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1. Boundedness and oscillation are, generally speaking, independent properties.
Nevertheless, there exists a precise relation between them. Within the last ten years
many papers have appeared that deal with the establishment of conditions of the
relation between boundedness and oscillation of solutions of ordinary differential
equations (see [2]) as well as differential equations with deviating arguments (see
the references in [7]).

In this paper we give theorems on the relation between boundedness and oscxllatlon
of components of the solutions for many-dimensional systems with deviating argu-
ments.

We note that until now few papers have been published dealing with the theory
of oscillation and asymptotic behaviour of the solutions of many-dimensional
systems with deviating arguments (see [1], [3], [4], [6]. [9])-

2. We will consider a system of the form
(Sz) y;(t) = ai(t)fi(yi+1(gi+1(t))) s i=12..,n—-1,
(1) = (=1 a,(0) fu(:(0:(1)), 120, Ae{L,2};

where n = 2 and the following conditions hold:

(1) a;e C([O, W), [0, CD)) s i = 1, 2, e

is not identically zero on any subinterval [T, ) < [0, ®),

2 [®aft)dt=ow, i=12.,n—1;

3) g€ C([0, ), [0, ), limgi(f) =~ c0, i=12-0"
t—> 0

(4) fie C(R,R), ufu)>0 for uxo0, i=12."

f (S;) which exist
Denote by W the set of all solutions y(f) = (v (i) 5 vl © (5

=T
on some ray [T, o) < [0, o) and satisfy Sup{zly ()] 1 }
T>T,

> 0 for any
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Definition 1. A solution y = (y,, ceey y,.) € W is called oscillatory if each of its
components has arbitrarily large zeros.

Definition 2. A solution y € W is called nonoscillatory (weak]y nonoscillatory)
on [T, ), T 2 0, if each of its components (at least one component) is eventually
of a constant sign on [T}, ©) < [T, ).

We will use the following notation:

(5) 2O =sup{x=20; g(x) <t} for t=20, i=12,..,n;
y(f) = max {y;(t), ..., 7(2)} ;

(6) hy(t) = g,(t), h(t) = gk(hk_l(t)) , te[0,0), k=2,..,n;

(7) Ju(hil8): 9(s); ass -, @) = [5i3 (aa(x) [326D (a2(x2)- - foer _ (i) A .. )dx, )dx,
k=12,...,n;

(8) Ak(hk(t)s gk(s); ayfi, azfas oo Q- 1fi-1» ak) =

= o as(x1) f1 (Jox0y a20x2) - fum 1 (Jpson -y ae(xe) A%g) - dxz) dxy

k=12,...,n.

Lemma 1. Let the conditions (1)—(4) hold and let y = (y,, ..., y,) € W be a non-
oscillatory solution of (S;,) on the interval [0, o). Then there exist a t, = 0 and an
integer 1€{1,2,...,n} withn + A + 1 odd or | = n such that for t 2 t,,

(9,) yi(t) yl(t) >0, i=12,...,1,
(10) (=D y () y() >0, i=L1+1,..,n.
Proof. If = 1, then Lemma 1 coincides with Lemma 1 [3]. For 4 = 2, the proof

of Lemma 1 is done similarly as that of [3, Lemma 1].
It is easy to prove the following statement.

Lemma 2. Let the conditions of Lemma 1 hold.
a) Then there exists a T, = 0 such that for t = i,

(11) YO y()>0, i=1,2,..,01—1 if I>1,
()" H* 1y y() >0, i=L1+1,...n (n+ i+ lisodd).
b) In addition, let lim ly,(t)] =L, 0< L, £ . Then
t— o0

(12) I>1, L;>0 =lim|y(t) =0, i=12..1-1,
t— 0

13) l<n, Li<ow=lml|y(t) =0, i=I+1,..,n.
t— oo

Lemma 3 (Lemma 1 [6]). Let the conditions (1)—(4) hold. Let y = (y, ..., y,) € W
be such that y,(1) #+ 0 in [1,, ) for some ke {1,2,...,n}.
- Then there exists a T = t, such that each component y; of y isin [T, oo) dif-
ferent from zero, monotone and the limit lim y,(t) = L, exists (finite or infinite).

t— o
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Theorem 1. Let the conditions (1)—(4) hold. In addition, suppose that
(14) g(t) (i = 1,2, ..., n) is nondecreasing and h,(t) < t for t = t,;
(15) g4(t) > 0 for t = t4;

(16)  f,-1(u), f,(u) are nondecreasing;
(17)  inf fiw)u>0(i=1,2,...,n — 1) for some ¢ > 0;

0= |ul<e

(18) limsup [} ,a,(s) Ty 1(hu-1(2), gu-1(5); ay, ..., a,—;) ds > 0.
t—

Then, for n + A even, every solution y = (yy, ..., ¥,) € W of (S;) with a bounded
component y, is either oscillatory, or y; (i =12,..., n) monotonically tend to
zero ast — oo.

Proof. Suppose the contrary. Let the system (S;) for n + A even have a weakly
nonoscillatory solution y = (yy, ..., y,) With a bounded component y,. Then by
Lemma 3, y is nonoscillatory. Without loss of generality we may suppose that
y1(91(¢)) > Ofor t = t,. Then the n-th equation of (S,) implies that (—1)* y;(t) = 0
for ¢ 2 t,, and is not identically zero on any subinterval [t;, ©) < [t,, ). Then
by Lemma 1 and Lemma 2 there exist a ¢, = t, and an integer l € {1, 2,... n}with
n + A+ 1 odd or I = n such that (9)—(11) hold for t = t,. If y, is bounded, then
in view of (9), (11), Lemma 3, (12) and (2) we get that I must be only one, i.e. I = 1.
With regard to Lemma 2 we obtain lim y,(f) = b = 0, lim y,(t) = 0,i = 2,3, ..., n.

t— =

Let b > 0. Integrating the first equation of (S;) from gT(s) tog,()(tzs=t; =
= (1)), we get
(19) Y1(91(t)) - J’1(g1(s)) = f;‘,’ig? al(xl)f1(J’2(92(x1))) dx;, s=t;.
We denote
(20,) M,_, = inf &:—-——l(u), i=2,..,n, t2t;.
0= ul Syi(gi(t3)) u

In view of (10), (4) and (20,), from (19) we have

(21) ¥1(91(8)) = y4(g4(s)) <= M, Z:%;} as(x1) y2(ga(y) dxy, s 2 t5.

Integrating the second equation of (S;) from g,(x,) to h,(), then using (10), (20,),
we get

“J’2(gz(x1)) =M, Z;f,?,) az(xz) .V3(93(x2)) dx,, x; 21t = Y(ts) .
Taking into account this inequality, we obtain from (19)
(22) y1(94(8) — y1(91(5)) = =M M, [ (a1(x1) [520 @2(%2) ¥3(93(x2)) dx,) dxy =
= — MM, J,(hs(t), 92(5); a1, az ¥35(93)) -

Integrating the third equation of (S;) from g5(x,) to hs(t), then using (7), (22),
we have

y1(91(9) — y1(g94(s)) £ MM, M; I3(hs(1), 93(s); a1, az, a3 ya(9s)), s2ts.
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Integrating the fourth equation of (S;) (if n > 4) and then proceeding analogously
n — 4-times, we get

(23) y1(91(8) = yi(g:(s) £ (—1y M T s(hae1(2)s gu=a(s) 5
Agy ooy Gz, Quoy fumy Val94)), sZ 83, M= MM,... M,_,.
If we use the monotonicity of f,—y, ¥, and g,, from (23) we obtain
(24 y1(94(9) = »1(9:(5)) = (=1 M f, 1 (3a(B(0))) Tu— 1 (e 1(2), 9a-1(5) 5
Ay ooy Byo2y Gy q)s S =ty

Consider the function F(s, f) defined by

o, = (-0D00) = 20 £ 50N 2z,
Obviously we have F(t,f) = 0 = F(h(t), t) for ¢ = t;. Calculating the partial

derivative of F(s, t) with respect to s, using (S,), (10,), (11), (15) and the fact that f,
is nondecreasing, we obtain

Fy(s, t) Z a,(s) [y1(g4(5) — »1(9.(s))] +
+ (=1)y*1 y(h (s ylx(gl(s)) g1(s) )
0O o)
Integrating the last inequality from h,(z) to ¢, using (_24), Lemma 2, we have

Fam 1)) 1 e .
(25) W M L.,.(z) an(s) Jn—l(hn—l(t)’ gn—x(s)s

du
(g1(1)
g oo ymy) ds + OGN —— =
m Jo(w)

Because lim y,(f) = b > 0, we get

t—= oo

du
(26) lim i:iiiﬁil’m» Tiu )

t— o

From (25), (26) and (17) we conclude that
(27) lim sup Jhntty a,(8) Jue (b 1(2), gu-1(s); @y, .-.»a,1)ds 20,

which contradlcts (18). Therefore b = 0 and by (13) 11m 1 i () =0fori=12,.
Theorem 1 is proved.

Theorem 2. Let the conditions of Theorem 1 hold. In addition, suppose that

(28) xkﬁjxm = dl < oo, xlil;l_J.x ( )

Then for n + A even all solutions y € W of (S,) with a bounded component y,
are oscillatory.

< 0.

562



Proof. Suppose the contrary. Let the system (S,) for n + A even have a weakly
nonoscillatory solution y € W with a bounded component y,. Then by Lemma 3,
y is nonoscillatory. Without loss of generality we suppose that yl(gl(t)) > 0 for
t = t,. Since the conditions of Theorem 1 hold, in view of this theorem we have
lim y,(f) = 0. From (28) we get (26). Then from (25), (26) we obtain (27), which

t— oo

contradicts (18). Theorem 2 is proved.

The system (S;), where g(f)=t, at) =1, f(u)=u for i =1,2,..,n — 1,
9.(t) = g(1), a,(t) = a(t), f,(u) = f(u), n + A even, is equivalent to the n-th order
scalar differential equation

(E) yot) + (= 1)+ a() f(¥(g(1))) = 0.
Theorem 1, 2 are generalizations of [5, Theorem 2] for (E) and also of [9, Theorem
3, 4].

Theorem 3. Let the conditions (1)—(4), (14)—(16) hold. In addition, let

(29) inf Z&-)—>0, i=1,2,...,n for some ¢>0,
O<|ul<e U
(30) lim sup [ o) @,(s) Juz 1(Ra=1(2); gu-1(s); a1, ..., @) ds >
t—> oo
r u
> lim sup — .
I < w0 ” f,.(u))

Then the conclusion of Theorem 2 holds.

Proof. Let the system (S;) have a nonoscillatory solution y € W with a bounded
component y,. Without loss of generality we suppose that yl(gl(t)) > 0 for t= t,.
As in the proof of Theorem 1 we obtain (9)—(11), where I = 1. By Lemma 2,

(31) lmy,(f) =b 20, limy()=0, i=2,..,n.
t—> 0 t— 00

Let b > 0. Proceeding in the same way as in the proof of Theorem 1, we get (23).
From (23), with regard to (7) and y,(g,(¢)) > O for ¢ = t,, we have

(32) yl(gl(s)) g (_1)n+1 M Jn—l(hn—l(t)’ gn—l(s); Ags vy an—2a an—l yn(gn)) ’
S z t3 .
Because (18) follows from (30), in view of Theorem 1 we get lim y,(z) = 0.

t—> o

Integrating the last equation of (S;) from h,(¢) to ¢ and using

(33) M= ot L)

0=|ulZy1(g1(t3))| U

Lemma 1 (n + 4 + 1 is odd), we have
(34) 0 < (=11 y,(0) = (=1 y(h()) — M, [}y () ¥1(g:(s)) ds .
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From (32), (34), by virtue of the monotonicity of Vs> 9a We get
0< (=11 y,(m(0)) {1 = M. M, [} ) a,(s) Ju 1(Pu-1(8), 9u=1s(s); as>...,a,_,)ds}.

Taking into account the inequality (—1)"*! y,(h.(?)) = 0 and (29) for i = n, we
obtain

lifl_lmsoup Thocey @n(8) Tuc 1(hy—s(2), Gu1(5)s @15 -.0r @y y) ds <
= 1, (1m0 )
which contradicts (30). Theorem 3 is proved.
Theorem 3 extends Theorem 2.7 [8] and Theorem 5 [9].
Theorem 4. Let the conditions (1)—(4), (14) hold. In addition, let
(35) f: be nondecreasing and f(—u) = —f{u) forueR,i=1,2,...,n;
(36) fi(uv) = K; f(u),f{v), uv > 0,0 < K, = const. for i = 1,2,...,n;

(37) lim sup Jlltl,.(t) an(s)fn(An-l(hn—-l(t)’ In- I(S); alfla R an—lfn—Za an—l)) ds g

u
= lim sup

ws0 Ky oKy f1o K faea(faei() -))

Then the conclusion of Theorem 2 holds.

Proof. Let the system (S,) for n + A even have a nonoscillatory solution y e W
with a bounded component y,. Without loss of generality we suppose that
y1(g4(2)) > 0 for t = t,. Proceeding in the same way as in the proof of Theorem 1,
we get (9)—(11), where I = 1. By virtue of Lemma 2 we have (31) and

(38) (=0*ty (>0, (=Diy()>0, i=12,...,n, t2t.

Let lim y,(t) = b > 0. Integrating the first equation of (S;) from g,(s) to g,(z), we
get (19:)-»0;11 view of y(g4(¢)) > 0 for t = ¢,, (19) implies
(39) y1(9:(9)) = — [0 ay(x1) f1(r2(g2(x))) dx, , s = 5.

Integrating the second equation of (S,) from g,(x,) to h,(f) and using ¥2(g2(f)) < 0
for t = t;, we obtain

—y2(9:2(x1)) Z [53(2) ax(x2) £2(v3(g3(x2)) dx. -
From (39), by virtue of the last inequality, (38) and (35) we get
(40)  ¥1(94(5)) Z [oi(s) a1(x1) 1 [5220 a2(x2) f2(y3(g5(x2)) dxz) dxy s 5 2 15

Integrating the third equation of (S;) and then proceeding analogously n — 3-
times, we get

(41) y1(g4(s) = (=11 31%3 al(xx)fl(.f:zzx).) as(xz) ...
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e Sam 2 Jon AR B 1(a= 1) Srum (7G5 1))) X1 ) - dxz) dy
s=ty, (n+ Aiseven).
From (41), with regard to the monotonicity of f,-1, Y gu (6) and (36), we obtain
(42) ¥1(91() Z (=1 Ky fi(-. Ky 2fam2(Fum s (0alBal1))) <) X
' X A(hy=1(8), Gu=1(Xa=2); a1f1s -+o> Gn=2fu=2: ay-1) -
Integrating the last equation of (S,) from h,(f) to ¢, we have
#3) 0 < (=11 y, () = (= 1" p(h(1) = i aal$) ful¥1(94(5))) ds -
If we substitute (42) in (43) and use (36), we get

< (_1)+1 _ ann(K1f1(--~ Kn—2fn-—2(fn—I(yn(hn(t)))) -2) %
0.2 (=171 y,(hy(r) [1 U

X f}t:,.(t) a,,(s) fn(An—l(hn— 1(t), GIn— 1(5)§ a1f1s s Qyoafu-2s Quey) ds:l .
The last inequality, in view of (—1)"** y,(h,(t)) > Ofor t = t;, implies

lim sup j;:,.(r) an(s)fn(An—l(hn—l(t), gn—l(s); alfb e an—lfn—l! an—, l)) ds é
t—o0

. u
< lim sup

u—0 ann(K1f1(- .. Kn—zfn-z(fn— 1(“)) . ))

and this contradicts (37). Theorem 4 is proved.
Theorem 4 generalizes Theorem 2.7 [8].
Now we consider the system (S,) where fy(u) = u*, i = 1,2,...,n, i.e.

(51 yi(t) = ai(t) (vir1(9:+ ), i=1,2,..,n—1,

y:x(t) = (— 1)1 an(t) (yn(g 1(0))“" >

where 0 < «; is the ratio of odd numbers, i = 1,2, ..., n.

From Theorem 3 we get

Corollary 1. Let the conditions (1)—(3), (14), (15) hold. In addition, let 0 < «; < 1;
i=12,..,n,

lim Sup f;ln(t)a"(s) J"‘ 1(h'l“ 1(t)’ gll" 1(5); Ay oeny an*‘ 1) ds >
t— o0

0 if oy, <1,
Uif ey =1.

Then for n + 1 even all solutions y € W of (Sl) with a bounded component y,
are oscillatory.

From Theorem 4 we get
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Corollary 2. Let the conditions (1)—(3), (14) hold. In addition, let a; . o, ... &, < 1,
lim sup ;i a($) (fi63 a1(x:) (f3362 aa(x2) -
t— o
e ( ::_-11((;’)._2) a,_ 1(x - 1) dx,,-l)“"'z e de)al dxl)a" ds >

0 if aj.0p...0, <1,
1 if ay.0p...0,=1.

Then the conclusion of Corollary 1 holds.

From Corollary 2, for &, . &, ... &, = 1, we get Theorem 6 [9].

Theorems given above are specific in the sense that they do not hold for the cor-
responding differential systems without deviating arguments.

References

[1] Foltynska 1., Werbowski J.: On the oscillatory behaviour of solutions of systems of differential
equations with deviating arguments. In. Qual. Theory Diff. 'Equat. Amsterdam (1981) 1,
243—256.

[2] Kondratev V. A.: On oscillation of solutions of the equation y™ + p(x) y = 0. (in Russian).
Trudy Mosk. Mat. O-stva, (1961), 10, 419—436.

[3] Maru$iak P.: On the oscillation of nonlinear differential systems with retarded arguments.
Math. Slovaca 34, N1 (1984), 73— 88.

[4] Marusiak P.: Oscillatory properties of solutions of nonlinear differential systems with
deviating arguments. Czech. Math. J. 36, N2 (1986), 223—231.

[5] Sficas Ch. K., Staikos V. A.: The effect of retarded actions on nonlinear oscillations. Proc.
Amer. Math. Soc. 46 (1974), 256—264.

[6] Seda V.: On nonlinear differential systems with deviating arguments. Czech. Math. J.
36, N3 (1986), 450—466.

[7] Shevelo V. N.: On oscillation of solutions of differential equations with deviating arguments.
(in Russian), Kiev, 1978.

[8] Shevelo V. N., Varech N. V., Gritsai A. K.: Oscillatory properties of solutions of systems of
differential equations with deviating arguments (in Russian). Inst. Math. Ukr. Acad. of
Sciences, Kiev (reprint) 85. 10 (1985), 3—46.

[9] Varech N. V., Shevelo V. N.: Asymptotic properties of components of solutions of certain
many-dimensional systems with deviating arguments (in Russian). In: Differential-functional
equations and their applications. Inst. Math. Ukr. Acad. of Sciences, Kiev (1985), 108—124.

Authors’ addresses: P. Marugiak, 010 88 Zilina, Marxa-Engelsa 15, Czechoslovakia (Katedra
matematiky VSDS); V. N. Shevelo, 252601 Kiev, ul. Repina 3, U.S.S.R. (Institute of Mathe-
matics of Ukr. SSR, USSR.

566



		webmaster@dml.cz
	2020-07-03T05:56:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




