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0. The H- and K-theorems for surfaces in the equiaffine space 4 are known, see’
[1]—[3]. In the spirit of these investigations, I am going to prove the following

Theorem. Let M = R? be a bounded connected domain, OM its boundary. Let
m: M — A® be an elliptic surface with the mean curvature (= die mittlere Affin-
krimmung) H and the curvature K (= das affine Kriimmungsmass). Let &(x, y)
be a function on R? satisfying
(0.1) P2 + 4xD D, + 4yP? > 0.

Suppose: (i) on m(M), we have
(0.2) ®(H,K)=0;
(i) the points of m(0M) are umbilical. Then m(M) is an affine sphere.

1. Let M = R? be a bounded domain, M its boundary. Consider a surface
m: M — A3, A3 being the 3-dimensional equiaffine space. To each point m of our
surface, let us associate an equiaffine frame {m; v, v,, v} such that v,, v, span the
tangent plane at m. Then

(1.1) dm = o'v; + @%v,. dv, = wjv, + 0iv, + wdv;,
dv, = w30, + Wiv, + W3, doy = @iv; + W, + v,
with
(1.2) o] + o) + o3 =0,
(1.3) do' =o' A 0}, do!=of A o].
From
(1.4) 0*=0,
we have
(1.5) o' Ao} + 0 A 0}=0

and the existence of functions g1, 92, 93 such that

(1.6) 0} = go0' + 920%, 0} = g,0' + g,0?.
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Let us suppose that our surface is elliptic, i.e., 9195 — g5 > 0. Then we are able
to specialize the frames in such a way that g, = g9, = 1,9, = 0, i.e,,

(1.7) o =o', o=,
From that, ,
(1.8) (o} — 03) A ' + (0} + @2) A ©* =0,

(@ + 03) A 0! + (20} — 3) A 0? =0,
and we have the existence of functions a, ..., d such that
(1.9) 20 — 0} = aw' + bo?, ©} + ol = bo' + 0,
. 205 — @3 = co! + dw?.

It may be seen that

(1.10) G := (o) + (0?)?

is the invariant equiaffine metric form. Introduce the 1-form

(1.11) o= Hw? - w});

then

(1.12) do' = —0®> A0, do* =o' Ao,

and we have, from (1.9,) and (1.11),

(1.13) o} = (b0’ + c0?) + 0, ©; = (o' + cw?) — .

From (1.1). (1.9) and (1.13),
dm = v,0' + v0?
dv, — v,0 = {}{(3a — ¢) vy + (5b + d) v,] + v} @' +
400D — d) oy + (a - 30 0] 02
dv, + vy0 = 3[(3b — d) v, + (a — 3¢) 2] " +
+ {#(a + 5¢) vy + (3 — b) v2] + v3} @?,
i.e., the equiaffine normal vector is
(1.14) yi=3Am = Ha + c)vy + (b 4 d)vs + v;.

Let us specialize the frames by the condition y — v;. Then a +c=b +d =0
and (1.2) + (1.9) reduce to

(1.15) o] = —}co! — bo?), o} =} cw! - bo?), ®3 =0,

07 + o) = bo! + ¢p? -
From (1.15;),

(1.16) 0y Ao+ 0} A =0
and
- (117) oy = aw' + fo?, o} = py* + y0’.
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Using this, the differentiation of (1.15;,,4) yields

(1.18) (db — 3cw) A @' + (de + 3bw) A % = (y — @) 0 A 02,
—(dc + 3bw) A 0! + (db — 3co) A ©* = 280! A ©?,

and we get the existence of new functions B, C such that

(1.19) db — 3co = (B + ) o' + (C + o) ?,

dc + 3bw = (C + 7) ' — (B - p) w?.
From (1.17),

(1.20) (da — 2fw) A @' + {df + (¢ — V) 0} A @ = {3b(x — 9) + cB} ' A 002,
{dB + (@ — y) ®} A @ + (dy + 2Bw) A ©0* = {3c(@ — 7) - BB} @' A @2,
and we get the existence of functions «;, ..., y, satisfying
(121)  do =280 = ;0" + 0,0%, df + (¢ — y) o = 0! + B0,
dy + 2f0 = 10" + y,0%;
(1.22) By —ar =3b(e —y) + e, v1— B =4c(x —y) - bB.
Finally, from (1.19),
(1.23) {dB — 2(2C + « + y) @} A 0! + (dC + 4Bw) A w? =
= (3xc + B — %) @' A 0?,
(dC + 4Bw) A @' — {dB — 2(2C + a + ) 0} A w? =
= (—3xb + y, — By) ©' A @?;
here, x is the Gauss curvature of G (1.10) defined by
(1.24) do = —xw! A ©?
in accord with (1.12). From (1.23),
(1.25) dB - 2(2C + « + y) = Byw' + B,o?, dC + 4Bw = C,0' + C,0?;
(1.26) Ci—By=3uc+ B, —0a;, By +C,=3xb+ 8, —7,.

2. In our notation, we get the following invariant forms

(2.1) 4:= —1{c(w")? - 3b(0')? @® - 3co'(0?)? + b(w?)?},
B:= —o'o; — 0’0} = —{a(0')® + 2p0'0? + y(0?)?},

the Pick invariant

(22 J = 3(b + ¢?)

and the mean curvature and the affine curvature

(23) H=-}a+7v), K=ay - p?

resp. A point m of our surface is called umbilical if

(2.4) H*—-K=3a—-9)?*+p=0
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at m. From (1.11) and (1.24),
(2.5) x=3b*+c*-a—-y)=J+H,
this being the theorema egregium.

Suppose that all points of m(M) are umbilical. Then « — y = g = 0, and (1.21) +
+ (1.22) implies @y = ... = y, = 0. Thus a = y = const., and m(M) is an affine
Sphere.

3. The analytic backround is given, see [4] or [5], by the following result:
On M, introduce coordinates (u, v), and consider the system

) 9 ) )
(3.1) aul +012—f+ bu*g“'*' bxz’g = cy1f + €129,
ou v ou ov
17} 17} 0 ‘0 )
a“_[ +azz—[+ bzx—g + bzz—q=021f+02292
du ov ou ov

ay; = ay,(u,0), ..., €25 = €35(u, v); for the functions f = f(u, v), g = g(u, v). Sup-
pose that the system (3.1) is elliptic, i.e., the quadratic form

(3.2) Q 1= (ay2b22 = a33b15) & + (ayybay — ayebyy) n? —
— (@11b22 — G21by5 + ay3byy — a53byy) En

is definite. If f, g are its solutions satisfying f = g = O on 0M, then f = g = 0in M.

On M, we may introduce coordinates (u, v) such that the metric form (1.10) is
G = (rdu)® + (sdv)?, ie.,
(3.3) o'=rdu, o*=sdv; r=r(u0)+0, s=s0)+0.
It is easy to see, from (1.2), that
(3.4) = —s"r,du + r7's,dv.

4. Let us suppose (0.2). Then .
(4.1) &,.dH + ¢,dK =0
with, see (2.3) and (1.21),
(4.2) ‘ dH = —3(o; + 7,) @' = (o, + 7,) @*,

dK = (o + yoy — 2B1) @' + (2 + yo, — 2882) @ .
Inserting these into (4.1), we get
(4.3) (D — 299,) 2y + (P, — 2a9,) 7, + 48D,B1 =0,
(D, — 29D,) a; + (D, — 20D,) y, + 4pD,B2 = 0.

From (1.21),

(4.4) d(a — 7) — 4pw = (2, — y;) @' + (22 — 72) @*,
dB + (x — 7)o = o' + p0*.
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Using (3.3) and (3.4),

@) LoD sy +(p, TP 04 (98,

g_ﬂ =+ (V-9 Lospr (Ya-).

u ov

From this and (1.22),

@) A==, h= L)),
u , av

=1L (=N =L (-9 + )8,
u v

o =r"? 6____(0:6;- ) + 57! gg + ()= +()8,

yo= =510 By 48,
ov ou
Inserting these into (4.3), we get, for
4.7) f=a-y, g=8,
a system of the form (3.1) with
(4.8) ay =r Y@, —2y9,), a;; =0, by =4"'pa,

b12 = 2s—1(¢x - a¢y — 'y¢y) N

ay; =0, a3, = —s" (P, — 209,), by =2r" (o, — ad, — y9,),

by, = 4s71po,.
The associated form (3.2) is then
(49 0=2P, —ad, — 79,).

AsTHD, — 20D)) E2 — 4r7isTIBDEN + rT (D, — 29D,) P} .
Its discriminant is
(4.10) 4 = 4r %" 2d, + 2HD,)* (92 + 4HP, O, + 4KD?).
We have &, + 2H®, + 0. Indeed, @, + 2H®, = 0 would mean

92 + 4HO @, + 4KP? = —4(H* — K) 92 £ 0,

a contradiction to (0.1). Thus 4 > 0, the form Q is definite and we have o = 7,

B = 0 in M. Our proof is finished.



References

[1] Blaschke W.: Vorlesungen iiber Differentialgeometrie II. Springer, 1923.

[2] Schwenk A.: Eigenwertprobleme des Laplace-Operators und Anwendungen auf Unter-
mannigfaltigkeiten. Preprint TU Berlin, 129/1984.

[3] Simon U.: Hypersurfaces in equiaffine differential geometry and eigenvalue problem. Proc.
Conf. Diff. Geometry, CSSR 1983, 127—136.

[4] Svec A.: Contributions to the global differential geometry of surfaces. Rozpravy CSAV,
1977.

[5] Vekua I. N.: Obobs&ennye analiti¢eskie funkcii. Moskva, 1959.

Author’s address: 635 00 Brno, Pfehradni 10, Czechoslovakia.



		webmaster@dml.cz
	2020-07-03T05:57:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




