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I. INTRODUCTION

Let T = (V, E) be a tree with vertex set ¥ = {v,, v,,...,,} and edge set E. We
will frequently abuse the language by writing v € T, rather than v e ¥, to indicate
that v is a vertex of T.

Denote by d(v) the degree of v. The Laplacian matrix afforded by T (and some
particular ordering of its vertices) is L(T) = (a;;), where

d(vy), if i=j
a;=4—1. if {v,v,}eE
0, otherwise.

It is well known (and easily seen) that L(T) is positive semidefinite symmetric. It is
then clear from the sign pattern of its entries that L(T) is a (singular) M-matrix.
Moreover, since T is connected, L(T) is irreducible. Let 1, = 1, = ... = 4, = 0 be
the eigenvalues of L(T). Then 4,_, * 0. We denote this second smallest eigenvalue
by a(T). M. Fiedler [2] has called a(T) the algebraic connectivity of T. Indeed,
a(T) < 1[2], with equality if and only if Tis the star graph K, ,_, [5].

Denote by &(T) the set of eigenvectors of L(T) afforded by a(T). Of course, &(T)
lacks only the zero vector to be a vector space. For our purposes, it is useful to think
of the elements of &(T) as real valued functions of V. If, for example, (x;, X2, .-, X,)
is an eigenvector of L(T) afforded by a(T), then we write f € &(T) for the function
defined by f(v,-) = x;, 1 £i £ n. Note that the function f does not depend on the
labeling of V. Fiedler has called the elements of &(T') characteristic valuations of T.

ue o
1\/5 2 0 -2 -1-\/5
Fig. 1
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Example 1. Let T be the tree in Figure 1. Then the characteristic polynomial of
L(T) is x(x — 2) (x* = 3x + 1) (x* — 5x + 3), and a(T) = (3 — \/5)/2 is a simple
eigenvalue. Apart from nonzero multiples, there is but one fe &f(T) and it, too, is
illustrated in Figure 1.

In this article, we are interested in trees T for which there exist a v € ¥ and an
S e &(T) such that f(v) = 0. These have been called Type I trees [5]. It turns out
that if T'is a Type I tree, there is at least one vertex w € V'such that f(w) = 0 for every
fe&(T). This is an indirect consequence of the following result of Fielder [4, Theo-
rem (3, 14)].

Theorem A. Let T = (V,E) be a Type I tree. Suppose fe&(T). If V, =
= {ve V| f(v) = 0}, then the graph T; = (V}, E,) induced by T on V; is connected
and there is exactly one vertex w;e V, which is adjacent (in T) to a veitex not
belonging to V,. Moreover, the values of f along any path in T starting at w; are
strictly increasing, strictly decreasing or identically zero.

Example 2. In Figure 1, V; = {u, w} and w, = w.

It is proved in [5] that while ¥, may depend on f, w, does not. Specifically, if T
is a Type I tree, then there is a unique vertex wy such that f(w,.) =0and w; = wy,
for all f € &(T). We call wy the characteristic vertex of T.

Denote by I'(T) the group of automorphisms of T expressed as permutations of V.
Since fo ¢ &(T) for all g € I'(T) and all fe &(T), it follows from the uniqueness of
wy that it is a fixed point of every automorphism of T.

Suppose v is a vertex of a tree T. Denote by T, the subgraph of T obtained by dele-
ting v and all edges incident with it. A branch (of T) at v is a connected component
of T,. If Tis a Type I tree, v = wy, f € £(T), and Bis a branch at wy, then (Theorem A)
f is uniformly positive, uniformly negative, or identically zero on the vertices of B.
Of course, every f € &(T) is orthogonal to the vector each of whose components is 1,
i.e., an eigenvector afforded by 0. Thus, there will always be a positive branch and
a negative branch at w;. for any characteristic valuation.

If B is a branch at v, we denote by r(B) the vertex of B which is adjacent (in T) to v.
It will frequently be convenient to view B as a rooted tree. In such a situation, we
will always take (B} as the root. In particular, if v = wy and f e &(T), then f(r(B))
determines the sign of f throughout B.

Suppose B is a rooted tree with vertex set {uy, u,, ..., tt;}. Denote by L(B) = (a;;)
the k-by-k matrix where

d(u;) + 1, if i =j and u; is the root
0= d(u;), if i =j and u; is not the root
H -1, if {u,u;}eE
0, otherwise.

For the remainder of this article we will adopt the convention that u, is the root
(if there is one) so that L(B) = L(B) + X, where X, is the k-by-k matrix whose only
nonzero entry is a 1 in position (k, k).
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Lemma 1. If B is a rooted tree, then det (L(B)) = 1. (In particular, L(B) is a posi-
tive definite symmetric M-matrix.)

Proof. det(L(B)) differs from det (L(B)) by the determinant of the principal
submatrix obtained by deleting the last row and column of L(B). By the Matrix-Tree
Theorem, the determinant of this submatrix is 1. O

Let v be a vertex of T'of degree d = d(v). Denote the branches at v by By, B,, ..., B.
Suppose B, has n; vertices. View each B; as a rooted tree with r(B;) listed last among
the n; vertices. If we order the vertices of T with those of B; preceding those of B;, ,,
1 £ i < d, and with v coming last of all, then L(T) takes the following partitioned
form:

(1 L(By) 0 ... 0 C,

0 LB, ... 0 c,
0 0 ... L(B) C.,
C C C d

ny n2 na

where C,, is the row vector of length n; whose only nonzero entry is —1 in the last
column.

II. THE MULTIPLICITY OF a(T)

Let T'be a Type I tree. Let B be a branch at wy.. We call B passive if f(r(B)) = 0
for every f € £(T). A branch at wy is active if it is not passive.

Theorem 1. Let T be a Type I tree with characteristic vertex w = wy and algebraic
connectivity a(T). Let B be a branch at w with root r(B). Then B is active if and
only if a(T) is an eigenvalue of L(B). Moreover, if a(T) is an eigenvalue of L(B),
then it is simple and it is the smallest eigenvalue of E(B).

Proof. Let By, B,, ..., B, be the active branches at w and B, , 4, ..., B, the passive
branches. Then L = L(T) takes the partitioned form illustrated in (1).

For each B;, 1 £ i £ k, there is a characteristic valuation f; e é(T) such that
f{r(B,)) # 0. Indeed, by Theorem A, we may assume f(r(B;)) = 1 and fi(v) > 1
for all vertices of B; different from r(B;). From this it is easy to see that there must
exist an eigenvector f € f(T) which is simultaneously nonzero on every B;, 1 < i < k,
i.e., such that f(v) = 0 if and only if v = w or v is a vertex of a passive branch. With
respect to the same ordering of the vertices that produced (1), we may partition

(2) f=0G0x>,  x® 0,..,0),

where x¥ is 1-by-n;, 1 < i £ k. Moreover, by Theorem A, either x¥ or —x' is
a positive vector, 1 < i < k. Using block matrix multiplication on the equation
fL = a(T) f, we see that x s an eigenvector of L(B;) afforded by a(T), 1 i < k.

Rescale each x” (separately) so that its last component (corresponding to r(B;))
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is 1. Call the rescaled vector y(®. Then y¥ is a positive eigenvector of L(B;) afforded
by a(T), 1 < i £ k. Now, since L(B;) is an (irreducible) M-matrix (Lemma 1), its
inverse, A;, is (entrywise) positive. Moreover, yV4; = a(T)~* y® so that a(T)"!
must be the (simple) Perron root of A;. It follows that a(T) is both simple and the
smallest eigenvalue of L(B;).

Suppose, now, that a(T) is an eigenvalue of L(B;) for some j > k, and let z be
a corresponding (row) eigenvector. There are two cases.

Case 1. The entry in the last column of z is zero. Then the 1-by-n vector g =
=(0,...,0,z9, 0,...,0), with z¢2 in columns ny + ... + n;_; + 1 through
n; + ... + n; and zero in every other column, is an eigenvector of L afforded by
a(T). But then g € &(T) is nonzero on a vertex of the passive branch B;.

Case 2. The entry in the last column of z¢ is not zero, in which case we may
assume it is — 1. Then g = (y*,0,...,0, z,0,...,0), with y® in the first n,
rows and z positioned as in Case 1, is an eigenvector of Lafforded by a(T) and we
reach the same contradiction. O

Corollary 1. Let T be a Type I tree with characteristic vertex w and algebraic
connectivity a(T). Let L = L(T) be a Laplacian matrix for T and denote by L,
the principal submatrix of L obtained by deleting the row and column corresponding
to w. Then the number of active branches (of T) at w is equal to the multiplicity
of a(T) as an eigenvalue of L,

Proof. We may assume the vertices of T are ordered so that L(T) takes the form
(1). Then L, is the direct sum of the L(B) as B ranges over the branches at w. Therefore,
the conclusion is immediate from Theorem 1. O

Theorem 2. Let T be a Type I tree with characteristic vertex w and algebraic
connectivity a(T). Let m be the multiplicity of a(T) as an eigenvalue of L(T). Then
exactly m + 1 of the branches at w are active.

Proof. As in the proof of Theorem 1, there is a characteristic valuation f e &(T)
such that f(v) = 0 if and only if v = w or v is a vertex of a passive branch at w.
Once again, we may assume the vertices of T are ordered so that L = L(T) takes the
form (1) where B,, B,, ..., B, are the active branches and By, ..., B, are passive.
Partition the eigenvector f as in (2) and rescale each x(® to obtain y¥ with 1 in the
last column. For 2 i <k, define f; = (y*,0,...,0, —y®,0,...,0), where —y®
occurs in columns ny + ... + n;_; + 1 through n; + ... + n;. It follows from
block multiplication that f,L = a(T) fis 2 =i £ k. For example, the last column
of f,Lis yC., — y®Ci = —1— (—1) = 0.In particular {f5, f5, ..., fi} is a linearly
independent set of eigenvectors for a(T).

Suppose h e &(T) is a fixed but arbitrary eigenvector for a(T). Since h(v) = 0 for
all vertices v of B;, k <j =< d, we may partition h conformally with L as h =
= (", u®, .. u®, 0,...,0), where u? is a 1-by-n; row vector. Now, again by
Theorem A, if u® # 0, then u® or —u is a positive vector. Moreover, by block
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multiplication of hL = a(T) h, each nonzero u‘” is an eigenvector of the correspon-
ding L(B;) afforded by the simple eigenvalue a(T). Thus, there are constants c; such
that u® = ¢;y®, 1 < i < k. (Indeed, ¢; = h(r(B;)).) From the last column of
hL = a(T) h, we see that the sum of the ¢’s is 0. Therefore,

h =

=

—cifi-

2

So, {f2:fss - fi) spans &(T).
We have shown that k — 1 = m. 7

Corollary 2. Let T be a Type I tree with characteristic vertex w and algebraic
connectivity a(T). Let B be a passive branch at w. Then the smallest eigenvalue
of L(B) is strictly larger than a(T). In particular, if L, is the principal submatrix
of L(T) obtained by deleting the row and column corresponding to w, then a(T)
is the smallest eigenvalue of L,,.

Proof. We may assume L(T) has the form (1) so that L,, is the direct sum of the
L(B) as B ranges over the branches at w. By Theorem 1, it suffices to prove that a(T)
is the smallest eigenvalue of L. Let oy = o, = ... = o,_, > 0 be the eigenvalues
of L. Let m be the multiplicity of a(T) as an eigenvalue of L. Let

M2 Z gy >y =o=dyy=a(T)>2,=0
be the eigenvalues of L. By the Cauchy interlacing inequalities,

a, =2 =« Z 2 A =y

n—m—1 = “n—-m = Yn—-m = =

It follows that the m — 1 numbers o;, n — m < i < n — 2, are all equal to a(T).
By Corollary 1 and Theorem 2, two more of the o’s must equal a(T). But, o, ,,, =
= 4,_m—1 > a(T) so the only remaining possibilities are «,_,,_, and o,_;. O

III. PRUNING AND GRAFTING PASSIVE BRANCHES

Suppose T'is a Type I tree with a branch B at w; and a characteristic valuation
fe&(T) such that f(r(B)) = 0. Then, as we have seen, f is identically zero on B.
(It may happen that g(r(B)) # 0 for some g € &(T) different from f. We do not
necessarily assume that B is a passive branch.)

Suppose u, is a pendant vertex of T'which lies in the branch B. Let T, be the subtree
of T obtained by removing u; and the edge incident with it. Let f; be the restriction
of f to T,. It was shown in [5] that a(T;) = a(T) and f, € &(T;). In particular, T, is
a Type I tree and wy = w;. By successive applications of this procedure, zero
branches can be “pruned away” leaving a Type I subtree T, and a characteristic
valuation f, which takes the value 0 only at the characteristic vertex. Our next
result shows that new zero pendant vertices can be “grafted on” to the characteristic
veriex.
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Theorem 3. Let T = (V, E) be a Type I tree with characteristic vertex w and
algebraic connectivity a(T). Let f € &(T). Suppose T' = (V', E') is the tree obtained
from T by adjoining a new pendant vertex, p, to w. (So V' = Vu {p} and E' =
= Eu {{p,w}}.) Extend f to a function f' of V' by defining f'(p) = 0. Then
a(T') = a(T) and f" e &(T"). (In particular, T' is a Type I tree with characteristic
vertex w.)

Proof. We have V = {vy, 3, ..., v,} and we let v, = w. Thus we may take V' =
= {04, V35 «euy Uy, Upyq) With v,y = p. Let L= L(T) and L' = L(T") be the Laplacian
matrices afforded by these orderings of the vertices of T and T, respectively. (If we
temporarily view w as a root of T, then L' is the partitioned matrix

LTy = (L(T) C.\.)
(e” 7)
Since f(w) = 0, we see that f’L’ = a(T) f'. In other words a(T) is an cigenvaluc of L'
afforded by the eigenvector f”. Since a(T) # 0, we must have a(T) = a(T"). It remains
to show that a(T") = a(T).

By Corollary 2, the minimum eigenvalue of L, is a,_; = a(T). Since 1 = a(T),
the minimum eigenvalue of L, is a(T), where L, = L,, + (1) is the principal sub-
matrix of L' obtained by deleting row and column n. But, by Cauchy interlacing,
this eigenvalue is no larger than a(T”), the second smallest eigenvalue of L(T’). [

n

In Theorem 3, it is necessary to assume that w is the characteristic vertex. If w
is some other vertex of T for which f(w) is zero, it would still be the case that f” is
an eigenvector of T’ afforded by a(T), but it might happen that a(T) > a(T"),
even if w were a vertex of a passive branch.

The following companion of Theorem 3 is an immediate consequence of Theorem 1.

Corollary 3. Let T be a Type I tree with characteristic vertex w. Let p be a pendant
vertex attached to w. If T & K, ,_y, then f(p) = 0 for every f e &(T).

Proof. Let B = ({p}, ) be the branch at w containing p. Then L(B) = (1).
Since T + K ,_,, we know that a(T) < 1. By Theorem 1, B is a passive branch. []

IV. THE ALTERNATING PART OF THE SPECTRUM

Let G = (V, E) be a graph with automorphism group I'(G) regarded as a group
of permutations of V = {v,, ..., v,}. For any subgroup H of I'(G), denote by V, ..., ¥,
the orbits of H in V and let n; be the cardinality of ¥, i = 1, ..., t. Denote by P(o),
o € H, the n-by-n permutation matrix corresponding to the action of ¢ on V =
= V,u...u V,. If we order the vettices such that V; = {vy,...,0,], V, =
= {04 415 -++> Uny+ny)» €C., then

P(o) = P(0) + ... + P(o)

where P,(c) is the n;-by-n; permutation matrix corresponding to the action of ¢ on V;.
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Since H acts transitively on V;, the principal representation of H occurs exactly once in
the reduction of the representation ¢ — P,(0) into irreducible components. Indeed,
the constant n;-tuple #;, each of whose components is 1 /\/n,-, is a unit eigenvector
of P(0), o € H, which corresponds to the eigenvalue 1. Define the unit n-tuples u; by

u; =(0,...,0,i;,0,..,0), 1<i=<t,

with #; in positions ny + ... + n;_, + 1 through n; + ... + n;. Let U be any
n-by-n orthogonal matrix with first ¢ rows equal to u,, ..., 4,. The matrix U satisfies
U P(o) U' = I, + Q(0), o € H, where I, is the t-by-t identity matrix and Q is a repre-
sentation of H which does not contain the principal representation as a component.
Partition U L(G) U* into a 2-by-2 block matrix (L;;) where Ly, is t-by-t. Since P(c)
commutes with L(G) for all o € H it follows that L,, = Ly, Q(¢), s e H. If L;, # 0
then any nonzero row would be an eigenvector of Q(s) corresponding to the eigen-
value 1 for all 6 € H. Since this would contradict that Q does not contain the principal
representation as a component it must be that L,, = L,; = 0, so that U L(G) U’
is the direct sum of L, and L,,. The spectrum of L, will be called the H-symmetric
part of the spectrum of L(G), and the (complementary) spectrum of L,, will be
referred to as the H-alternating part. Clearly, an eigenvalue is in the H-symmetric
part of the spectrum if and only if there is a corresponding eigenvector which is
constant on the orbits of H, and an eigenvalue is in the H-alternating part of the
spectrum if and only if there is a corresponding eigenvector which is not constant
on the orbits of H. Both parts of the spectrum are counted according to multiplicities
and it can happen that a multiple eigenvalue of L(G) occurs in both the H-symmetric
and H-alternating parts of the spectrum. (There is an analogous division of the
spectrum of the adjacency matrix [ 1, Sect. 5.3] which has been generalized by means
of so-called “divisors™.)

One can easily produce the matrix L;; without using group representations. If U,
denotes the t-by-n matrix consisting of the first ¢ rows of U it is evident that
U,L(G) U} = L. Hence if L(G) is partitioned into a t-by-t block matrix (4;;)

6
o— o o O— ¥e)
1 3 5 4 2
Fig. 2

where A;; is n;-by-n;, then the (i, j)-entry of Ly, is just 1/\/n;n; times the sum of the
entries in A;;.

Example 3. Consider the tree T'in Figure 2. The automorphism group is I'(T) =
= {id, (12) (34)} and it yields four orbits: ¥; = {1,2}, ¥, = {3,4}, V; = {5} and
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Vs = {6}. Letting H = I'(T), the “orbit-partitioned” form of L(T) is

1 0 -1 0 0 0
0 1 0 -1 0 0
-1 0 2 0 -1 0
n=| o _4 0 2 | -1 e
0 0 -1 -1 3 -1
0 0 0 0 -1 1
Therefore
1 -1 0 0
L,=[-1 2 -2 .
0 -2 3 -1
0 0 -1 1

The characteristic polynomial of Ly, is p(x) = x(x — 2) (x* — 5x + 3). The roots
of p(x) comprise the H-symmetric part of the spectrum. From Example 1, the
characteristic polynomial of L(T) is (x* — 3x + 1) p(x). The (complementary)
H-alternating part of the spectrum consists of the roots of x2 — 3x + 1, namely
(3 + /5)/2 and a(T) = (3 — \/5)/2.

In case H = I'(G), we will use the terms symmetric and alternating rather than
H-symmetric and H-alternating. We will refer to an eigenvalue of L(G) as sym-
metric (alternating) if it is in the symmetric (alternating) part of the spectrum. Then,
as we have already observed, an eigenvalue A of L( G) is symmetric if and only if there
is a corresponding eigenvector which is constant on the orbits of F(G), i.e., a vector
x # 0 such that x L(T) = Ax and x P(¢) = x for all ¢ € I'(G).

(When G = T is a tree, a similar justification can be given for “alternating”:
A is an alternating eigenvalue of L(T) if and only if there is a vector x # O such that
x L(T) = Ax and x P(¢) = —x for some ¢ € I'(T). When A = a(T), this observation
will be addressed after Theorem 4. In the general case it seems appropriate merely
to sketch a proof: Sufficiency is clear. To prove necessity, let y be an eigenvector
for A which is not constant on orbits. Then there is an automorphism 7 such that
y: * [y P(q)]; for some (fixed) i. It is a fact about I'(T), for which we have no other
use, that there is an involutary automorphism ¢ such that (v;) = o(v;), for the same
fixed i. Let x = y — y P(0). Then x L(T) = Ax and x P(0) = —x.)

If F(G) is trivial, the alternating part of the spectrum is empty. On the other hand,
if I'(G) is transitive, then the symmetric part consists of the eigenvalue 0 and nothing
else. Example 3 shows that a(T) may occur in the alternating part. In Theorem 4
we characterize those Type I trees T' for which a(T) is aternating.

Suppose v is a vertex of the tree T. Let B, and B, be two branches at v. We say
that B, and B, are isomorphic if (and only if) they are isomorphic as rooted trees.
In particular, B, is isomorphic to B, if and only if there is a o € I'(T) such that
o(B,) = B, with o(r(B,)) = o(r(B,)), and o(u) = u for every u ¢ B, U B,.
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Lemma 2. Let T be a tree. Suppose By, B,, ..., B, are isomorphic branches at
veT, k> 1. Let A be an eigenvalue, with multiplicity m, of f,(Bl). Then A is an
eigenvalue, with multiplicity at least (k — 1) m, of the alternating part of the
spectrum of L(T).

Proof. We may assume without loss of generality that L(T) has the form (1)
and that L(B,) = ... = L(B,). Let xy, x,, ..., X,, be a linearly independent set of
cigenvectors for L(B, ) corresponding to 4. Then the (k — 1) vectors (x;, —x;,0, ..., 0),
(x40, =x;,0,...,0), (x;,0,0, —x;, 0, ...,0), etc., for each i = 1,2, ..., m, constitute
a linearly independent set of (k — 1) m eigenvectors of L(T) corresponding to A.
Since every one of them fails to be constant on the orbits of I'(T'), the proof is com-
plete. O

Note that the following interesting observation (due to M. Fiedler) emerges from
the proof of Lemma 2: Suppose B, and B, are isomorphic branches at an arbitrary
vertex v of an arbitrary tree T. Then there is an eigenvector x of L(T) supported by
the vertices B, U B, and such that x P(s) = —x for an automorphism o I'(T)
which interchanges B; and B,, and fixes every vertex not belonging to B; U B,.

Consider next the case that T'is a Type I tree and v is chosen to be wy. If T has two
isomorphic active branches at wy., it follows from Theorem 1 and Lemma 2 that a(T)
is alternating. Moreover, from the immediately previous discussion, there isa g € I'(T)
and an fe¢(T) such that ¢(B;) = B,, o(v) = v for all v¢ B; U B,, and f(v) =
= —fo(v) > 0 for all v e B;. The main result of this section is a converse. Before
proceeding to Theorem 4, we establish the following:

Lemma 3. Let T be a Type I tree with a branch B at the characteristic vertex
w = wyp. Denote the orbits of I(T) by Vi, Vs, ..., V,. If f€ £(T), then f is constant
onV;nB, foralli=1,2,...,¢t

Proof. We may assume that B is an active branch for otherwise f is identically
zero on all of B and hence constant on each B n V. Let f; be the restriction of f to B.
As we have seen, f is an eigenvector of L(B) corresponding to a(T). Moreover, a(T)
is a simple eigenvalue of L(B) and the components of f; are all positive or all negative.

Suppose that vy, v, € BN V; and that a(v,) = v, for some o e I'(T). Since T is
a tree and since w is a fixed point of every automorphism of T, ¢ acts as a permutation
of the branches of T at w. Since v, € B n o(B), it must be that ¢(B) = B. Let o, be
the restriction of o to B. Then f; and f,o, are two eigenvectors of L(B) corresponding
to the simple eigenvalue a(T). Since f; and f;o, have the same (uniformly signed)

entries, it must be that f; = fi0,, so f(v,) = f(v,). O

Theorem 4. Suppose that T is a Type I tree with algebraic connectivity a(T) and
characteristic vertex w. Then a(T) is alternating if and only if T has two iso-
morphic active branches, B, and B,, at w.

Proof. If T has two isomorphic active branches, then a(T) is alternating by
Theorem 1 and Lemma 2. Conversely, assume a(T) is alternating. Let By, ..., B,
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be the active branches of T at w. Since w is a fixed point for every automorphism of T,
any o e I'(T) will act as a permutation on {By, ..., B,}. (Since fo e &(T) for all
fe&(T)andall ¢ € I'(T), B and o(B) are both active or both passive for every branch B
at w.)

Suppose, for contradiction, that no two branches in {B,, ..., B,} are isomorphic,
so that o(B;) = B.forall i = 1, ..., k, and ¢ € I'(T). This implies that for any orbit
V; of [(T), cither V; is entirely contained in the passive branches at w, or ¥} is entirely
contained in a single active branch. Together with Lemma 3, this yields that any
valuation is constant on orbits, contradicting that a(T') is alternating. ]

Let z: B; — B, be an isomorphism of branches at w. Extend 7 to an automorphism
o of T by defining o(v) = t(v) if ve By, 6(v) =t~ '(v) if v e B,. and o(v) = v other-
wise. We may assume that L(T) has the form (1) with L(B,) = L(B,). Let x be an
eigenvector of L(B,) corresponding to a(T). Then f = (x, —x.0) e &(T) and fo =
={-x,x,0)= —f.

The discussion in Theorems 1 and 4 makes it clear how Type I trees may be con-
structed when a(T) is alternating. Simply take several copies of any rooted tree and
connect each of the roots to a new vertex w which will be the characteristic vertex.
One may wonder whether a(T) must always be alternating when T'is a Type I tree.
In view of Theorem 4 this amounts to asking whether Type I trees must always
have two isomorphic active branches at the characteristic vertex. The answer to this
question is no, and we will proceed to construct an example.

Our method of producing a Type I tree having no isomorphic branches at w
begins with Theorem 1. Suppose B; and B, are two nonisomorphic rooted trees
where L(B,) and L(B,) have the same smallest eigenvalue a. Let T be the tree ob-
tained by attaching each of the roots to a new vertex w. Then we may write

L(B,) 0 C,
L(T)={0 L(B,) Ci,
¢, C, 2

Let x be an eigenvector of L(B;) affording a, i = 1, 2. Since [(B;) is an M-matrix,
we can assume x) is positive with 1 in its last column and x® is negative with —1
in its last column. Then f = (x("), x®, 0) is an eigenvector of L(T) affording a.

N

Fig. 3

By Cauchy interlacing with respect to the principal submatrix L(B,) + L(B,), we
see that a = a(T). Therefore, f e &(T) and we are finished.

It is not difficult (using, e.g., [6]) to locate rooted trees with the desired common
eigenvalue. For example the L matrices for the rooted trees in Figure 3 share the
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minimum eigenvalue a = 0.139194, the smallest root of p(x) = x> — 6x* + 8x — 1.
This leads to the Type I tree T in Figure 4 with (simple) a(T) = a. The (apart from
nonzero multiples) unique characteristic valuation of T also appears in Figure 4
(rounded to four decimal places).

-.3362
-.2894 4374
-2894 L2023 4374
(e, O > —O. O O 0
-3362 -.2023 0 .3765
Fig. 4

It is possible to modify the example in Figure 4 to produce a Type I tree T with a(T)
belonging both to the symmetric and alternating parts of the spectrum. Simply attach
a second copy of either branch to wy.

Acknowledgement. We gratefully acknowledge useful conversations with Miroslav
Fiedler and Stephen Pierce.

References

[1] D. Cvetkovié, M. Doob, and H. Sachs: Spectra of Graphs, Academic Press, New York, 1979.

[2] M. Fiedler: Algebraic connectivity of graphs, Czech. Math. J. 23 (98), 1973, 298— 305.

[3] M. Fiedler: Eigenvalues of acyclic matrices, Czech. Math. J. 25 (100), 1975, 607— 618.

[4] M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its application
to graph theory, Czech. Math. J. 25 (100), 1975, 619—633.

[5] R. Merris: Characteristic vertices of trees, Linear/Multilinear Algebra, to appear.

[6] C. Moler: MATLAB, CSUC CYBER, Los Angeles.

Authors’ addresses: R. Grone, Dept. of Mathematical Sci.,, San Diego Statc University,
San Diego, CA 92182, U.S.A., R. Merris, Dept. of Mathematics and Computer Sci., Cali-
fornia State University, Hayward, CA 94542, U.S.A.

670



		webmaster@dml.cz
	2020-07-03T06:00:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




