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1. INTRODUCTION

A holomorphic function f in D = {|z| <1} is called Bloch, f e B in notation, if
K =K(f) = sug (=2 ]f'(z) < .

We shall prove some necessary and sufficient conditions for a holomorphic function
in D to be in B in terms of areal means.

Let u be subharmonic in an open disk & with the area m(5). The areal mean of u
in 6 is then defined by

Alu, 8] = m(6)™ ' [[su(z)dxdy (z = x +1iy).
It is familiar that f € Bif and only if f is areally of BMO (bounded mean oscillation),
namely,

sup A[|f — f(a)|, ] < 0,
where & ranges over all open disks contained in D and a is the center of &; see[2,
p. 632].
For u subharmonic in D we set

L(u, r) = %f&"u(rc“) dt, re(0,1),
T
and

L[u] = sup L{u, r) = lim L(u, r) .
1 r—=1

o<r<
Let
(W) = (w + a)/(1 + aw), weD, aeD.

Then BMOA consists of f holomorphic in D with
sup L[|f o ¢, — f(a)|]] < .
aeD

The celebrated “‘exponential” and “logarithmic” criteria for f to be in BMOA, due
to A. Baernstein II [1, Corollaries 2 and 3(d), pp. 15—16], then read:
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(E) There exists ¢ > 0 such that
sup L[exp {c|f o ¢, — f(a)

aeD

L) sup L[log*|f o ¢, — f(a)]] < 0 .

As usual, log* x = max (log x, 0), x 2 0. Each of (E) and (L) is equivalent to f
being in BMOA. We could regard (E) and (L) to be the strongest and the weakest
conditions, respectively, in the familiar “linear” integrals.

<.

It appears to be natural to find areal analogues. Our typical result is the following:

Theorem 1. The following are mutually equivalent for f holomorphic in D.

(B) feB.
(BE) There exists ¢ > 0 such that

sup Alexp {c|fo P, — f(a)|}, D] < .
(BL) sup Aflog |f « ¢, — f(a)}, D] < .

In (BL), log instead of log™ is considered.
Let B, be the family of functions f holomorphic in D such that

im (1 = 2|2 = 0.

Then B, = B. Some criteria for B, will be considered in contrast with those for B.

2. STATEMENT OF THE MAIN RESULT

Theorem 2. For f holomorphic in D, each of the following nine conditions, (Sj),
(Ej), (LK) for j = 1,2; k = 1,2,3,4,5, is equivalent to (B).
Each open disk 6 = D can be expressed as 6 = D(a, g), where

D(a,0) = {z;|z —a| <o(l = |a])}, aeD, 0<g=<1.

In particular, D(a, 1) (a = 0) is tangent to the unit circle. Less generally, D itself
or each open disk 8 = D with § = D can be expressed as 6 = A(a, @), where

Aa, 0) = {z; |¢p-.(2)| < o}
is the non-Euclidean disk of center a and radius tanh™ g, ae D, 0 < 0 < 1. We
shall denote
D(o) = D(0,¢) = A(0,0), O <e=1.
If u is subharmonic in 6 = D we set
1
m*(9)

dxdy

- P

A*[u, 6] =

s wt2)
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where
m*(®) = [[o(1 — |[?)* dx dy
is the non-Euclidean area of 8. This is the non-Euclidean areal mean of u in 4.
We are now ready to propose cited conditions.

(S1) For each B > 0, there exists ¢ € (0, 1) such that
sup sup |f(z) — f(a)| < B.

aeD zeD(a,p)
(S2) For each B > 0, there exists o € (0, 1) such that

sup sup |f(z) — f(a)| < B.

aeD zeA(a,@)

(E1) For each B > 1, there exists ¢ > 0 such that

sup Alexp {c|f — f(a)|}, D(a,1)] < B.
(E2) For each B > 1, there exists ¢ > 0 such that

sup Alexp {c|fo ¢, — f(a)|}, D] < B.

(L1) There exist g, A €(0,1) such that
AS'IJII) 1A[log |f = f(a)|, D(a, 0)] < .
<la]l <

(L2) There exist g, A€ (0, 1) such that
sup A[log[ fo¢a— f(a)|, D(@)] < co.

A<lal<
(L3) There exist g, A€ (0, 1) such that
sup A[log*|f — f(a)|, Ala, 0)] < o .

a<laj<1
(L4) There exist g, A€ (0, 1) such that

A<sup A*[log*|f — f(a)|, D(a, @)] < .

(L5) There exist g, A€ (0, 1) such that
, slulp 1A*[log |f = f(a)], Ala, @)] < .
<lal <
We note that

m(D(a, 0)) = me*(L — |al)?, m(A(a, @) = "= 1aP)

(1 - o*a?

no?
m*(A(a, 0)) = -— 5

Although m*(D(a, ) has the expression in a and ¢ [4, Lemma 1 and its proof], we
shall not need the detailed form.
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As will be observed,
(21) D(a, @) = A(a,0), aeD, ¢e(0,1),

so that (S2) = (S1) is immediate. Since ¢,(w)e A(a, ¢) if and only if we D(e),
0 €(0, 1), we easily observe that (S2) = (L2). Rather trivial are (S1) = (L1) and (L4)
(S2) = (L3) and (L5). |

Theorem 1 is a consequence of Theorem 2 because
(B) = (E2) = (BE) = (BL) = (L2) = (B)..

Here we note that by the celebrated F. Riesz theorem on areal mean of subharmonic
functions, A[u, D(a, g)] is a non-decreasing function of ¢ € (0, 1] for u subharmonic
in D; see [3, p. 8]. This proves (BL) = (L2).

Finally we note that (Ej) = (Lj) for j = 1, 2. Therefore, the rest we should prove is

(B) =(S2) and (Ej), j=1,2.
and

(Lk) = (B), k=1,2,3,4,5.
Sections 3 and 4 are devoted to the proof of them.
The following figure would be of use for the deduction.

(8] (§1) ——> (L1]
\ (s2) (2l
(E1] (L3)
(E2) (L4)
Ls)

Figure 1

Remark. As will be apparent it is not difficult to show that each of the following
is equivalent to (B).

(S1") For each g €(0,1),
sup sup ]f(z) fla)] < .
acD zeD(a,o

(S2') For each ¢€(0, 1),

sup sup |f(z) — f(a)| < .

aeD zeA(a,p)
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On replacing log by Jog* in (Lk) we obtain the conditions (Lk*); k= 1,2, 5.

It is easy to observe that o
(Sk) = (Lk*) = (LK), =1,2;
(S2) = (L5*) = (L5). '

3. CONDITIONS (Sj) AND (Ej)

Suppose (B). Then
(3.1) If(z) = fW)| < Koz, w), zweD, ~“7
where e
o(z, w) = tanh™|¢_ (2)|
is the non-Euclidean distance.
To prove (B) = (S2), we choose ¢ € (0, 1) such that Ko(e, 0) < B. Then

If(z) = f(a)| £ Ko(z, a) < Ko(o,0) < B
for z € A(a, ¢), or we have (S2).
If a € D and if z € D(a, 1), then for

z=yw=a+(1~-la))w, weD,
we have

(32) |6-a2)| = [w] -
In particular, if z € D(a, o), then w & D(g). This yields (2.1). .
It is apparent that the integral
o 1/2 . h : T N
P=n"'{[p 1+ |w|> dudv (w=u+iv)
1—|w|
satisfies 1 < P < 0.
. For the proof of (B) = (E1), we choose ¢ > 0 such that -
(3.3) cK <1 and P¥<Bp.
It then follows from (3.1) and (3.2) that

|f(z) —f(a)] £ K tanh™" |w|,

so that

for z = y,(w) e D(a, 1). Since dxdy = (1 — |a])? du dv, it follows that ".:"'

 Alexp {c|f - f(a)l}, D(a, 0=
<1 [, (1 + |w|)“‘ du as ch < ﬁ .,

because cK < 1.

exp {elf(2) - f(a)]} = (1_+_M)x,z R
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For the proof of (B) = (E2) we first note that for w € D,
[ o $a(w) — f(a)| = Ko(¢u(w), 6.(0)) = K tanh™* |w].

Given B > 1 we choose ¢ > 0 with (3.3). By the similar argument as above we have

Alexp {c|f - ¢, — f(a)|}, D] < B.

4. CONDITIONS (Lk)

We shall denote the ring domain by
RA)={A<|z] <1}, 4€(0,1).
For the proof of (L1) = (B) we set z = y,(w) for a € R(1), w € D(g). Then
wg(w) =fo¥a(w) — f(a), weD(o),
where g = g, is holomorphic in D(g) with
9(0)] = (1 — [a]) |F'(a)] -
Since log |g| is subharmonic in D(g) it follows that
log |9(0)| < A[log |g], D(e)] =
= ADog| -y ~ /@), (@] + 4|l o 20| -

= A[log |f — f(a)|, D(a, @)] — loge + 1/2.
Therefore,

(1 = |a]*) |f'(a)| = 2¢7" ¢*/* exp A[log |f - f(a)|, D(3, 0)] ,

whence (1 — |a|?) |f'(a)| is bounded in R(). Since f’ is continuous, it follows that
feB.
The proof of (L2) = (B) is similar on considering log |g| in D(g), where, in this
case,

(4.9 wg(w) = fo d(w) - f(a)
in D(g) with

o] = (1 — |a*) [F'(a)] -
We then have for a € R(2),

(= aP®) |f'(a)| < o' '/ exp Allog |f » ¢, — f(a)|, D(0)] -

We next prove (L3) = (L1). Then (L3) = (B). In view of (2.1) we obtain for
u 2 0in A(g, @), 2 €(0, 1), that

A[u, Aa, 0)] 2 M(I"E)") ote.0 (z) dx dy =
= —(l——ez—lﬂz—)i A[u, D(a, Q)] Z ¢,4[u, D(a, )], ¢ = (1 — ¢?)?/4.

(t + [al)?
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On letting u = 1og*|f — f(a)|, we have
Allog*|f — (@), M@, )] = c,ATlogl — £(a)], D, )]
Therefore, (L3) = (L1).
We next prove (L4) = (L1). First we remember (see [4, Lemma 1]) that

*(D(a, 0)) £ me’
me(P(e 0) = Jal G+ o) v = &)

for a % 0, ¢ € (0, 1), so that for a e R(2),
m*(D(a,0)) " Z cafme®, ¢, = (A1l — ).
For z = ¥(w), w e D(g), we have 2|a| — 1 < |z|, so that
1 |2? £ 41 = |a]).

Therefore, for our g, 2 with a € R(4) we have

A*[log*|f = f(a)|, D(a, @)] =

= m(0(a ) I 08"V ) = )} = du o 2
2 (c2/16) Allog*|f o ¥, — f(a)|, D(e)] =
= (c,/16) A[log*|f — f(a)|, D(a, @)] -

Thus, (L4) = (L1).
For the proof of (L5) = (B) we note that if u is subharmonic in D(g), e€(0, 1),

then
u(0) £ A*[u, D(0)] .
Actually,
* 1= g u,r)dr =
(4.2) A*[u,D(0)] = 7 I i 2)2 L(u,r)dr 2
> 1= e 204 0) - (o).

-y

We consider g of (4.1) again. Then,
log |9(0)] < 4*[log |g, D(e)] = 4*[log|f = ¢a — f(a)|. D(e)] + 2(0) s

where

0(0) = 108 1

——logq.
Y

Therefore, we have

(1 — |a]?) |£'(a)] < %© exp A*[log |f — f(a)|, Ala, Q)] -
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5. CLASS B,

Theorem 3. For f holomorphic in D, the condition
(BO) feB,
is equivalent to one of the following:
(S10) There exists ¢ € (0, 1) such that
lim sup |f(z) — f(a)| = 0.

la] =1 zeD(a.e)

(S20) There exists o € (0, 1) such that
lim sup |f(z) — f(a)| = 0.
la]—=1 zeA(a,o)

(E10) For each ¢ > 0,
|I:T1A[6Xp {c|f = f(a)|}, D(a,1)] =

(L10) There exists ¢ € (0, 1) such that
lim A[log |f — f(a)|, D(a, ¢)] = —
Ja] =1

(L20) There exists ¢ € (0, 1) such that
llim Allog|f s ¢, — f(a)], D()] = —
al-1

(L50) There exists ¢ € (0, 1) such that
lim A*[log |f — f(a)|, A(a, 0)] = — %
laj=1

The conditions (E2), (L3), and (L4) appear to have no analogues.
In the figure

(BO) (S10) — (L10) —— (B0
\520}%20) /
(F10) (L50)

Figure 2

trivial are: (S10)

= (L10); (520) = (L50). Since ¢,(w) € Aa, @) if w € D(g), it follows

that (S20) = (L20). The inclusion formula (2.1) yields that (S20) = (S10).
Leaving (B0) = (S20); (LkO) = (B0), k = 2, 5, as exercises, we shall give the de-

tailed proofs of

(BO) = (E10) = (L10) = (BO).

Proof of (B0) = (E10). Fix ¢ > 0, and let ¢ > 0. Then, we may find 6 (0, 1/c)
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such that P®® < 1 + ¢. We next find A e (0, 1) such that

Si (L=1zZ)f' )| £6 for zeR(A). -
D(a, 1) = R(Z) for aeR(A+ 1)2,

and since D(a, 1) is convex in the non-Euclidean hyperbolic sense, we now have
17(2) — f(a)| £ d0(z, a) < & tanh™* |w]|

for z = y,(w) e D(a, 1) with w e D by (3.2).
Therefore, for a € R((2 + 1)[2),

1 < Afexp {c|f = f(a)|}, D(a, 1)] <
<l (l + |w|

1 - |wl
which proves (E10).
Proof of (E10) = (L10). Since

log x = logloge* (x 2 0),

cé/2 .
) dudvo < PP < 1 + ¢,

it follows that, for each g € (0, 1),
Allog |f — f(a)|. D(a, ¢)] < loglog A[exp |f — f(a)|, D(a, 0)] <

» < log log Afexp |f — f(a)|, D(a, 1)],
so that (L10) follows.

Proof of (L10) = (BO0). For each x € (0, o0) there exists & (0, 1) such that
Allog |f — f(a)|, D(a, 0)] < —x foreach aeR(2).
By the estimate of (I' — |a|?) |f’(a)| in the proof of (L1) = (B) we observe that
wup (1 — Jaf*) 7@ £ 20"V,
aeR(2)
Hence (BO). ' :

6. A REMARK ON BMOA

For u subharmonic in D we set
A*[u] = sup A*[u, D(0)] .
0<e<1

In connection with Baefnstein’s criteria cited in Section 1 we show that each of
the following is equivalent to f€ BMOA for f holomorphic in D.

(E*) There exists ¢ > 0 such that ,
sup A*[exp {c|f o ¢, — fla)]}] < 0. .

aeD

(L*) o . sup A*[log+lf° d’a - f(a)l] < ©.

aeD
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Actually we can prove much more.
(6.1) If u is subharmonic in D, then
A*[u] £ L[u].
(6.2) If u is subharmonic in D with
u(0) 2 0,
then
A*[u] =2 L[u].

Therefore, if u is subharmonic in D with u(0) = 0, then A*[u] = L[u]. We thus
obtain

A*[exp {c|f o ¢a — f(a)|}] = L[exp {c[f o ¢a — f(a)]}]

and
A*[log*|f o ¢, — f(a)[] = Lllog*|f o ¢, — f(a)[]

for a € D, ¢ > 0. The suprema in (E) and (L) are, therefore, the same as those in (E*)
and (L*), respectively.

First, it follows from (4.2) that
A*[u, D(0)] < sup L(u, r) = L[u],
0<r<1

whence (6.1). For the proof of (6.2) we note that 0 < L(u,r)tas r1 1. Given
e € (0, 1), we set

e=¢R+1-¢ for Re(0,1).

Then
ATl 2 A, D] = =L g — 2 Lu,r)dr 2
0 (- ,,2)2
1 - o? 2rdr
> ¢ L(u, R) = &(R) L(u, R),
= Qz .‘-R (1 _ "2)2 (u ) ( ) (u )
where

®(R) = (1-e){Q+e)R+(1—¢)}
(eR+1—¢)*(1 + R)
is a decreasing function of R with

I]{in}(b(R) =1-e<®R)=1.
We thus have 4*[u] = (1 — ¢) L[u]. Since ¢ is arbitrary, we have (6.2).
Remark. (i) We also have
sup L{|f < o = f(a)|] = sup A*[|f « ¢4 — f(a)[]
(ii) We prove that A*[u, D(g)] for u subharmonic in D is a nondecreasing function
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of ¢ € (0, 1). Actually,
L(u,7) < L(u,@) for re (0, 0),

so that
(d/de) 4*[u, D(@)] = —2072 f3 (l—f_—’rz)z L(u, 7) dr +
1-0* 20 2 i 2 uo=0.
+ 7 =07 L(u, 0) 2 =) L(u, o) + (- L(u,0) =0

We thus have
A*[u] = lim A*[u, D(0)] .
e—1
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