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0. INTRODUCTION

Let f:[a, b] > R, g e R. It is well known (see e.g. [1], [2]) that the following
two conditions are equivalent:

(0.1) fis Perron integrable, g = [5 f(t) dt;
(0.2) for every & > 0 there exists such a &: [a, b] - (0, o0) that

k
lq "_Zlf(ti) (xi - xi—1)| <e¢
provided
a=X St SxS...SE5- SESX=0Db,
[xi-1, xi] = (t; = 8(t), t; + 8(2y)) -

Denote by M, the set of the n X n matrices. Let A: [a, b] - M, be continuous
and let U: [a, b] » M, be the fundamental matrix of

(0.3) %= A()x,
U(a) = I. It is well known that
(0.4) for every & > 0 there exists such a 6 > 0 that
U()) = [ + Alse) 0 = y=)] - [T + Als)) (v — vo)]ll <
provided
a=yoS$i S S Sho1SsSy=t=bh,
[vi-1 yi] = (5 = 8, 5 + 9)

(cf. [3], [4]). An approach analogous to the Lebesgue and Lebesgue-Stieltjes integral
can be found in [5].

Let A: [a, b] - M,, Qe M, regular. The purpose of this paper is to examine
the consequence of the following assumption:

(0.5) for every & > 0 there exists d: [a, b] = (0, ) such that
lo = [1 + A(t) (xe = xi= )] --- [1 + Aty) (e, — x0)][| <&

provided xo, to; X1, .-, t, X satisfy the same conditions as in (0.2).
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Under these conditions Q is called the product integral and denoted by
(PP) [5(I + A(t) d) (PP stands for Perron product). Main result:

The integral (PP) (5 (I + A(t) dt) exists if and only if there exists a matrix function
U which is ACG, (see [6]) on [a, b], U(a) = I, U(t) regular for t€[a, b], such
that U(t) = A(t) U(t) a.e.; in this case the integral exists for s [a, b] and U(s) =
= (PP) [ (I + A(t) dt). In other words, the problem

a=A)u, u(s)=y

has a unique ACGy solution on [a, b] for every s e [a, b] and y e R" if and only if
(PP) [2(I + A(¢) di) exists.

Incidentally, a new characterization of ACG, functions was obtained (cf. (3.19)).

The same concept of the product integral results by replacing the product
[+ A(t) (x5 — x4—q)] --- [T + A(ty) (x4 — x0)] in (0.5) by
exp [A(t) (xx — x3-1)] ... exp [A(#;) (x; — Xo)]- In order to prove this fact, a more
general setting is introduced in Section 1, namely, I + A(f) (x — y) is replaced by
a function ¥ of a point variable and an interval variable.

In Section 1 the values of A may be e.g. linear bounded mappings of a Banach
space, but in Section 2 and after it is essential that the underlying space is finite
dimensional (cf. Lemma 2.2). In Section 2 an analogue of the Saks-Henstock Lemma
(see e.g. [2]) is derived (cf. Theorem 2.4), which is then used repeatedly, especially
in the examination of the differentiation properties of U in Section 3. Applications
to linear differential equations and some examples can be found in Section 4.

1. PRODUCT INTEGRAL: DEFINITION AND PROPERTIES

Let n e N and let M, be the set of all n x n matrices equipped with a norm |-
Denote ¢ = {[x,y]; x <y} and, if [a,b] = R is a compact interval, £, =
= {[x, y] € #; x, y € [a, b]}. A partition of the interval [a, b] is any ordered k-tuple
of pairs of the form A = {(t;, J\); t;€ J; = [xi—, xi] € L} i = 1,2,...,k, X0 = a,
x, = b. Given a function V: [a, b] X £a4 — M,, we denote

P(V, A) = V(ty, ) V(tx-15 Ji=1) --- V(t1, J4) -

If : [a, b] = (0, 0) is a positive function (called gauge) then a partition A is said
to be é-fine if
T (t; = 8(t), 1. + 6(1) .

1.1. Definition. A function V: [a, b] X #u — M, is called PP-integrable (Perron
product integrable) if there is a regular matrix Q € M, such that for every & > 0
there is a gauge 6 such that

(1.0 lo - P, 8)] < ¢
for every d-fine partition A of [a, b]‘ Then Q is called the PP-integral of V and we
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write
0 = (PP) [5V(t,dr).

Let us introduce the following notation for certain conditions concerning V:
(1.1) Vis PP-integrable and (PP) [% V(¢, dt) = Q;
(1.2) for every t e [a, b] and { > O there is ¢ > 0 such that

V(e [xyD) -1 = ¢
forall x,yela,b],t —6 <x<t<y<t+o.

(I stands for the unit matrix.)

If A:[a, b] - M,, then the functions
(1.3) Vilt, [x, y]) =T + A() (y = %),
(1.4) Va(t, [x, y]) = exp [A() (y — )]
satisfy (1.2). It will be shown later (Theorem 2.12) that if one of the functions V;, V,

is PP-integrable then so is the other, and both the integrals coincide. If this is the
case, then the function A4: [a, b] — M, will be said to be PP-integrable.

1.2. Theorem. Let (1.1), (1.2) be fulfilled. Then there exists such K > 0 that for
s€(a, b) the integrals on the left-hand side of

(19) (BP) (£ V{1, dr) (BP) J2 V(s &) = (PP) J2 V(e )
exist, the equality holds and
JoP) V(e 0] < K. (2P) V(e an) ] < K.
Proof. Put &, = 4[| Q7 !| ! and find a gauge J, such that

(16) o — (v 8)] < 2
holds for every d,-fine partition A, and
(17) V(. [x9]) — 1] < 4

for t,x,ye[a, b], t — 6o(f) <x <t <y <t + §(t). As the first step we shall
prove
(1.8) For every t€[a, b] there is K(f) > 0 such that

(i) if se(t — 8o(t), 1] n (a, b] and A, is a Jy-fine partition of [a,s] then
max {[P(V; A,)], [P(V, )7} = Ku(1);

(i) if se[t,t + do(t)) N [a, b) and A, is a ,-fine partition of [s, b] then
ma ([P0, A, [P £} < K, ().

In order to prove (i) denote by A, a §,-fine partition of [z, b]. Set
A=A ot [s t])oAs

where o denotes the union of ordered finite sets in which the ordering of the resulting
set is given by the order of factors on the right-hand side. Then Ais a §,-fine partition
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of [a, b] and consequently, (1.6) holds. Since P(V, A) = P(V, A;) V(t, [, t]) P(V, A,)
we have
(e [s, )" P(V, A3) ™" @ = PV, Ay)| <
< e[ V(e [s, )7 [P(V: A7,
1PV, &) — 0~ R(V; &) V(0. [5. ()|
< el @7 [PV, A)7] = PV, A) 7] -
Taking into account (1.7), we find that (i) follows. (ii) is proved analogously.
As the second step we will prove
(1.9) For every t € [a, b] there is K,(f) such that
max {[P(V, A, [P(V, A) ™", [|P(V, Az)[, [P(V. A2) ™'} = Ks(1)
provided se(t — 8o(f), t + 8o(t)) N [a, b] and A,, A, are §y-fine partitions
of [a, s] and [s, b], respectively.

IIA

In order to prove that the desired inequality holds for the first two norms in the
case s€[t,t + o)) set A=A, oA, Since P(V,A) = P(V, A,) P(V, A,) and A is
a §,-fine partition of [a, b], (1.6) implies the inequalities

[P(V. A2)71 @ = P(V, A)] = &0 P(V, A) 7',

[P(V. )" = Q7'P(V, Ar)|| = eo| @7 [[P(V; A) ]| = H[P(V, A~

Since by (1.8) (i) both ||P(V; A,)|, | P(V; A;)™"| are bounded independently of A,,
we conclude that |P(V; A,)|, |P(V, A,)"*| are bounded. The rest of (1.9) follows

by an analogous argument.
As the third step, (1.10) is obtained from (1.9) by a compactness argument:

(1.10) There is a constant K = 1 such that
(i) if se(a, b] and A, is a §y-fine partition of [a, s], then
max {|P(V, A, [P(V; )7} = K;
(i) if se[a, b) and A, is a §,-fine partition of [s, b], then
max { |P(V; A2)[, [P(V; 42)7']} = K.
As the fourth step we will prove
(1.11) Let 0 < & < &, and let & correspond to ¢ so that (1.0) holds for every -fine
partition A of [a, b] and that §(f) < 8,(¢) for t € [a, b]. Let s € (a, b] and let
Ay, A; be S-fine partitions of [a, s]. Then
(=) [P(V; Ar) — P(V, Ay)| = 2Ke
with the constant K from (1.10).

In order to prove (1.11) denote by A, a §-fine partition of [s, b] and put A, =
= A oAy, Ay = A;0A,. Then Ay, As are 5-fine partitions of [a, b], hence (1.0)
holds with A replaced by A, or Ag, which yields

|P(V, A;) P(V, Ay) — P(V, A;) P(V, A;)|| < 2¢
and () holds by (1.10) (ii).
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Fifth step: Theorem 1.2 follows from (1.11), from an analogous assertion for
partitions of [s, b], and from (1.10).

1.3. Remark. The converse of Theorem 1.2 also holds. In detail: If (1.2) holds
and if the integrals on the left-hand side of (1.5) exist for some s € (a, b), then the
integral on the right-hand side exists as well and (1.5) holds.

Indication of proof. Let ¢ > 0and let §,(5,) correspond to & and (PP) [5 V(z, dt)
((PP) 3 ¥(t, dt)) according to (1.0). Let 5 be a gauge on [a b], satisfying 6(u) < 8,(u),
u + 8(u) <s for u <s, &(s) < min (6,(s), 55(5)), 6(u) < 8,(u), u — 8(u) > s for
u>s. Let A= {(t;, [xi-1, x;]); i = 1,2, ..., k} be a 5-fine partition of [a, b]. Then
there exists such a j that t; = 5. If x;_; <'t; < x;, put

Ay = {(ty, [%05 X1])s (t25 [x15 X215 - (2 [%j- 1 1]}

Ay = {(tss [t %)t s [ X0 D)s s (to [¥ie= 15 %])} -

If 5(s) is small, then |[P(V; A) — P(V, A,) P(V, A,)| is small and moreover, P(V, A,)
is close to (PP) (% V(t, dt), P(V, A,) is close to (PP) [> V(t, dt).

2. EQUIVALENT INTEGRABLE FUNCTIONS
Let L > 1 satisfy the following condition:
L™ max |Z,,| £ |Z| £ Lmax |Z,,|
I,m I,m
for every Ze M,, Z = (Z,,,).
We first establish two lemmas concerning products of matrices.
k
2.1. Lemma. Let Y, Y,,..,Y%eM, Y[V s, X=0I+Y%)I+ Yy ...
k i=1
I+ Y)-I1-3Y,.
i=1
Then K
X = (3 %0
k
Proof. Put 4; = ||Y;|, A = ¥ 4;. Since 0 £ 1 < 1, we have
i=1

M+ 21+ 4-y)...(1 +A) =1 =2 - e =M St -1 -21522
and writing

X=YYY + Y YV, ,+.+%Y . %Y

J27J1

J2>j1 Jj3>jz2>J1
we see that
IX| £ % 44, + % Apdpdi + oo F Ao dpdy S22,
Jj2>ii1 j3>j2> 0t

2.2. Lemma. Let0 < 9 < %L“‘, Zi,Z2s -5 Z, € M,. For every p-tuple of numbers
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{jl:jz: ~--,ip} < {L2,.., r}, j1 <j; < --- <], let the inequality

(2.1) W+ 2z,)(+2z,. ) 0+2)-1]=<9
hold. Then
(22) ¥ lz)] < 4.

Proof. (2.1) evidently yields
“Z]” é\g for j=192"'~,r'
Let us write Z; = (Z;,,,,) nad denote by ¢(j), ¥(j) such numbers from {1, 2, ..., n}
that
|Zs:000 0| = mnax \Z5:1m >
and by J(I, m) the set
J(1,m) = {je{l,2,...,m}; o(j) = 1, ¥(j) = m} .
Assume that (2.2) is not valid. Then there exist numbers I, m such that (writing
J(I, m) = J) we have
Y 1z,] > 429
JjeJ
and consequently,
Y le;,‘m‘ > 4L3§ .
jel

Denote J; = {jeJ = J(I,m); Z;,,, = 0}, J, = J\ J,. Then we have at least one
of the inequalities

Y Zyum> 2L, =Y Zjyn>2LY.

JjeJi jeJz

For definiteness assume that the first of these inequalities holds. Since |Z;]| < 9,
we have

ZiymS L3 for jelJ,
and there is a set J} < J, such that
(2.3) 2 < Y Z,,, < LY.
Hence a
Yz =38 <1

jed1*
and the family {Z}; j e J1} satisfies the assumption of Lemma 2.1. Hence
(2.4 [mu+2z)y-1=%2z,+x,

jeJ1* JjeJi* .

X (3 Jz) < oo

Moreover, by (2.1) the norm of the left-hand side in (2.4) does not exceed 9, which
yields

I .z‘zjn < 9+ 9L,

JjeJ1
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However, (2.3) together with the inequality for the norm yields
[[ZZ”>L‘ max Y Z;,. > 29,

jeJ1* I,m jeJi*

jil,m

which combined with the previous inequality yields

29 < 9 + 9I*9?,
that is,
9> L%
which contradicts the assumption. Hence (2.2) holds.
2.3. Lemma. Let (1.1), (1.2) be fulfilled and let U:[a, b] - M, be defined by
U(t) = (PP) [, V(s,ds), U(a) =1I.

Let ¢ > 0 and find a gauge § as in Definition 1.1 so that (LO) holds for any S-fine
partition A of [a, b]. Let

(2'5) a=ns&H=suEmsLs. S SLSnS,560=0,
(&5 ;] = (r; = 8(x), 7; + 8(z)))

and put
h U»l(rli) V(Tj’ [fﬁ r’j]) U(éj) =1+ Zj .
Then
(2:6) T+2zyq+2z,_)...(0+2z)-1] <]e™"|e.

Proof. Choose ® > 0 and find gauges 6; on [n;,¢;4,],j =0,1,...,r, such
that §,(r) < (1) and that
(2.7) [P(V;8) = U ) UT' ()] < @
for every é;-fine partition A; of [n;, &;44],j =0,1,...,r
(Notice that U+,) U™ (;1!) = (PP) [&r+1 ¥(s, dt).)

If A; are 6;-fine partitions of N, &;41 then A = Ajo (74, [51, ?11]) Ayo...
coB oty [fr, 1,]) o A, is a 8-fine partition of [a, b]. Consequently

o — P(V, A) V(z,, [&,0,]) P(V, A_y) ... PV, Ay) V(zy, [0, m]) POV, A)|| < &,
that is ‘
(28) It = U=2(6) P(V, A,) U(n,) U™ (n,) V(5. [ m]) -

U U(E) PV, A—y) U(n,-1) U (1,-1)
.. U(éZ) Ukl(éz) P(V; Al) U(ﬂl) U‘l(’h) V(Th [613 '11]) .

(UE) UTHE) PV Ao < o7 e
Put

UTNE) PV, A) UGm) =1+ Wy, j=0,1,.7
Then writing (2.7) in the form
(0710 PV, 4) Uy) = 1] < U (00| [UG)]
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and applying Theorem 1.2 we obtain
(29) W] < K.
Using the notation introduced above we rewrite (2.8) as

=T +w)I+Z)T+ W_y)...(I+ W) + Z) (T + W) £ |07 e
and since w > 0 was arbitrary, (2.9) implies (2.6).

2.4. Theorem. Let (1.1), (1.2) be fulfilled, let & > 0 satisfy [|Q™*| & < L%
Let &}, t;,m;, Z;, K be the same as in Lemma 2.3. Then
(2.10) Y 1Z;|| £ Kse, where K;=4n*I?]|Q7'|,

j=1

and ’

(2.11) ,;1" V(zy, [&n;]) — (PP) [B V(t,di)| < Ky4e, where K, =K’K;.

Proof. (2.10) follows from Lemmas 2.3 and 2.2; (2.11) follows from (2.10) by
Theorem 1.2 since
(PP) L V(t,dr) = U(n) UT'(&)) -
2.5. Remark. Theorem 2.4 is the product-integral version of the Saks-Henstock

lemma, cf. e.g. [2].

2.6. Theorem. Let (1.1), (1.2) be fulfilled, let U be defined as in Lemma 2.3.
Then U is continuous.

Proof. Let g,, 6, be the same as in Theorem 1.2. Given ¢, 0 < ¢ < g,, find the
corresponding gauge & so that (1.0) holds for every J-fine partition A of [a, b].
Let s € [a, b]. By (1.2) there is ¢ > 0 such that

[V(s, [x,¥]) = I <
provided s — 6 <x <s<y <s+o. Let te(a,b) satisfy s — min (o, (s)) <
<t<sand let A, be a 5-fine partition of [a, t], A, = A o (s, [¢, 5]). Then
[u(t) — P(V, A))| < 2Ke, |U(s) — P(V, A,)| < 2Ke (cf. Theorem 1.2). On the
other hand, P(V, A,) = V(s, [t,s]) P(V, A,), hence

[P(V. As) = PV, )] < IVGs. [ <) = 1] [P(V. A < K

and finally,
[u() — U(s)] = sKe.

The proof for s < t < s + min (o, &(s)) is analogous. -
2.7. Theorem. Let K5 > 0 and let a function W:[a, b] - M satisfy
(1) max (WO, W) = .
for te[a, b]. Let V:[a, b] x J,, = M. For every 3 > 0 let there exist a gauge J
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on [a, b] such that
k
(2.13) .Zl IVt [x- 1 1) = W) W™ Hxs0)] < 9
o=
for every S-fine partition A of [a, b].
Then the integral (PP) [% V(t, dt) exists and is equal to W(b) W~ *(a).

Proof. Let 0 < 9 < K;2 In Lemma 2.1 set Y; = W™ (x,) V(1;, [x;-1, x;]) -
. W(x;-4) — I. Then using (2.12) and (2.13) we see that the assumption of the lemma
is fulfilled and its assertion reads

1w~ (x) V(e [xe-1, %]) Wi 1) W (%e- 1) V(e 15 [Xe-25 Xi=1]) -+
eV T x2]) W) = 1] 5 3170 + (3, WD
Recalling that 'i [Y:] < K39, x, = b, xo = a and using (2.12) we conclude
IVl [ %)) V(s X 5ea]) e

o V(ty, [0, x1] — W(b) W' (a)| < K$9 + K§92

which proves the theorem.

2.8. Definition. Functions V;:[a, b] x J,, > M, i = 1,2, are called equivalent,
notation V; ~ V,, if for every ¢ > O there is a gauge 6 such that

k
(2.14) .Zl IVi(ts, L= 1 x,1) = Vot [0, 6] <&
=
for every d-fine partition A of [a, b].

2.9. Theorem. Let (1.1), (1.2) be fulfilled and let V ~ V,. Then the integral on the
left-hand side of

(2.15) (PP) [% V,(1, dt) = (PP) [5 ¥(1, dt)
exists and (2.15) holds.

Proof. Let U be defined as in Lemma 2.3. Chose ¢ > 0 and find a gauge é on
[a, b] such that (1.0) and (2.14) (with V; replaced by ¥) hold for every § -fine partition
of [a, b]. By Theorem 2.4,(2.11) holds, and combining (2.11) and (2.14) we conclude

k
ZIH Vot [xj-1 x,]) = Ux)) U™ (3= 0)]| = (Ko + D) e
=
The proof is now completed by Theorem 2.7 in which we put W(r) = U(1).

2.10. Remark. The converse of Theorem 2.9 holds in the following sense: If
(PP) [% V(s,ds) = (PP) [% V,(s, ds) holds for te[a, b], then V ~ V,. This follows
immediately from Theorem 2.7.

2.11. Lemma. Let V:[a,b] x #,, > M, i = 1,2, satisfy the following con-
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ditions:
(i) there is a set E€[a, b], m(E) = 0, and functions &,, ¢: E — (0, o0) such that
Vit [x, D) = Va(t, [x, y])]| < () (v — %)
for teE, t —6y(f) < x St <y <t + 8(t);
(i) for every ¢ > O there is a gauge § on [a, b] such that
[Vi(t, e v1) = Va8 [x, ¥ < ey = %)
for te[a, bJNE, t = §(f) < x <t <y <t + &1).
Then V| ~ V,.

Proof. Choose ¢ > 0 and let § be the function from (ii). Put E; = {te E;i — 1 <
<e() =i}, i=1,2,.... Since m(E) =0, we find §;: E; - (0, ) such that
341) < d4(2),

m( U (t — 8,1), t + 6,(1)) <—
teE;

Put
3(t) = 8(1) for te[a, b]\E,
5(t) = 6(t) for teE;,, i=12,...

Then for any d-fine partition A of [a, b] the sum in (2.14) splits into two parts,
one with t; € E; for some i and the other with ¢; ¢ E. The former is estimated by

.; 1,2 'Q(‘j) (e = xj-1) _.;11 1—2*, =
while the latter does not exceed Y &(x; — x;_;) < (b — a)e. Hence (2.14) holds
with ( L + b — a) ¢ on the right- hanii side, which completes the proof.
2.12. Theorem. Let A: [a, b] » M, and put

Vi(t, [x, ¥]) =1+ A()(y — x),

Va(t: [x, y1) = exp [A() (v — x)]
forte[a, b],a £ x £y < b.If one of the integrals in
(2.16) (PP) [5(1 + A(7) dt) = (PP) f5exp (A(r) dr)
exists then the other exists as well and (2.16) holds.

Proof. The functions V;, V, are equivalent by Lemma 2.11 (E = ). Since (1.2)
is fulfilled for both Vj, V,, the assertion follows via Theorem 2.9.

2.13. Theorem. Let A;:[a, b] > M,, i = 1,2, A,(t) = Ay(t) for almost all
te[a, b]. If one of the integrals in

(2.17) (PP) [5(1 + A4,(1) dr) = (PP) [2(1 + Ax(r) )
exists then the other exists as well and (2.17) holds.

Proof is analogous to that of Theorem 2.12.
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3. DERIVATIVE OF THE PRODUCT INTEGRAL WITH RESPECT
TO THE UPPER LIMIT

3.1. Theorem. Let (1.1), (1.2) be fulfilled and let U have the meaning from
Lemma 2.3. Then there exists a set T < [a, b] with m(T) = b — a and for every
¢ >0, teTthereis 3 > 0 such that

(3.1 V(. [x, y]) = U() U (®)] < oy ~ %)
provided t — 3 < x<t<y<t+ 39, x,ye[a,b]

Proof. Let T be the set of t € [a, b] that (3.1) holds and denote E = [a, b]\T.
Denote by E, the set of such ¢ € [a, b] that there exists a sequence x; = x,(t), y, =
= y/(1) satisfying x, S t £ y,, x;, < y, y; — x;, > 0 as I - oo and

(32) V(e [xi v]) = U) U (x| 2 iy = %)

Then evidently E = |J E,. Assume that m,(E) > 0 (m, denotes the exterior measure).

r=1
Then there is r such that m/(E,) > 0. Let & > 0 be such that [|[Q™"] e < §L7%,
K < 3r~ ' m/(E,) (L. K, were introduced in Theorem 2.4), and find § according
to Definition 1.1 so that (1.0) holds for every 5-fine partition A of [a, b]. For every t
find 1, = Io(1) such that

t—x(t) < 8(t), yft) —1t <)
forall I = I,.

The system {[x,(), y,(t)]; t € E, I = Io(t)} covers the set E in the sense of Vitali.
Therefore there is a finite subsystem

{[&mlsj=12,...,5}

such that t; — (1r;) < & < t; £ n; < 7; + 8(t)), n; £ &4y, so that

m(EN O[6sn]) < $mE).

Consequently,

S0, - &) 2 m(EaU g ) > 3 mE)

and (3.2) yields

v‘;HV(f,» [&.n,]) = Ulm) UT'(E)] > "_1:21("1 -&)>
N > 3r ' m,(E,) > Kue J
which contradicts (2.11) from Theorem 2.4.
As an easy consequence of Theorem 3.1 we obtain
3.2. Theorem. Let A:[a, b] - M,,
(3.3) V(t,[x,y]) =1+ A1) (y — x)
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and let (1.1) hold. Then the derivative U exists and
(3.4) U(t)U~'(1) = A(1) fora.e. te[a,b],

where U has the meaning from Lemma 2.3.

3.3. Theorem. Let (3.3), (1.1) be fulfilled and let U have the meaning from
Lemma 2.3.

Then U satisfies the following condition:
(3.5) Let 6 > 0. C < [a, b], m(C) = 0. Then there exists 6*: C — (0, o0) such

that )
| P ORUOTEE

provided ;€ C, t; — 8%(tj) < & S 1; £ n; < t; + 6%(1y), [&,n;] = [a, b]
forj=12,....r,n & forj=12,..,r—1

Proof. Put C; = {te C; i — 1 £ |A(1)]| < i}, i = 1,2,.... There exist functions
3;: C; - (0, o) such that
(3.6) m(U (t = 8,(t), t +6(1) £ — =
1eC; j2itig’

Let |Q7!| e < L% 2KK,e < o (for K see Lemma 2.3, for L, K, see Theorem 2.4).
Find § according to Definition 1.1 so that (1.0) holds for every é-fine partition A
of [a, b]. Without loss of generality we may suppose 5(f) < d,(t) for teC;, i =
= 1,2,.... Then we can write the inequality (2.11) from Theorem 2.4 in the form ~

(3.7) z I+ A(t) (n; = &) — Uln) U'(&)]| < K.

By (3.6) and the definition of C; we have

PEGIOS ol =

o3 (o2
; J; “A(T.f) ('71' J)" = =1 2;+1K Z_K—’
and (3.7) yields
r _ o
Y =Um) U] S Kae +
‘ = 2K
hence

)3 ”U(”i) - U(fj)” SKKu +io<o.
=1

3.4. Theorem. Let U:[a, b] » M, satisfy U(a) =1, let U be regular with
[U='(1)| £ K for t € [a. b]. Further, let U satisfy (3.5) and the condition

(3.8) the derivative U(t) exists for almost all te [a, b].
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Set A(t)=U(t) U~ (1) if U(t) exists, A(t) arbitrary elsewhere. Then the integral in
(39) (PP) [2(1 + A() di) = U (e
exists and (3.9) holds.

Proof. Let 9 > 0 and let T be the set of te[a, b] for which U(r) exists. Put
C =[a,b]\T, 0 = ;9K~!. Find §* from (3.5). Since m(C) = 0, there is 6°: C —
- (0, o), 6°(t) < 6*(¢), such that

(3.10) EE 0 - 50

provided t;, ¢;, n; satisfy the conditions from (3.5) with 6° instead of &* (this can
be shown in the same way as the analogous inequality in the proof of Theorem 3.3).
Further, there is §: [a, b] — (0, o0) such that

(3.11) A U@ (y - x) — U() + U(x)] < ; ~ Zo’,
.12 1060 =0l = G =+ 1

forteT,t —8(t)<x<t<y<t+8(),[x,y] =[ab] x<y Let 6: [a, b] -
— (0, c0) satisfy
5(t) < 8(t) for tela,b],

(1) < min (6*(t), 8°(t)) for te C,
and let A be a é-fine partition of [a, b]. Then

i§1 ”I + A(ti) (xj - xj—l) - U(Xj) U—l(xj_l)” <
%;CHA(’J')" (x; = xj-1) +UZE:CHU_1(XJ—1)” [U(x)) = U(x;-0)] +
+ 2 U760l IA@) UG (55 = x5-0) = [UGx) = UG- )] +

+r_ZT"le(xj~1)” 14() [U() = UG- )] (5 = x-1) £
’ <o+ Ko+ Ko+ Ko=29
by (3.10), (3.5), (3.11), (3.12), Lemma 2.3 and the definition of o at the beginning
of the proof. The proof is completed by applying Theorem 2.7.

3.5. Remark. Let (PP) % V(t, dr) exist, let ¢: [a, b] — [0, oo] be such a function
that

() (. [x yDl = o(t) [y — x|

for a < x <t <y<b. Set again U(t) = (PP) [; V(s,ds), U(a) = I and assume
that the derivative U(?) exists a.e. in [a, b]. Define A as in Theorem 3.4. It follows
from (x) that U satisfies (3.5) so that (PP) [* V(s,ds) = (PP) [ (I + A(s)ds) by
Theorem 3.4. Putting V;(t, [x, y]) = A(t) (¥ — x), we have V ~ V; by Remark 2.10.
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3.6. Definition. A function A:[a, b] » M, is said to be PS-integrable (Perron
summation integrable) nad a matrix R is its integral, notation R = (PS) j"; A(t) dt,
if for every ¢ > O there is a gauge 6 on [a, b] such that

[R —S(4,4)] <e
holds for every §-fine partition A of [a, b], where

S(4,8) = % A1) (5 = x1-0).

Notice that if n = 1 then A: [a, b] — R is integrable in the sense of Definition
3.6 iff it is Perron integrable, and both integrals coincide.

3.7. Theorem. Let

(3.13) A(ty) A(ty) = A(t,) A(ty) for ty,t,€[a,b].
If one of the integrals in the formula
(3.14) (PP) [5(I + A(2) dt) = exp [(PS) [2 A(r) df]

exists then the other exists as well and (3.14) holds.

Proof. In virtue of (3.13) we have (PP) [%exp (A(r) dr) = exp [(PS) % A(t) df]
provided one of the integrals exists, and (3.14) follows from Theorem 2.12.

In what follows we will use Theorem 3.7 to transfer some of the results established
above for the product integral to the sum integral of a real function. As a consequence
of Theorems 1.2, 3.2, 3.3 we obtain

3.8. Theorem. Let f: [a, b] — R be PS-integrable. Then the integral (PS) [ f(s) ds
exists for te(a, b]. Put F(a) = 0, F(t) = (PS) [, f(s) ds. Then F satisfies the con-
ditions
(3.15) F(t) = f(t) for almost all t€[a, b].

(3.16) Let C < [a,b], m(C) = 0. For every &> 0 there exists §:C — (0, )
such that
.ZI|F(’1J) —F)| <e
=
provided t;€C, t; — §(rj)) < & < v, ;< 1y + 0(x), &,n;€la, b] for
j=L2 .. randn; <& forj=12,..,r—1
Theorem 3.4 yields

3.9. Theorem. Let F:[a, b] - R have a derivative almost everywhere in [a, b|
and let (3.16) be fulfilled. Put f(t) = F(t) for te[a, b] at which F(t) exists, f(t)
arbitrary elsewhere. Then the integral (PS) [5 f(¢) dt exists and equals F(b) — F(a).

3.10. The notion of an absolutely continuous function was extended in a natural
way to the notion of an ACG, function (generalized absolutely continuous), see e.g.
[6]. Let us recall the following results concerning ACG, functions:
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(3.17) If F:[a, b] > R is ACG,, then the derivative F(r) exists for a.e. t€[a, b].
If we put f(t) = F(t) at such ¢ where the derivative exists, f(t) arbitrary
elsewhere, then

F(t) — F(a) = (PS) [5f(s)ds for te(a,b]

(i.e., the integral exists and the formula holds). (In particular, if F(t) = 0
for a.e. t € [a, b], then F is a constant function.)

(3.18) Let (PS) [%f() dt exist. Put F(a) = 0, F(t) = (PS) [ f(s)ds for te(a, b].
Then F is an ACG, function and f(t) = F({) a.e.

These assertions together with Theorems 3.8, 3.9 imply

(3.19) F:[a, b] > R is ACG, if and only if it has a derivative a.e. and satisfies
(3.16).

The notion of generalized absolute continuity can be extended to functions H
with values in M,, R" or C" (either by modifying in the natural way the definition
of real ACG, functions or by requiring that all entries of H — or, as the case may
be, their real and imaginary parts — be ACG, functions). Then it is not difficult
to prove that (3.17)—(3.19) hold also for such functions.

Theorems 3.2—3.4 together with (3.19) imply

3.11. Theorem. Let U: [a, b] - M,,, U(a) = I. Then the following conditions are
equivalent:
(3.20) there exists A: [a, b] - M, such that

U(t) = (PP) [o (I + A(s) ds) ;
(3.21) U(t) is regular for t € [a, b], the derivative U(t) exists a.e.. U satisfies (3.5);
(3.22) U is an ACGy function, U(t) is regular for te[a, b];
(3.23) there exists A:[a, b] > M, such that
U(t) =1 + (PS) [ A(s) U(s) ds ,
and U(t) is regular for t €[a, b].

Notice that the matrix 4 in (3.20) coincides with 4 in (3.23) since (3.4) holds in
both cases (for (3.20) this follows from Theorem 3.2).

3.12. Theorem. Let A:[a, b] - M,, let Q € M, be regular and let the integral
(PP) [% (I + A(s) ds) exist for te(a, b),

lim (PP) (4 (I + A(s)ds) = Q.
t—>b—
Then the integral (PP) [5(I + A(s) ds) exists and is equal to Q.

Proof. Put U(a) =1, U(t) = (PP) [5(I + A(s)ds) for te(a,b), U(b) = Q.
Then U is an ACG, function by (3.18) and the assertion follows from Theorem 3.11.

656



4. LINEAR DIFFERENTIAL EQUATIONS

4.1. Definition. A solution of the equation
(4.1) % = A(f) x

with A4:[a. b] - M, is any ACG, function u: [a, b] > R" satisfying (4.1) for a.e.
te [a, b].

4.2. Theorem. Let A be PP-integrable on [a, b), let ty € [a, b], y € R". Then there
is a unique solution u of (4.1) satisfying the initial condition u(t,) = y.

Proof. Recall that 4: [a, b] - M, is called PP-integrable if the functions V;, V,
in (1.3), (1.4) are PP-integrable. Let U be defined as in Lemma 2.3. It is directly
verified that the function U(t) U™ !(t,) y is the desired solution (cf. Theorem 3.2).

On the other hand, if we look for the solution of (4.1) in the form u(t) = U(t) z(1),
where z is ACG,, then it is easily seen that z'(t) = 0 a. e., hence z is a constant func-
tion by (3.17). The uniqueness of the desired solution immediately follows.

4.3. Remark. Let A be PP-integrable on [a, b]. By (3.17) and (3.18) a function u
is a solution of (4.1) if and only if
u(t) = u(a) + (PS) [} A(s) u(s) ds
for tela,b].
4.4. Remark. Let 4 be PP-integrable, let U be the same as in Lemma 2.3. Then U

is a fundamental matrix of solutions of (4.1). The variation-of-constants formula
is applicable to the equation

(4.2) % = A(t)x + g()
provided g: [a, b] — R" is Lebesgue integrable on [a, b] (i.e., [5 g(t) dt € R") since
U(t) §2 U™ '(s) g(s) ds is an ACG, function and satisfies (4.2) for a.e. t € [a, b].

4.5. Lemma. Let k > 0 be an integer. Let B:[a, b] -» M, be continuous, let
cela, b], B(c) = 0. Let B(1) exist for every t  c and let B be continuous on
[a,c)u(c,b]. Let [5|BB**'| dt < co. Put A(t) = B(t) [I — B(t) + B(t) — ...
... + (=1)* B¥t)]. Then A is PP-integrable on [a, b].

Proof. In a neighbourhood of ¢ let us apply the substitution x = (I + B(t)) v to
the equation (4.1). We obtain
(4.3) o= (I + B(t))"* B(t) B***(¢) v..

By the assumptions the matrix of coefficients of the equation (4.3) is Lebesgue in-
tegrable and the equation (4.3) has an absolutely continuous fundamental matrix
of solutions V. It follows that U(r) = (I + B(t)) V(1) is regular (in a neighbourhood
of ¢) and U is an ACG,, function. Hence A is PP-integrable by Theorem 3.11.

4.6. Remark. We shall make use of Lemma 4.5 to construct functions A4,, 4,:
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[=1.1] > M, such that
(4.4) A, is PS-integrable but not PP-integrable ,
(4.5) A, is PP-integrable but not PS-integrable .
4.7. Examples. Leta > 0,20 + 1 < B < 3a + 1,
0, 1 -1, 0
4.6 = > = ’
( ) S (l, O)’ ¢ ( 0, 1)’

B(t) = t* (Ssint™® + Ccost™#) for te[—1,1], t + 0, B(0) = 0.
We have

(4.7) $?=C*=1, SC= —CS=<_(1)’ (1))

(i) Take k = 0, A4,(t) = B(t) for t + 0.

Applying the substitution v = (I + B(t)) x to
(4.8) % = A,(t) x
we obtain
(49) b= D(t)v
with D(f) = (I + B())~! B(t) B(t). Making use of (4.6) and (4.7) we obtain
(4.10) B(t) B(t) = 1> #SC + O([t|**"1),

D(t) = **7/sC + O(|¢|F""), &> 0.

Put
(4.11) W(1) = exp (2« + 1 — p)~* ?**17£SC)
for t € (0, 1] and look for the fundamental matrix ¥ of (4.9) on (0, 1] in the form
(4.12) v(t) = w(1) Z(1).
We have

Z = Wi(t) (D(i) — 12*-5SC) W(1) Z .

The form of SC implies that both W(f) and W~!(¢) are bounded and by (4.10)
Z(0) = lim Z(f) exists and is regular. Since 20 + 1 — B < 0, it follows by (4.11)

t—>0+
and (4.12) that neither of the limits lim V(¢), lim (I + B(t))™* V(¥) exists and A, is
t—=+0+ t—=>0+

not PP-integrable, since (I + B(t))™! V(1) is the fundamental matrix of solutions of
(4.8) on (0,1).

(ii) Take k = 1, A,(t) = B(t) (I — B(1)).

(4.10) implies that A4, is not PS-integrable, while 4, is PP-integrable by Lemma 4.5,
since B(t) B*(t) = O(|t|**7*) by (4.10) and 3¢ — > —1.

4.8. Example. Let y > 1, « > 2(y — 1), 6),€R for ,m =1,2,...,n and put

A1) = t77 exp (10t %)
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for te[—1,1], t % 0, 4,,(0) = 0; A(t) = (4,,(f)). Integrating by parts we obtain
that there exists a matrix function B such that B(r) = A(r) for t % 0, and B(f) =
= O(t7"***1)in a neighbourhood of t = 0. Since A(f) = O(t”7) in a neighbourhood
of t = 0, the function A is PP-integrable by Lemma 4.5.
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