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OSCILLATION PROPERTIES OF SOLUTIONS
OF A CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS

D. D. BaiNnov, Plovdiv, A. D. MisHKIS, Moscow, A. I. ZAHARIEV, Plovdiv

(Received May 10, 1984, in revised form February 8, 1986)

The present paper studies the oscillatory properties of the solutions of a class
of integro-differential equations of the form

1) [(Lx) (O] + J1, Kt 5, x(s)) ds = 0,

where n21; I, < J, J=[tp, +©), treR; K:J*>x R—>R L:C""'(J, R) -

— C""!(J, R), C"~*(J, R) denoting the linear space of functions x: J - R, possessing

locally absolutely continuous derivatives up to and including the order n — 1.
Definition 1. We will say that a proposition Q is finally fulfilled if there exists

a point ¢y € J such that the proposition Q is true for every t = t,,.
The operator L will be assumed to satisfy the conditions (A):

Al. If a function @ € C"~*(J, R) is finally non-negative (non-positive), then the
function (Lg) (7) is also finally non-negative (non-positive).

A2. For every ¢ > 0 and every finally non-negative or non-positive function
¢ € C""'(J, R) for which such a point 7 = #(¢, ¢) € J can be found that
@ inf|(Lg) ()] 2 ¢
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there are a set E = E(f, ¢,¢) = J, meas E = + o0, and a number (¢, ¢, 7, E) > 0
such that the inequality |o(f)| 2 ¢ is fulfilled for every ¢ € E.

A3. If a function @ € C""'(J, R) is finally non-negative or non-positive and

lim (Lo) () = 0, then lim ¢(t) = 0.

t=+ o t—+ o0

Let a mapping & : t+— I, be given, where for every te J, I, is a bounded, non-
empty and measurable subset of J, and let us introduce the notation
Fo={t} xI,={(t,s)|sel,} = R*,
M,= U F,, s; = inf's, sy =sups.

se[t, + o) sel, sel,
It will be assumed that the mapping & and the kernel K satisfy the conditions (B):
B1. For every ¢ > 0 and 1’ € J, there exists § = 8(¢, t) > O such that if |¢' — ¢] <
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< 9, the inequality
meas {(I,NI,)u (I, \I,)} <e
holds.

B2. limsup s} = + co0.
1>+ o0

B3. The function K(t, s, u) is continuous at every point (t, s, u) € My, X R.
B4. For (t,s,u) e M,, x R, the relation

u.K(t,s,u) 20
holds.

B5. For every u, > 0 the inequality
liminf |K(t,s,u)| > 0
|u] Zuo

(t,5,u)eM o X R
t,5— +

holds.

Definition 2. A function x € C"~(J, R) will be called a regular solution if it

satisfies (1) almost everywhere for t€ J and sup |x(f)] > 0, '€ J.
te[t’,+ o)

Definition 3. We will say that a regular solution is oscillatory if for every t' € J

we have sup x(f) >0, inf x(¢f) <O.
te[t’,+ ) te[t’,+ ©)

Theorem 1. Let the following conditions be fulfilled:

1. Conditions (A) and (B) hold.

2. lim s; = +o0.

t=>+o0

3. For every measurable subset E c J, meas E = + o0, the relation
4) fpmeas{t|te ], sel,}ds= +o
holds.

Then for n even every regular solution x(t) of (1) oscillates, while for n odd,
it either oscillates or tends to zero for t - + co.

Proof. Assume that a non-oscillatory solution of (1) exists, and for definiteness
suppose that x(t) 2 0for t e J = [#, + ), T € J. Then (1) implies that [(Lx(¢)]™ < 0
for te J and hence there exists an integer I, 0 < I < n, | + n odd, such that for
t = 7 the inequalities

) [(Lx)()]P 20, i=0,..,1,
(=)L) (O] 20, i=1+1,...n

hold. (See [1], Lemma 14.3, p. 289).
Let n be an even number. (1) implies that

(6) T2 ([ K(t, s, x(s)) ds) dt < + o0,

and taking into account (5), we conclude that lim inf (Lx) (f) 2 ¢ > 0(x({) is a regular
t=+
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solution). Therefore, there exists a point e J such that (Lx)(f) = 4c for ¢ > 7.
Condition A2 implies that there exist a set E < [f, +oo), meas E = + o0, and
a number & > 0 such that x(f) = & for ¢ € E. Condition B5 yields that there exist
a constant y > 0 and a point ¢’ = 7 such that the inequality K(t, s, u) = 7 holds
for t,s >t and u = 4.

Employing the Fubini theorem and (4), we obtain

[E2(fr Kt s, x(s)) ds) dt = [ ([1,aer 4wy K(t, 5, x(5)) ds) dt =
= [ (f{r{!e[:',+ oy serg K(t: 5, x(s)) di) ds =
2 [gnter, ey (Jiucrerer,+ oy sera K(t: 5, x(s)) di) ds =
Z Y [Ente,+wy meas {t| te[t), + ), sel,} ds = +o0,
which contradicts inequality (6).
Let n be an odd number. Then (5) implies that either lim (Lx) (f) = 0 and A3

. t— + o
yields lim x(f) = 0, or lim (Lx) (1) > 0, the latter case being treated as for n — an
t—+ o

t—+o0
even number.

Example 1. Put
@) (Lx) (1) := x(t) + Ax(t — 7), A, r>0.

Then Lemma 2 of [2] immediately implies that the operator defined by equality
(7) satisfies the conditions (A). Therefore, equation (1) involves integro-differential
equations of neutral type as a particular case.

Remark 1. It is not difficult to see that if the operator Lis defined by equality
(7), then condition 2 of Theorem 2 can be replaced by the following condition:

Let lim s; = + o0 and let for every sufficiently large t* € J the relation
t—+ o0
+ o0

8 inf meas ftftet*, + o), sel,})) = +w
1

i=0 t*+2irSs<t¥+2(i+ )t
hold. It is immediately verified that for (8) to hold, it is sufficient for sufficiently
large t* € J to fulfil the relation
(9) % (inf meas {tl te[t*, +©), oel,}ds= +o.

t*<o<s

Remark 2. To supply an example when (9) holds, we have to put I, = [t — o, ],
o> 0.

Condition 2 of Theorem 1 is quite essential for its proof, but it excludes the im-
portant special case s; = const. In order to cover this case as well we have to strength-
en condition 3 of Theorem 1. The theorem that follows represents one of the possible
variants of doing so.

Theorem 2. Let the following conditions be fulfilled:
1. Conditions (A) and (B) hold.
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2. For every constant ¢ > 0O the inequality

sup  |K(t,s,u)| < +o
(t,5,u)eMeo X [
Is|<c, lu]s¢

holds.
3. For every measurable subset-E — J, meas E = + o0, the relation
(10) lim (T™* [y meas {t | te[ty, T], sel,})ds = +
T-+w
holds.

Then every regular solution x(t) of (1) either oscillates or lim inf |(Lx) ()] = 0.
>+

o]
Proof. Let x(t) be a regular solution of (1) and for definiteness assume that
x(f) = 0forte J = [%, + ), € R. For the assumption of the theorem to be fulfilled
it is sufficient to show that if lim inf (Lx) () > O then

t=+ oo
(11) [£2(fr,K(t, s, x(s)) ds)dt = + 0.
Assume that lim inf (Lx) (f) > 0. Then for every 7 € J the equality

t=+w

(12) [T (fr.K(t,s,x(s))ds)dt = [7([1,07K(t,5,%(s)ds)dt + [{([~sK(t,5,%(s)ds)dt
holds.

The first integral on the right-hand side of equality (12) is positive for every T >
it can be estimated as in the proof of Theorem 1 and for T' > 7 the following estimate
holds:

J7 (Jrens K(t, s, x(s) ds) dt = y [ paper, 4y meas {t | te[t', T], sel,} ds.

The sets I, \ J are uniformly bounded for ¢ > 7 and, taking into account condition
2 of Theorem 2, we conclude that the modulus of the second integral on the right-hand
side of equality (12) tends to + oo as O(T).

Hence from equality (12), taking into account (10) and passing to the limit for
T - +oo, we conclude that relation (11) holds. This completes the proof of
Theorem 2.

Remark 4. It is not difficult to see that if the relation
(13) lim(T™* [pinfmeas {t|t, St < T, cel,} ds = +

T->+o to<o=<s
holds, then condition (10) is also fulfilled.

Remark 5. Let sups; < +oo and let sf be a locally integrable function. Then
teJ

condition (13) assumes the following form:

im (T [ s 2o S5 A€ = + 00
T+ o0
Example 2. An example illustrating Theorem 2 can be obtained by putting
I, = [0,t]. That is, equation (1) contains the Volterra type integro-differential
equations as a particular case.
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