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0. PRELIMINARIES AND THE MAIN RESULT

A convergence space is a pair (X, %) where X is a set and ¥ is a suitable subset
of °X x X. If {S, x> € ¥, then we say that the sequence S converges to the point x
and denote this fact by S —» x or lim S = x. It is sometimes convenient to express
explicitly the values of S; in such a case we write {s,: n € @) - xorlim {s,: n € @) =
= x. If {s,: n € w) € °X and for some pe X, s, = p for all n € o, then the sequence
is said to be constant and denoted by (p).

The commonly adopted list of axioms reads as follows.

(i) Constant sequence axiom: For each pe X, {(p), p)> € ¢.

(ii) Subsequence axiom: If ¢S,x)e % and fe“w is strictly increasing, then
{Sof,x)e%.

(iii) Urysohn axiom: If S€“X, xeX and for each strictly increasing fe “w
there is a strictly increasing g € “@ with (S f o g, x) € %, then (S, x) € %, too.

(iv) Unique limits axiom: If for some x, y € X and S e€“X one has {S,x)€e ¥,
(S, y>€e¥, then x = y.

If (X, +) is a group and ¥ is a convergence structure over X, then € is compatible
with +, or (X, +, (g) is a convergence group if, moreover,

(v) Group convergence axiom: {{s,: new),x)e% and {{t:necw),y>e¥
implies <{s, — t,, new), x — yye€ (briefly, <S,x), (T, y>e® implies
{§ — T, x — y> € %) holds.

Similarly as in the topological spaces, there are many convergence structures over
a given set X. (X, %) is said to be coarser than (X, 2) if 2 < %. In contrast to the
topological case, if (X, %) is a convergence space, then there always exists a coarse
convergence structure 9 2 ¥, ike. & is a convergence structure and if 2 ¢ & <
c “°X x X, then & fails to be a convergence structure. The same holds for
the convergence groups and the proof is just a straightforward application of the
maximality principle (cf. [FZ]).

Quite recently, I. Prodanov and L. Stoyanov proved the following remarkable
theorem.

*) Supported by the Italian CNR under the grant as visiting professor.
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Theorem [PS]: Every minimal Abelian topological group is precompact.

Looking for an analogue in the convergence setting, obviously “‘coarse” replaces
“minimal”, but we need a proper notion corresponding to “precompact”. The one
below seems to be natural.

Definition. A convergence space (X, (g) is called sequentially compact, if each
infinite subset of X contains a nontrivial convergent sequence, i.e. for each Ye [X]g“’
there is some {{a,: n € w), x) € ¢ with <{a,:new) * (x) and {a,: ne w} e[Y]".

A convergence group (X, +, %) is called precompact, if it admits an embedding
into a sequentially compact convergence group.

Now, we formulate the main result of the paper. Recall that a group (G, +) is
called Boolean if x + x = e for all x € X, e denoting the zero element. Clearly
every Boolean group is Abelian.

Theorem. Assuming CH, there is a coarse convergence Bovlean group which
cannot be embedded into any sequentially compact convergence group.

It is not quite clear what the theorem really says. It either indicates that the
Prodanov-Stoyanov theorem fails in convergence groups, or suggests that our
definition of being precompact is not quite sound. We leave it to the reader to judge
the problem.

1. THE PROOF OF THE THEOREM: Part without CH

In order to keep all matters under control, we shall try to strip all things to bare
bones throughout the whole proof. For instance, we shall not be particularly in-
terested whether our example is coarse or not. Let us see first why we are justified
to do so.

1.1. Lemma. Let (X, +, (é) be a convergence group and let (X, +, 9) be a coarse
convergence group with 9 =2 €. Suppose there is a sequence Y = {y,: n€ o) € °X
such that for each strictly increasing f € “w there is a strictly increasing g € “@
and p * e with {{Vsey — Vrogu+1): NE€E @Y, p> €. Then (X, +, D) cannot be
embedded into a sequentially compact convergence group.

Proof. Suppose the contrary, let (X, +, 2) embed into a sequentially compact
(z, +, &). By the sequential compactness of Z, there is some f e “w, f strictly in-
creasing, and z € Z such that {y,.,: n € o) converges to z. By our assumption, for
some non-zero p € X and some g € “w, im {Y oy — J’ﬁg(u pinew) =pin %,
hence in 2 as well, provided ¥ = 9. But Y. f - g is a subsequence of Y. f, therefore
using axioms (ii) and (v) we can calculate in Z as follows:

e=2z—z=1im Yy — Vyyme1): n €Y = p + e. This contradiction proves
the lemma. [

The lemma just proved suggests that we need to find a sequence {y,: n € w) in
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the space we are looking for, and sufficiently many convergent sequences of the form
{Ysrmy = Vsm+1): 1 € @).One may ask whether this suffices; our next lemma confirms
that it does, with one exception: the uniqueness of the limits may be lost.

1.2. Lemma and definition. Let (X, +) be a group, F < “X x X. Then there is
a structure € = “X x X such that ¢ 2 F, % satisfies (i), (i), (iii) and (v), and €
is minimal with respect to the inclusion.
Moreover, € can be obtained as follows. For 4 < “°X x X, denote
89 = {(Sof,x):<S,x) €% and f€®w is strictly increasing} U
v {{(x), x): xe X]. ,

-9 ={(-8, —x):<{S,x)e ¥},

(% =1{{So+ Sy +...+8,, Xo+ %+ + x,): new and for each i £n,
(Si,x)€ g}, ‘

(% = {8, x)e“X x X: for each strictly increasing f € “w there is a strictly
increasing g € “@ with {Sofog, x) € 9}.

Then € = ((6F U O(—F)).

This € will be called the convergence hull of .

We shall omit the proof, for the lemma is a mere variation on the similar ones
already proved in [Z] or [D].

Let us now describe how our convergence group will look like. Denote by Inc
the set of all strictly increasing functions from w to w. For 4 < Inc, let X(4) =
= wu A and let G(4) be the free Boolean group over X(A), that means, G(4) =
= ([X(4)]"%, A), where A stands for the symmetric difference: pAgq = (p U g)\
\(pn q) for p, g = X(A). Thus the zero element in G(4) is just the empty set.

The convergence structure ¢(A) is defined as the convergence hull of the family

F(A) = (K f(n),f(n + D)}:new), {f}>:fed}.

According to the previous lemmas, (G(4), A, ¥(4)) is the group we are looking
for, provided we can show that the limits are unique and verify the condition from
1.1. This definitely does not hold in general, as indicated by easy examples. For
instance, if fo, f1€ A4, where fo(n) = n, f,(n) = 2n, then the uniqueness of the limits.
fails. Indeed,

lim{nn+ 1:inew) ={fo}, lim<{2n,2n+ 2):new) ={f}
and by the subsequence axiom, we have also
lim {{2n,2n + 1}:new) =lim<{{2n + 1,2n + 2}: new) = {fo} .

Consider the sequence S = <{2n,2n + 1} A{2n + 1, 2n + 2} A{2n, 2n + 2}:
ne w). We have lim S = e, for S is just a constant sequence (e); on the other hand,

IimS = {fo} A{fo} A {fl} = {fl}
Another simple example shows that 1.1 need not apply. Consider 4 = {f,}.
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If Y = ({n%: new)e“G(4), then there is no g e Inc such that ({(9(n))?,
{g9(n + 1))*}: n € ) converges in (G(A4), A, ¢(A4)).

So, from now on, all our effort will concentrate on finding a suitable “bug free”
subset 4 < Inc.

We plan to use the sequence ({n}: n € w) € °G(A4) as the Y from 1.1. The reader
can immediately check that the assumptions of 1.1 are satisfied for Y = {{n}: n € w)
if and only if

(*) foreach gelnc thereisan helnc with goheAd.

The property of 4 which implies the uniqueness of limits is a bit worse to find.
The next lemma will simplify our search.

1.3. Lemma. Let (X, +) be a group, ¢ < °X x X, and let (X, +, %) satisfy
(i), (ii), (iii), (v). Then (X, +, %) has unique limits iff for each x € X, x + e we have
{(e), x> ¢ %.

Proof. If {(e), x) € € for some x # e, then the sequence (e) has at least two
limits, namely x and e.

If there is some {p,: n € @) and s =% t both being limits of {p: n € w), then the
constant sequence (¢) = {p, — p,: € w) has e and s — ¢ as its limits. []

Notice that in the special case (G(4), A, 4(4)), according to 1.2, lim (e) = x iff
there are fo, fi, .., fi—1 € A (repetitions possible) and go, g1, ..., g;—; € Inc such
that x = {fo} A{fi} A...A{fi_s}, and, for all new, e = {fo(go(n)),
So(go(n) + 1)} A{f1(g1(n)), f1(gs(n) + )} A ... A{fe-1(gk-1(n)); fi-1(9e-1(n) + 1)}

To abbreviate the notation, for {xg, ..., Xx—1) € "G(A), let Ax; =xoAx, A
LAx . ik
Thus (G(4), A, 4(A)) has unique limits iff
(xx) foreach kew andforeach {(fo,...,fi->€*4
if there is some <g, ..., gy—1> € “Inc such that for all ne w, A {fg{n)),
fgdn) + 1)} = e, then A {fil =e
Since we are not mterested in g;’s, let us get rid of them. It can be done as follows:
(G(A), A, ¢(A)) has unique limits provided that
(#4%) foreach kew andforeach {fo,...,fi-> €4
if for each ne w there is some {a, ..., a,_;» € (@ — n) such that A{f(a;),
fia; + 1)} = e, then A{f,I =e. ik

Indeed, (*xx) 1mp11es (**)
There are two expressions dealing with the symmetric difference in (##x). The
latter, A{ fi} = e, is clearly satisfied iff for each fe A the cardinality of the set

{iek: f fi} is an even number. Let us discuss briefly the former.
Suppose {s;: i € k) is an ordered k-tuple of two-element sets.
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Call {s;:iek) a path if As; =0 and for each ! < k and each permutation
iek
n: k — k, A s,y # 0. A path is said to be trivial if k = 2, otherwise it is nontrivial.
iel
Obviously, if {sq, s1) is a trivial path, then sy = s;.
It is easy to show that for each k-tuple <s;: i € k) of two-element sets with A s; = 0
ick
there is a permutation n: k — k, some r € k and natural numbers 0 = j, < j; <
.. < j, = k such that for each I < r, {(s,;:j1 £ i <j;+1) is a path. Let us say
that (s;: i€ k) is decomposed into {{syy:j; £ i <Dl <t}
Using the notions just introduced, we have the final version of a sufficient con-
dition.
(G(A4), A, €(A)) has unique limits provided that
(+) foreach kew andforeach <(fo,...,fi_> €A
[{<ag, ..., ar-1) € w: {fi(a;), fia; + 1)}: i€k is a nontrivial path}| < .
and
for distinct f, g € A4,
[{(n, m) e ® x w: f(n) = g(m) and f(n + 1) = g(m + )}| < ©.

We need to show that (+) implies (##*). Let k€ , I < k, n: k — k a permutation.
By (+), when applied to {fu(oys - --» fai~ 1y € ‘4, there is some n(z, I) € @ such that
S frif(@i)s fun(as + 1)}: i € I is never a nontrivial path provided max {a;: ieel} 2
= n(n, I). Let n, = max {n(n, I): 1 < k, ne*k is a permutation}. Let n, =
= max {n, me o: there are i < j < ksuch that f;  f;and fi(n) = fi(m), fi(n + 1) =
~ fim + D).

Consider <{ay, ..., a;_1) € (@ — n), where n > max {ny, n,}. If A {f,(a)
fa; + 1)} = e, then the only possible decomposition of <{fi(a;), fi(a; + 1)} iek)y
is the decomposition into trivial paths, for n > ny. But if {f(a;), fi(a; + 1)} =

= {f{a;), f{a; + 1)}, then f(a;) = f,(a;) and fi(a; + 1) = fi(a; + 1), thus f; = f;
for n > n,. So for each f€ 4, |{i < k: f = f;}| is even, therefore A{f,} = e, which
was to be proved.

2. THE PROOF OF THE THEOREM: Part using CH

Our aim now is to construct, assuming CH, a family A = Inc such that both (*)
and (+) hold for A. This will complete the proof of the theorem.

Enumerate Inc = {g,: @€ w,} and let f, = go, hy = id.

Suppose o < w; and let {f;: p < o} and {h,;: B < a} be found. Our induction
assumptions are as follows:

(j) for each B < a, fy, hy € Inc;

(jj) for each B < o, f5 = gpo hy;

(jii) (+) holds for A, = {fs: B < a}.
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Since « < w;, reenumerate {f;: B < o} as {F,:n e w}. Proceed by induction to
find the values of f, and h, in the manner described below. Let h,(0) = 0, f,(0) =
= g,(h(0)). If f,(n) = g,(h,(n)) is already known. let us define n + 1 subsets of @
by the following rule:

By, = {n} U {kew: there are q,j
Spsn

IIA

n such that f,(q) = Fj(k)}, and for 1 <

B, = B,_; U {ke w: there are i, j < n and q € B, such that
Fik)e{F{q — 1, Fj(q), Fa + 1)} .

Evidently the set B, is finite, so let t = max {F,(q + 1): g€ B,, j < n}. There is
some m > h,(n) such that g,(m) > t, hence define h(n + 1) =m, f(n + 1) =
= go(h(n + 1)).

Since it is now obvious that (j) as well as (jj) hold true, let us check (jjj) for 4, ;.

Let <fa09 ""fuk_1> E"14:::+1 .

If £, ¢ {fups ---» fur_.}» then (jij) follows by the induction hypothesis.

If fo€{fups-->Su_.|>» then there is some mew such that {f,, ..., n_,} S

S {fu Fo» --.s Fr}. Let n > max {m, k} be arbitrary. We claim that there is no
nontrivial path ({f,(a;), f.(a; + 1)}: i € k) with {f,(n), f(n + 1)} occurring in it.
This immediately follows from our definition of f,(n + 1) — itis too big to be reached
by an overlapping sequence of sets {F (i), F;(i + 1)} with f,(n) belonging to some
of them, provided the length of the sequence is at most n. But in the case under
consideration it is even less, namely k. Therefore {<ay, ..., a;—1) € *0: {{f,(a)),
fula; + 1)}:iek) is a nontrivial path} < *max {m, k}.

The proof of the second statement follows immediately from the fact that n € B,
in our construction and we shall omit the details.

Therefore A = {f,: « < w,} is the set of functions we needed and the proof of
the theorem is complete.

3. CONCLUDING REMARKS

a) It should be noted that only minor modifications of the proof given in the
second part are needed to show the validity of the theorem under the assumption
“there exists a 2°-scale”. However, the existence of the set A S ®w satisfying ()
and (+) in ZFC alone is still an open question.

b) R. Fri¢ and F. Zanolin proposed in [FZ] another definition of precompactness
of convergence groups. They call a convergence group G precompact if each sequence
in G contains a Cauchy subsequence. It is easy to check that our group fails to be
precompact under the latter definition, either, so both definitions still may coincide.
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