is a ß-group, (ii) for all A, В e Л there exists C є Л such that 
AB c C and (iii) for all x, у є Tand C є А 

M[x, y, C] (xj;)c = m(xy, A) ^AB<=c M[x, y, A, B, C] (xAyB) . 

We will be using this latter characterization of ß-rings in the proofs of § 2 and hence, 
for these purposes, it may be taken as the definition. 

If (T, т) is a ß-ring and A, B e A, then we let [ЛВ] denote the (unique) element 
of^4 containing AB. 

2. CONVOLUTION 

Let T be a j5-ring and let TA A be its second dual. One may define convolution 
on TA A as follows ([3], page 262). For t є T a n d / є T \ define tfe TA by tf(x) = 
= f(tx). ForGeTAA, define G~: TA~+TA by G'(f) (t) = G(J) for t eTandfeTA. 
For F , G e T A \ define F*GeTAA, the convolution of F and G, by F*G(f) = 
= F(G'(f)) for fe TA. We show below (Propositions 2.3, 2.6, and 2.9) that this 
series of definitions makes sense for any ß-ring T, and hence that convolution is 
a well-defined operation on TAA. Our proof shows immediately that (T A A , + , * 
^ , тА A) is a ß-ring (Theorem 2.10). It is then easy to see that the evaluation map 
S: T ^ TA A always preserves multiplication (Theorem 2.11). In particular, it follows 
that the map S: Х П / ~> (*П^) А л is an o-ß-isomorphism of rings (Corollary 2.12). 

N o t e : To avoid double subscripts in the following proofs, we will sometimes use 
x(A) in place of xA. 

Lemma 2.1. Let t є T,fe TA , and В e A. Let 

(tBf) = {AeS(t)\ABeSupp(f)}. 
(a) (tBf) isfinite; 
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(b)forall хєТ. 

tf{x) = l Í m 0 e F Y,De4>* W(X, D)-1 YaAeUDf) ™{*> ^ ) " V ( ^ X ) ) , 

where Ф* = {D e S(x) | Л £ є Ф /or some Л є S(t)} ; 
(с) /o r all а є Л, 

Л а ) = Li*<*B/.) m(i, 4)"*/ta<0 » 
where the sum is zero if(tBf) is empty. 

Proof, (a) if {tBf) is not finite, it has an infinite descending chain At > A2 > 
> A3 > ... . Then AYB > A2B > A3B > . . . is an infinite descending chain in 
Supp ( /) , a contradiction. 

(b) S ince /є Т л , we have by (a) 

tf(x) = f(tx) = Нтфєір £С є Ф m(tx, C)-if((tx)c) = 

= 1ітФєГХСєФ w(rx, C)" 1 M[ř, x, Cy*f[m(tx, C)J]iADi==cM[t, x. A, D, C] tAxD] = 

= li%eF Е[ля]ЄФ w(ř, Л)" 1 m(x, Я ) _ 1 / ( ^ * в ) = 

= 1ітФєГ ЕоєФ* m(x, D)-1 YaAe{tDf) m(t> ^)'1f(UxD) • 
(Here the limit is taken over the directed set F — see [4], pages 77 — 78, "Integration 
Theory, Junior Grade".) 

(c) Since (tBf) is finite, the set E, of all C є Supp (/) such that [AB] = C for some 
A e S(t), is finite. Then for all Ф e F containing E, 

£яєФ* m(a, и)'1 YuA^tDf) m(t, A)^f{t^ = Е^с^я Ц*, ^ ) " V ( ^ ) • 
Part (c) then follows from part (b). 

Lemma 2.2. Iffe TA and 0 < a e A e A, then afe TA. 
Proof. Clearly the function x ^ ax is a ß-homomorphism of Tinto Г. Its dual 

map t a k e s / є TA to a / a n d hence Lemma 2.2 follows from Theorem 4.2 of [6]. 

Proposition 2.3. L e f / є TA awd t є T Then tfe Т л andfor all В є A, 

(r/)sA = E ^ ( W ) М Л ^ ) " 1 rw(/[AB]0] • 
Proof. (I) Clearly , / i s a well-defined group-homomorphism from Tto R. (II) By 

Lemma 2.2, for any B e A, 
T,Ae(tBf) m(t, ^Y1 t{A)f є TA > 

and by Lemma 2.1 (c), 
tfU = FE,Ae(tBf) m(t9 A)'1 t(A)f% • 

Hence J\B is comparable to 0 with respect to ^ . (III) If В є Supp ( ř/) and [AB] e 
eA\Supp(f) for all AeS{t), then (tBf) = 0 and by Lemma 2.1(c) ,/(b) - 0 
for all b e Б, a contradiction. Thus for all B є Supp ( ř /) , there exists A є S(ř) such 
that [y4B]eSupp(/) . Suppose that # ! > B2 > B3 > . . . is an infinitedescending 
chain in Supp (tf)s and let {A^ s S(r) be such that [A,Bj є Supp (/) for all L 
Since S(i) is inversely welJ-ordered, we may assume A1 ^ A2 ^ A3 ^ ... by picking 
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a cofinal subset if necessary. Then [ Л ^ ] > [Л2#2] > [лз#з] > ... is an infinite 
descending chain in Supp ( Д a contradiction. Thus S(tf) is well-ordered. (IV) By 
Lemma 2.1 (b) and (c), we have for all x e T, 

J{x) = l i n w ^веФ m(x, B)"1 Y,AeW) ™(t, АУЧ{іАхв) = 
= 1ітФєГ £»єФ, m(x, В)'1 tf(Xß) 

and therefore ř / e TA. The characterization of(J%A then follows from Lemma 2.1 (c). 

Lemma2.4. Let Ge TAA,fe TA, andAeA. Let 
(AGf) = {B e A | BA є Supp {G) and [AB] є S(f)} . 

(a) (̂ 4<j/) isfinite; 
(b) /огаИ х є Г, 

G'(f) (X) = l h l W Е̂ єФ** m(*> ^ ) - 1 L*e(DG/) ^G(D)[/[Z)B]-]) > 
where Ф** = {Л є S(x) | [ЛБ] є Supp (/) for some В e Ф) ; 

(c) for all a e A, 
G-{f){a)^^Uaf)G{lfiABA), 

where the sum is zero if (AGf) is empty. 
Proof, (a) Suppose that (AGf) is not finite. Since Supp(G) is well-ordered and 

the map C ~> CA reverses order (Proposition 3.1 of [6]), AGf must contain an 
infinitedescendingchainBi > B2 > B3 > ... .Then[ABi] > [AB2] > [^#3] > ••• 
is an infinite descending chain in Supp (/), a contradiction. 

(b) Clearly Ф** = ÜBe<p(xBf) a n d h e n c e by Lemma2.1 (a), Ф** is finite. It is 
easy to see that Supp(xiD)[fiDBi*J) = {B} and hence by Proposition 2.3 and part 
(a) of this lemma, 

G-(f) (x) - G(xf) = 1ітФе, £Вєф G([xf]B~) = 

= 1ітфєр £ВеФ Y;De(xBf) m(x, D)~l б(х(0)[/ [ш?]л) = 

= l Í m 0 e F ХоеФ** m(X> ^ ) - 1 Y;Be{HGf)G(x(D)[flDBl*) • 

(c) If [AD]G^xSupp(/) for all DeA, then (AGf) = 0 and hence by (b) 
G~(f) (a) = 0. Otherwise, for any Ф eF for which A є Ф**, 

£вєФ** m(a, D) Y,Be(DGf) ^(a{D)UiDB]^) = Y,Be(AGf) ^ Ц / ^ В ] * ] ) • 

Part (c) then follows from part (b). 

Ь е т т а 2 . 5 Л / £ є Г А А and 0 < zeCA eAA, then G'(z)eTA. 
Proof. If A forms a multiplicative group (instead of merely a semigroup), then 

the function x >̂ xz is a ß-homomorphism whose dual maps G ^ G~(z) and hence 
(by Theorem 4.2 of [6] G~(z) є TA. However, without this assumption, the function 
need not be dense, and hence we must check the definition directly, (l) Clearly G~(z) 
is a group-homomorphism of T into JR. (II) Let 0 < d є D є Л and suppose that 
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G'{z) (d) > 0. Then G(dz) > 0 and hence dz Ф 0. Thus there exists В є А such that 
[DB] = C. We then have 0 < dz є BA and hence 0 < G\B,. Now let 0 < w є D. 
We have 0 < wzeBA and thus G'{z)(w) = G(,,z) > 0. Therefore 0 < G~(z)|D 

We conclude that for all D є A, G~(z)\D is comparable to 0 with respect to ^ . (III) 
Suppose that Dx > D2 > D3 > . . . is an infinite descending chain in Supp (G~(z)). 
We noted above that for each D є Supp (G'(z)), there exists В є A such that [DB~] = 
= C and BA eSupp(G). For each Di9 let £;ЄЛ( satisfy these conditions. Then 
Bt < B2 < B3 < ... and hence (Proposition 3.1 of [6]) B[ > B2 > #3 > ... , 
a contradiction. Thus Supp(G"(z)) is well-ordered. (IV) Clearly z[JDB]A 4= 0 exactly 
when [DB] = C. Thus by Lemma 2.4, 

G'(z) (x) = l i n w £ вєФ** m(x, D)'1 Y<Be(DGf) G(x(D)[zÍDBV]) = 

= l i n W £оєФ** m(x, D)" 1 G~(z) (xD) . 

Therefore G " ( z ) e L . 

For Ge TA A and B e Л, note that GB, A : Т л ^ Г л is defined by G ^ *(/) (*) = 
-G*-GA 

Proposition 2.6. Lei G e r л and fe Г л . Гйеи G" ( / ) є TA and for all A e A, 

G {f)A* = Y,ue(AGf) &B* Af[ABi-) • 
Proof. (I) Clearly G~(f) is a well-defined group-homomorphism from T t o R. 

(II) By Lemmas 2.4 (a) and 2.5, 

Y,BeAGf G ' (flAm л ) є TA for any A є Л . 
By Lemma 2.4 (c), 

G~(f)U = rZBe(AGf)G~(fiABi*)]\A 

and hence G~(f)\A is comparable to 0 with respect to ^ . (III) Let A є A and suppose 
that whenever [ A B ] e S u p p ( / ) , Б л є Л л xSupp(G). Then G"(e[/ [ i4B]Ä]) = 0 for 
all B e A and a є Л, and hence by Lemma 2.4 (b), G " ( / ) = 0. Thus, we may assume 
that if AeSupp(G'(f)), there exists BeA such that BA eSupp(G) and [AB]e 
є Supp (/) . Now suppose that Ax > A2 > Аъ > . . . is an infinite descending chain 
in Supp (G"(/)) and for each i let Bt є A be such that B^ є Supp (G) and [A ř£ ř] є 
є Supp (/) . But Supp (G) is well-ordered and hence, picking a co-final subset if neces­
sary, we may assume that B? ^ B2 ^ B£ ^ ... . By Proposition 3.1 of [6], we 
have Bt >̂ B2 ^ Б 3 ^ ... and hence [ ^ ß J > [^2^2] > [^з^з] > ••• is an 
infinite descending chain in Supp( / ) , a contradiction. Thus, Supp(G"(/ ) ) is well-
ordered. (IV) By Lemma 2.4 (b) and 2.4 (c), we have for all x є T, 

G'(f) (x) = l Í m 0 e F Х ^ є Ф " m ( * > ^ ) " 1 Z B e D G / G G ( D ) [ / [ M ] A ] ) = 

= l if lW £0єФ** w(x, D)" 1 G" ( / ) (xD). 
Therefore G~{f)eTA. To see that the equation holds, note that if aeA, then 
a[fiABvl eÄA andhence 

G-(fÍABV)(a) = tf(.[W]) - ÖB-(«[W]) - <^(W)(<*) . 
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On the other hand, if A Ф D eA and d e D, then dUlABi*] = 0 or л[/ [ і4Я]л] є Ел, 
where [DE] = [AB], and since D Ф А, E Ф B. In either case, 

>***(W)(<0 - G***GLW]) »о. 
The equation then follows from Lemma 2.4 (c). 

Lemma 2.7. Leř F, G є Т л л . 
(a) For C є А, there exist only finitely many pairs (A, В) є A x A such that 

[AB] = C and F ^ л о G£A A = 0. 
(b) ForallfeTA, 

F(G~{f)) = l i n W Т,СєФ*** E[AB]=C ^ A *(6i* л(/Сл)) , 

wuere Ф*** = {Ce Supp (/) | [ЛВ] = С for some А є Ф and BA є Supp (G)}. 
(c) Forall zeCA єАА, 

F(G'(z)) = £ № c FÄ. л(Св~АА(*)) . 

Proof, (а) For FAA л 0 G ^ л Ф 0, we must have AA є Supp (F) and BA є Supp (G). 
These sets are both well-ordered and hence there can be only finitely many such (A, B) 
with [AB] = C. 

(b) Since Supp (F) and Supp (G) are well-ordered and Ф is finite, Ф*** is also finite. 
Since Fe TA A, we have by Proposition 2.6, 

F{G-{f)) = B n w 5 ^ r A - ( [ C " W ] i * ) = 
= 1ітфєГ 2̂ є̂Ф Lße^F/ ^U л A (GB л л (/[лв]л)) = 

= 1ітФє]р 2̂ сєФ*** L[^fi]=c ^л л А (^в л л ( /с^)) • 
(c) If [AB] ф С for all Л є A and Я л є Supp (<?), then F(G'(z)) = 0 by part (b), 

and the sum in part (c) also clearly equals 0. Otherwise, for any Ф e F such that 
СєФ***, 

ЕоєФ*** Y&ABi = D FA* A(CS"A A(zD)) = YlABl = C FA^{Gß^ A ( z ) ) . 

Part (c) then follows from part (b). 

Lemma 2.8. Let FeTAA and 0 < НєВАА єААА. Then F*HeTAA. 

Proof. If A forms a multiplicative group, then the function f^ H~(f) is a ß-
homomorphism whose dual maps F^>F*H and hence F*HeTAA. However, 
without this or some similar assumption, we must check the definition directly. 
(I) Clarly F*His a group-homomorphism. (II) Let 0 < zeBA eAA and suppose 
that F*H(z) > 0. We wish to show that F*H(w) > 0 whenever 0 < w є BA. Since 
F(H'(z)) > 0, H~(z) Ф 0 and hence there exists AeA such that [AB] = C and 
H~(z) (a) = H(az) > 0 for all 0 < a є A. Thus we have 0 < # " ( z ) є AA and hence 
0 < F\AK becauseFe7^A. But also H~(w) (a) = H(aw) > 0 for all a e A andhence 
0 < H~(w) є AA. Then ^*Я(н;) - F(ff"(w)) > 0 and we conclude that 0 < ^*Я | С Л . 
Therefore ІР*Я|Сл is comparable to 0 with respect to ^ . (III) Suppose next that 
CÍ > C£ > C3 > ... is an infinite descending chain in 8ирр(^*Я). We noted 
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above that for each i, there exists At є A such that A* e Supp (F) and [AtC] = Cf. 
We have Cx < C2 < C3 < • •• in A and hence At < A2 < A3 < ... . Then Af > 
> A2 > A3 > ... in Supp (F), a contradiction. Thus, Supp (F*H) is well-ordered. 
(IV) Finally, by Lemma 2.7 (b), for a l l / є T\ we have 

F*H(f) = l i % e f Е с е Ф - E u D ] = c ^ л л № " л л ( / с л ) ) = 

= НгПфбГ £Сєф*** Z[4B] = C ^AA л ( Я ~ ( / С л ) ) = 

- 1 і т Ф є ^ С є Ф ^ ( ^ Я ) ( / С А ) . 

We conclude that F * # e T A A . 

Proposition 2.9. Le* F, G e T A A . Then F*Ge TA A аиа /ог all C є Л, 

(F*G)CAA = I № c ^ A * G r A . 
Proof. (I) Clearly F*Cr is a well-defined group-homomorphism from TA to ft. 

(II) By Lemmas 2.7 and 2.8, £ [Лв]=с FA,A*GB,, e TA A for any C є A. By Lemma 
2.7(c), 

F*G\c* = Е с ^ ] - с ^ л * С В л л ] | С л 
and hence F*G\C* is comparable to 0 with respect to ^ . (lII) Suppose that C£ > 
> C2 > C3 > . . . is an infinite descending chain in Supp (F*G). By Lemma 2.7 (c), 
there exist AA є Supp {F) and B? є Supp (G) such that [ ^ Д ] = Ct for all L Picking 
cofinal subsets if necessary, we must have A£ й A2 й A3 ^ . . . and £A <L B2 ^ 
й BA S . . . . Then [A±Bi] ^ [A2B2] ^ [A3B3] £ . . . in A. But in A, Cx < C2 < 
< C3 < . . . , a contradiction. Thus Supp (F*G) is well-ordered. (IV) By Lemmas 
2.7 (b) and 2.7 (c), we have for a l l / є TA 

F*G(f) = 1ітфєР £СєФ*** Z[^ß]=c ?A* *(вв* л(/Сл)) = 
= l i n w ЕсєФ*** F(G"(fc*)) • 

Therefore F*Ge T A A . The characterization of (F*G)CA A then follows from Lemma 
2.7(c). 

Theorem 2.10. (T A A , + , *, ^ , тл л) is a ß-ring. 

Proof. By Propositions 2.3, 2.6, and 2.9, convolution is a well-defined operation 
on T A A . Clearly, for 4 , В, С є Л, ^J5 s C if and only if Л л л *Б А л с С л л . Thus, 
by Proposition 2.9 and the discussion in § 1, (ГА A, + , *, ^ , тА A) is а ß-ring. 

Theorem 2.11. ТЪв evaluation map 3:T^> TAA is an o-ß-monomorphism of 
ß-rings. 

Proof. By Theorem 5.1 of [6], 3 is an o-ß-monomorphism of ß-groups. It is easy 
to check that 3(xy) = 3(x)* 3(y). 

Corollary 2.12. For any totally ordered power series ring Х П ^ , the evaluation 
map 3: *n^ft ^ (ХП^Я)А A is a o-ß-isomorphism of ß-rings. 

Proof. The corollary follows from Theorem 2.11 and Proposition 6.8 of [6]. 
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