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1. Let C(T) denote the class of continuous functions f: T = R[2nZ — C and A
its subclass of continuous functions with absolutely convergent Fourier series.
If (a;, b;) and (ay, b;), n € N, are the pairs of (cosine, sine) Fourier coefficients of
u = Re f and v = Im f, respectively, then the Fourier coefficients of the function f
are of the form
1) 2f(m) = (a, + by) +i(ay — by),

2 f(—n) = (a, — b)) +i(a) + b)), neN,.

The following result is well known ([5], p. 9).

Theorem A. If fe C(T) and f(n) = 0 for every ne Z, then f € A. Every function
in A is a linear combination of functions in C(T) with nonnegative Fourier coef-
ficients.

N. Artémiades ([1], Th. 1; [2], Th. 1) has generalized this result to

Theorem B. Let f € C(T). If there exists a € R such that a < arg f(n) < a + n/2
for every ne Z, then f € A. Every f e A is a linear combination of continuous func-
tions on T with the above property.

Theorem B can easily be improved to

Theorem 1. Let f € C(T). If there exist ac R and § > 0 such thata — n[2 + & <
<argf(n) < a + n2 — 5 (ne Z), then fe A. Every fe A is a linear combination
of functions belonging to C(T) with this property.

Proof. We may suppose a = 0. (Otherwise we would consider the function
g = e "f) Let

F(x) = f___(x)_+_@
2

for every x € T. Then F € C(T) and F(n) = Re f(n) = 0 (n € Z), by the assumptions.
Now Y Ref(n) < oo by Theorem A. This and |Im f(n)| < Re f(n). tg(n/2 — 9)
(n€Z) implies Y’ [Im f(n)] < co. Hence fe A. The second assertion is obvious.

1) Partially supported by the SIZ nauke SR BiH.
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Remark 1. The function

709 = i (cos nx sin nx)

n=2 \nlog?n logn

provides an example that the assertion of Theorem 1 does not necessarily hold if
we merely suppose a — n/2 < arg f(n) < a + n/2 (ne Z).

2. If f is a real even function, then Theorem A actually says that its Fourier series
is absolutely convergent if the cosine Fourier coefficients are nonnegative. A similar
statement for the (necessarily sine) Fourier series of an odd function is false. However.
one has an analogue if absolute convergence is replaced by uniform convergence.
This is the content of a classical theorem by Paley ([3], p. 277). In a recent work
N. Tanovié-Miller (see [6], [7]) has shown that it can be interesting to interpolate
the study of absolute and uniform convergence of trigonometric and Fourier series
by that of strong convergence.

Definition 1. A sequence {d,} is said to be strongly C, summable to a limit d,
and we write d, —» d[C,], if

%kgl |de — d] = o(1) (n— ).

Definition 2. A sequence {d,} is said to be strongly convergent to a limit d, and
we write d, — d [I], if
i) d, > d (k> o),

i) (1) % kld, = dus| = 1) (1> ), iie. K(dy = do-r) = 0 [C1]

The notion of strong convergence was introduced by J. M. Hyslop [4], who
extended Hardy-Littlewood’s concept of strong C, summability to Cesaro transfor-
mations C, of order ¢ = 0.

Let S denote the class of continuous functions on T with uniformly strongly con-
vergent Fourier series. From the results of [6] (see Th. 1 and Th. 3 therein) one can
deduce

Theorem C. S = {f e C(T): (1/n) |k|zﬁnlkf(k)| = o(1)} .

The strict inclusions A = S = U hold ([6], Th. 4(ii)), where U is the class of sums
of uniformly convergent Fourier series.
Paley’s theorem, mentioned above, has been generalized to

Theorem D ([6], The. 6(ii)).If f is a continuous real odd function with nonnegative
Fourier coefficients, then f e S.
Let us modify Theorem D so as to obtain a form analogous to that of Theorem A.

Theorem 2. If fe C(T) has the property if(n) =0, if(—n) <0 (neN), then
feSs. , ’
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Proof. Looking at the relations (1), we see that the assumptions of the theorem
yield
(2 a,=b,=0 and |a;| £ b, (neN).
el
Hence the Fourier series of the function u = Re f has the form Y b} sin nx, with

n=1

b, = 0 for every n € N. By Theorem C and Theorem D this implies u € S, i.e.

12 ,
) =Y kbl = o(1).
n k=1
The Fourier series of v = Im fis Y aj, cos nx. (2) and (3) yield
n=1
1 Vn‘ n
= 3. Klag| = o(1)
nk=1

and therefore f € S by Theorem C.
On this result we base the next two theorems.

Theorem 3. Let f € C(T). If there exist ae R and & > 0 such thata — n + 6 <
<argf(n)<a-d6,a+d<argf(—n)<a+n— 3 (neN), then feS.

Proof. Asin the proof of Theorem 1 we may suppose a = 0. Consider the function
G defined by

G(x) — f(x) “2f('"—x) X

Its Fourier coefficients satisfy the relations iG(n) = —Im f(n) = 0, iG(—n) =
= —Im f(—n) =< O for every n € N. Hence G € S by Theorem 2, i.e.

;ll_mzé Jietm 7)) = o(1).

If we set Re f(k) instead of Im f(k), this relation remains true, since |Re f(k)| <
< |Im f(k)|lc tg)6. Hence

! Y |kf(k)| = o(1) and fesS.
n|k|=n
Remark 2. By Zygmund-Paley’s theorem (see [3], p. 307 or [8], p. 219) the series

Cos nx sin nx
P = +
n2l3

logn nlogn

is uniformly convergent for almost every choice of signs +. Therefore its sum f
(for an appropriate choice of +) belongs to C(T)\ S since its coefficients do not
satisfy the condition of Theorem C. This shows that the assumption of Theorem 3
infolving § cannot be replaced by a — © < argf(n) <a, a< argf(-—n) <a+mr

(nen).
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Theorem 4. Let f e C(T). If there exists a € R such that a — n|2 < arg f(n) < a,
a < argf(—n) < a + nf2(neN), then feS.
Proof. Let a = 0. Again consider the functions

ey = MR gy 00T,

Then F(n) = Re f(n) = 0 for every ne Z and therefore F € A = S by Theorem A.
Proceeding in the same way as in the proof of Theorem 3, we see that G € S. Hence
f=F+ GeS.

Remark 3. The function

0 -
f(x)zz MeS\A
n=2 nlogn

satisfies the conditions of Theorem 4 but not those of Theorem 1. The function

o0 3, (2520,

=2\ n*3logn

with an appropriate choice of sings +, provides an example that the separation of
coefficients f(1n) and f(—n) (n e N), included in the conditions of Theorem 4, is
significant.
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