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Let us consider a locally compact Hausdorff topological space T and two complete
locally convex Hausdorff spaces X and Z. Denote by & the family of all non empty
bounded closed balanced and convex subsets of X, and by X the linear subspace
of X generated by B (e%) equipped with the Minkowski functional gz of B. The
problem to be solved here is the following: Let 5 = %5(T, X5) (B € &) be the space
of all continuous functions tending to zero at infinity f: T — X, endowed with the
usual supremum norm

1) Iflls = sup {gsl F()]: te T},
% = J{ép:Be B} and F:% — Z a linear operator with continuous restrictions
Fp=F ] %3. The main object of this paper is to represent & by a bilinear integral.
To this end we will consider the space Y of the linear mappings from X into Z with
continuous restrictions to X, for all B € 4, and the evaluation from X x Yinto Z
will be represented by xy (xe X, y e Y).

If # is a generating pamlly of seminorms on Z, for every re 2, Bc # and y e Y,
let us set
(2 gp,(y) = sup {r(xy): xe B} .
It is easily proved that {gp ,: B € &, r € &} is a saturated family of seminorms defining
on Ya topology (which henceforth will be the topology supposed to be defined on Y),
making the evaluation mapping X x Y — Z hypocontinuous.

Let ¥ be the Borel os-algebra of T and p: ¥ — Y a countable additive measure.
We define the semivariation ||z, and the variation |u|s, (Be B, re %) in the
usual way:

) |z (E) = sup (3, x; u(E) (E€Z),

where the supremum is taken over all finite partltlons {El tiew = X of E and all
finite families {x;},.» = B, and

(4) |n|5.(E) = Supcgn s, [#(C)] (E€2),

where the supremum is taken over all finite partitions = = % of E.
A set A € Z is said to be a null set if ||u||5 ,(4) = 0 for all Be # and r € &
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We will denote by & = #(T, X) and & = &5(T, X5) (B € B) the spaces of simple
functions from T into X and Xj, respectively, and by @ 4+ & or €5 + S5 the
algebraic sum of ¥ and % or ¥y and ¥, respectively.

Definition 1. Let {vz,: Be #, r€ %} be a family of positive and finite measures
defined on %, and u: £ — Y a countable additive measure. We say that x is (vg,)-
continuous if
5) im[ula,(E) = 0.

VB, r-

In the case of u of bounded vanatlon, it is easily proved that p is {|u|,,',: Be A,
r € #}-continuous.

Henceforth we will suppose to be given a fixed family {v; ,: Be 4, r € 2} of posi-
tive and finite measures defined on X.

For the spaces X, Yand Z, and the evaluation mapping, the bilinear integral used
here (with analogous properties as the bilinear integral given by Sivasankara in [14])
can be defined in the following way ([14]): Let u: £ — Y be a (vs,)-continuous
measure.

A sequence of functions f,: T — X is said to be B-convergent (B e B)tof: T— X if

Ulfn(T) U f(T) = Xp
and gp(f, — f) > O ae..

A function f: T— X is said to be B-measurable (B e #) if f(T) = Xj and there
exists a sequence of simple functions (simple functions are defined as usual) which
is B-convergent to f, and a function g: T — X is said to be measurable if it is B-
measurable for some B € 4.

We will say that a function f: T — X is B-integrable (B e %) if f(T) < Xp and
there exists a sequence (f,) of simple functions which is B-convergent to f and for
every ¢ > 0 and r € # there exists § = (g, r) > 0 such that

r([afadp) <e

holds for all ne N and every Ae X with |u||s,(4) < & (the integral of a simple
function is defined as usual). A sequence (f,) of the above type is called an ap-
proximating sequence of f.

A function f: T — X is said to be integrable if it is B-integrable for some B € 4.
It can be proved ([14]) that if f: T — X is integrable then the limit

Jafdu = hm Jafudp

exists for every A e X and every approximating sequence (f,) of f, and it is in-
dependent of the choice of the approximating sequence of f.

Definition 2. A linear operator #: % — Z is said to be (vB,,)-continuous if for
every Be #,r e # and ¢ > 0 there exists > 0 such that for all E e ¥ with vy (E) <
< 8, r[#(f)] < & holds for all fe €y with f(T) c Band f | T~ E = 0.
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‘Analogous definitions can be given for linear Z-valued operators defined on &
oré + <.

Proposition 3. Let 1 be a (vg,)-continuous measure, then all functions belonging
to € are p-integrable and the linear functional F:% — Z defined by

F(f)=frfdu
is (vp,)-continuous and its restrictions F g are continuous.

Proof. Let f € %, then there exists B € # with f € 5. Let us prove that f is (u, B)-
integrable (and so, integrable).

f+ T— Xjp has a continuous extension f: T — X (T being Alexandroff’s compac-

tification of T) given by f(c0) = 0, and then f(T) is compact and therefore there
exist t, ..., 1,€ T such that

(1) < 7)< ) BU7(0).9).
where B(f(t,), €) is the closed ball with center f(¢,) and radius e.

Consider A, = B(f(1,).¢), 4, = B(f(t,),¢) — 4y, ..., 4, = B(f(1,), ¢) —"QlAk,
E, = f~(4,) and k=1

9. = 3 XidE,
k=1

with x, € 4;. Obviously, f(T) < U 4y, and T = | E,, so if z e T then there exists
k=1 k=1

ke{l,...,n} such that te E, and f(t)e A;,. Then we have gg(x, — f(t)) < & or
as(g.(t) — f(t)) < e. By taking ¢ = 1/n, for ne€ N, we obtain that f is the uniform
limit of simple functions, where from it is easily deduced that f is (i, B)-integrable.

Moreover, for Be &, r € # and f € €5 we have

r(Fu(f) = r(fz fdu) < |f]s [u]sAT).

and therefore, & 5 is continuous.

Finally, # is (vp,)-continuous because for every Be #, re #, ¢ > 0, E€ X and
fe%g with f(T) = Band f| T — E = 0 we have

(Jrfdw) = r(fzfdu) < ||f]s [uls. (E) < []s.(E),

and so, if > 0 is such that vg,(E) < & implies |u[;,(E) < &, then

"Z(f)) £ |uls.(E) <.

Proposition 4. A linear operator ¥ :% — Z with continuous restrictions Fpis
(va,.)-continuous if and only if for every Be %, r € # and & > O there exist 5 > 0,
1= 6 > 0 such that for all EeX with vg(E) < 3, r(#(f)) < ¢ holds for all
fe %y with qg(f(1)) < &' for allte T— E?).

Proof. Let us suppose that & is (vg,)-continuous, then for every Be &, re #

Tt ) The same result can be proved for Z-valued operators defined on .
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and & > O there exist > 0 and 1 > &' > 0 such that for all E € £ with vy (E) < 6,
7(#(f)) < /2 holds for all f€ %5 with f | T— E = O or ||f] < &'. Now let fe %,
with gp(f(f)) < &' for all te T — E, then there exist g, h € €5 such that |[g]z < &,
h|T— E=0and f =g + hand therefore,

nZ(f) <e.

Notice that if U = {te T: g5(f(¢)) < 6’} then we may set
£ if teU
W0 =1 010 &y
a5(f(1))

and h=f—g.

Proposition 5. Let u and & be as in Proposition 3, then there is an extension
F 6 + & — Z of F such that F* is (vg,,)-continuous and its restrictions Fy: €y +
+ &y — Z are continuous for all B e % (the topologies of & and Py are defined
by the norm (1)).

Proof. Let us define '
FX(f) = [+ fdu

for fe ¢ + &, then F} (B € ) is continuous because

([rfdm) £ | f]ls |#ls. (T)

for re # and fe %y + S To prove that F* is (vg,)-continuous it is enough to
proceed as in Proposition 3.

Theorem 6. Let & : % — Z be a linear operator with continuous restrictions &g
for all Be A. Then the following assertions are equivalent:

6.1. There exists a (vg,)-continuous countable additive measure p: X — Y such
that

y(f) = frfdl«l
for all fe®.

6.2. There exists a (vg,)-continuous operator F*: € + & — Z with continuous
restrictions # (B € #), which extends fo .

6.3. There exists a linear (vg,)-continuous operator 9: & — Z with continuous
restrictions 9y (B € ), such that for every B

(6) li"m 95(f,) = Z5(f)

holds for every sequence (f,), = &y which is uniformly convergent to f € €.

Proof. From Propositions 3 and 5 it is immediately deduced that 6.1 implies 6.2.
Moreover, 6.2 clearly implies 6.3. Let us prove that 6.3 implies 6.1. This will be
done in four steps:
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i) Construction of p. Let E € ¥ and define
HE) (x) = 9(xxz)
for x € X. Then u(E) is a linear operator from X into Z such that if Be %, x € Xp

and the sequence (x,),epy © X converges to x, then the sequence (x,X) is uniformly
convergent to xyy and therefore

(E) () = F(xzz) = lim S(sz5) = lim u(E) ()

and y(E) e Y.

ii) p si countably additive. The finite additivity of p results trivially from the
linearity of 4. Let now (E,) = X be a disjoint sequence, then

'u(iglEi) _liﬂ(El) - ‘u(iyn E‘)

holds for every ne N, and given r€ #, Be % and ¢ > 0 it follows from the (vg,)-
continuity of ¢ that there exists ny € N such that

r[g(xx‘ vE)] <e

iZno

for all x € B, so
qx,,[u(_y E)]<e

izng

and therefore
I .L_le,.) - ;,;(Ei) .

iii) p is (vp,)-continuous. Let r € #, Be % and ¢ > 0. Since ¥ is (vy,)-continuous
there exists 6 > 0 such that

r[9s(f)] <e

for all fe &y with f| T — E = 0 for some E € ¥ of measure vg,(E) < 8. Therefore,
if E€X and vy ,(E) < 6 then for every finite family {x,,...,x,} = B and every
finite partition {Ej, ..., E,} <= X of E, we have

r[;"f HE)] = r[g(_ZIXiXE.-)] se
and consequently,
Iz (B) = ¢

iv) W represents & . Let Be® and f e %y As in Proposition 3 we can find a se-
quence (f,) = &5 which is uniformly convergent to f, and therefore,

Theorem 7. If {vy,: Be B, r € #} are Radon measures (i.e. regular Borel mea-
sures) and F is as in Theorem 6 verifying 6.1, then the measure p of 6.1 is unique.
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Proof. Suppose that there exist two (vg,,)-continuous measures g, p': X —>Y
such that
F(f)=[rfdu=[rfd
holds for all f € €. Then Proposition 5 implies the existence of two (vp,)-contiunous
extensions S and F¥ of F to ¥ + &. If xe X and E € X, let us consider Be #
with x € Xp and r € & arbitrary. Then two sequences (K,) and (G,) of compact and
open subsets of T, respectively, can be found such that K, < E < G, and

v5.(G, — K,) £ 1/n

for all neN. -

For every ne N, let f,: T - [0, 1] be a continuous function with f| K, = 1 and
supp (f,) = G,, then

r{u(E) (x) — w(E) (x)] = r[#(xxz) — #*(xxe)] =
s [ (xxe — %)) + r[F(xf) — #7(xf)] + [ 7V — xxe)] -

Hence it results that r[u(E)(x) — /(E) (x)] = 0 (and therefore u(E) = u'(E))

because

() = #(<f)] = r[#(of) ~ F(fo)] = 0

and
lim [ F5(xxz — xf,)] = lim 7[F¥(xf, — xxg)] = 0

since xyz — xf, takes non zero values in G, — K,

lim v ,(G, — K,) =0,
n
and #°* and #*' are (vp,)-continuous.

Theorem 8. Let us suppose that the family {vy,: B€ &, r € &} is uniformly tight
(i.e., given E€ X and ¢ > 0 there exists a compact K < T such that K < E and
v (E — K) < & for all Be # and r € &), and let F: % — Z be a linear operator
with continuous restrictions ¥y (B e %B). Then there exists a (vg,)-continuous
measure p: X — Y such that

f(f) = l}f du
for all fe%, if and only if the operator % is (vp,)-continuous. In this case the
measure [ is unique.

Proof. If such a measure exists, then the (vs,)-continuity of & follows from
Proposition 3, and the uniqueness of p is deduced from Theorem 7.

Let us suppose that & is (vg,)-continuous, then we will prove that 6.3 holds.
If E€X we can find an increasing sequence of compact subsets (K,) = T and
a decreasing sequence of open subsets (G,) = T such that K, = E = G, and

vB,r(Gn - Kn) =< 1/"
for all re# and Be #. Let f,: T— [0, 1] be a continuous function such that
fu|K,=1and f,|T- G, =0, forall neN.
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Define
©) Go(xxe) = lim F(xf,)

for all x € X. Let us prove that this limit exists and that it is independent of the
sequence (f,.). If n,meN are such that n < m, then for every Be # and x € B,
the function xf,, — xf, belongs to ¥y and vanishes outside of G,, — K,. Moreover,
for every r € Z we have

lim v5,(G, — K,) =0,

m,n—
m2n

and the (vg,,)-continuity of & yields 1
lim r[#(xf — xf,)] = 0.

m,n— oo
m2n

So {F(xf,)}nepy is @ Cauchy sequence and therefore the limit (7) exists.

Let us now consider other sequences (K}), (G;) and (f;) satisfying the above con-
ditions. If Be # and x e B, then the function xf, — xf, € ¥5 vanishes outside
(G,v G,) — (K,nK}) and

lim v, [(G, L G,) — (K,nK})] =0

holds for all » € #, and therefore the (vj,,)-continuity of # implies
lim #(xf,) = lim #(xf;).

n
For a simple function f = ) x;xg, let us define an operator
&4

90) = 3.9l

which is clearly linear and with continuous restrictions %, (since # has these pro-
perties), so the proof will be complete if we prove that 6.3 holds.

Since & is (vp,)-continuous, then for every Be &, re # and ¢ > 0 there exist
>0 and 1= >0 such that r(#(f)) < e holds for all fe % which verify
ggof|T— E £ & for some Ee X with v ,(E) < 6. Then, if g € & is such that
gsog | T — E £ & for some E e X with vp,(E) < §/2, there exist E' € X and fe %,
such that vz (E') < 9/2, g| T— E =f|T— E and

r%(9)) < (Z(f)) + ¢.
Therefore, ggof|T— (EVE) <&, vy (EVE) <4, r(99) <2 and ¥ is

(vs,,)-continuous.

Moreover, if B € # and the sequence (h,,) < &y is uniformly convergent to f € 4,
then for every ¢ > 0 and r € # there exist & > Oand 1 = &’ > 0such that (F(g)) <
< & for every g € % which verifies gg o g | T — E < &' for some E € X with vy (E) <
< /2. Moreover, we can find nq € N, f,, € €5 and E € X with vg,(E) < & such that
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qB(hno —f) < 5,, f"OI T—E= h"OIT—T E and
r(@(h,,o) - 'g:(f no)) <e.

Since qp(f,, — f) | T— E <& and & is (vp,)-continuous, it results that
"(#(f,, — f)) < & Therefore, r(¥9(h,,) — #(f)) < 2¢ holds and 6.3 is verified.
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