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(Received October 10, 1985)

A systematic study of coarse convergence groups has been initiated in [3] In
this follow-up we study properties of abelian convergence groups implied by the
assumption that the group in question contains a dense subgroup (i.e. each point
of the group is a limit of a sequence of points of the subgroup) which is coarse.
We give a necessary and sufficient condition (Criterion 2) for a dense subgroup of
a coarse group to be coarse. The condition allows us to answer partially the question
asked in [3] whether coarseness is preserved by products. Finally, we investigate
the relationship between coarseness and completeness.

For the reader’s convenience we repeat here some basic facts about coarse conver-
gence groups. In notation and terminology we generally follow [3]. Background
information on convergence groups can be found in [9], [10] and [7].

Throughout the paper a group is always an abelian group written in the additive
notation. By a convergence group we understand a group G equipped with a com-
patible sequential convergence ® = GY x G which satisfies the so-called FLUSH-
axioms or, equivalently, Z-axioms. Recall that H (= %,) stands for the uniqueness
of sequential limits, S (E.?,) means that for all g € G the constant sequence {g)
converges to g, F (=.%,) means that if a sequence converges to a point, then each
subsequence of the sequence converges to this point, U (=.%;) denotes the Urysohn
axiom, and L(=%%) stands for the compatibility of & with the group structure of G.
We say that ® (and also G) is coarse if there is no FLUSH-convergence for G
strictly larger than ®. The definition of a coarse convergence group resembles the
definition of a minimal topological group. As pointed out in [3], these two analogous
notions can have quite different properties.

By Z we denote the group of integers, by N the positive integers, by MON the
set of all monotone (one-to-one) mappings of N into N and if § = {x,) is a sequence
of points, then for s e MON the subsequence of S the n-th term of which is x, is
denoted by Sos. If S and T are two sequences in a group G, then S + T denotes
the sequence the n-th term of which is S(n) + T(n) and the sequence — S is defined
analogously.

We say that a sequence of points of a convergence group has the property (C)
if either of the two conditions holds true:
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(C;) Some subsequence of the sequence in question converges to the zero element
of the group;

(C3) Some finite linear combination, with coefficients from Z\{0}, of sub-
sequences of the sequence in question converges to a nonzero element of the
group.

In [3] the following necessary and sufficient condition is given for a convergence
group to be coarse.

Criterion 1. A convergence group is coarse iff each sequence of points of the
group has the property (C).

As pointed out in [3], Criterion 1 resembles the characterization of maximal
(with respect to inclusion) compatible sequential convergences in a linear space
given in [6].

In this section we give a characterization of coarse dense subgroups of a coarse
convergence group. The characterization is analogous to that given for minimal
topological groups in [12], [11].

Definition 1.1. Let G’ be a group. A subgroup G of G’ is said to be algebraically
essential in G' if each nontrivial subgroup of G’ intersects G in a nontrivial subgroup.

Proposition 1.2. Let G’ be a convergence group and let G be a dense subgroup
of G'. If G is coarse, then G is algebraically essential in G'.

Proof. Let g be a point in G’ \ G. Then there is a sequence S in G converging
in G’ to g. Since G is coarse, the sequence S has the property (C). But each sub-
sequence S o s of S converges to g (+0) and S cannot satisfy condition (C,). Thus S
satisfies (C3), i.e., some finite linear combination z;So sy + ... + S o 5, (Where
keN, z;e Z~{0} and s, MON, i = 1, ..., k) converges in G to a nonzero element
h e G. From the fact that z,S o s; + ... + z,S o 5, converges to (z; + ... + z,) g,
we get h = (z; + ... + z,) g. Thus h belongs to the cyclic subgroup of G’ generated
by g € G'\ G. Consequently, G is algebraically essential in G'.

This proposition is also valid in the noncommutative case and the proof remains
essentially the same (the noncommutative version of (C), see [3], is to be used).
In this case a subgroup G of a group G’ is said to be algebraically essential if every
nontrivial subgroup of G’ which is invariant under conjugations by elements of G
intersects G in a nontrivial subgroup.

Corollary 1.3. Let G be a dense subgroup of a convergence group G'. If G is
coarse and torsion-free, then G’ is torsion-free.

Proposition 1.4. Let G’ be a coarse convergence group and let G be a dense sub-
group of G'. If G is algebraically essential in G', then G is coarse.
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Proof. Let S be a sequence in G no subsequence of which converges in G to zero.
Since G’ is coarse, it follows from Criterion 1 that S satisfies condition (C’z’), ie.,
some finite linear combination z;Sos; + ... + z,S o5, (Where k€N, z,€ Z\ {0}
and s;e MON, i = 1, ..., k) converges in G’ to a nonzero element g € G'. Since G is
algebraically essential in G, for some z e Z\{0} we have zg € G and zg + 0. The
sequence z(z;S o 5; + ... + 2,5 o 5;) converges in G to zg + 0 and hence, by (C3),
G is coarse.

Combining Proposition 1.2 and Proposition 1.4 we get the following.

Criterion 2. Let G’ be a coarse convergence group and let G be a dense subgroup
of G'. Then G is coarse iff it is algebraically essential in G'.

Since every sequentially compact convergence group is coarse, Criterion 2 provides
examples of coarse convergence groups which fail to be sequentially compact. In
fact, a dense subgroup G of a sequentially compact convergence group G’ is coarse
iff G is algebraically essential in G’. Clearly also, if G’ is torsion-free, then G is coarse
iff G’/G is torsion.

Example 1.5. Let p be a prime number and let J, denote the group of p-adic
integers equipped with the p-adic convergence. There exist proper dense coarse
subgroups of J,. Indeed, by the above remark, they are exactly the dense proper
subgroups G of J, usch that J,/G is torsion. Every free subgroup G of J, of maximal
rank (see [5]), containing a unit of the ring J,, has this property (J,, is not free, it is
even indecomposable, see [5]).

2.

In [3] the authors asked whether the coarseness is preserved by products. Using
Criterion 2, we show that for infinite products the answer is “NO”. Further, using
Criterion 2, we show that a product of a sequentially precompact coarse group (i.e.
a convergence group having a sequentially compact completion in which the original
group is dense) and a coarse convergence group is coarse. Concerning products of
minimal topological groups the reader is referred to [1]

Proposition 2.1. Let G’ be a metrizable convergence group and let G be a dense
subgroup of G’ such that G is coarse. Then there exists a natural number n such
that nG' < G.

Proof. Since G¥ is a dense coarse subgroup of the Fréchet convergence group
(G")Y, by Proposition 1.2, GV is algebraically essential in (G’)"; in particular,
(G')V/GN = (G’/G)Y is torsion. Then there exists a natural number n such that
nG' < G.

Example 2.2. Let G be a proper dense coarse subgroup of J, as in Example 1.5 (p is
an arbitrary prime number). Then G is not an open subgroup of Jp, s0 G does not
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contain any subgroup nJ,, n #+ 0, since they are all open. By Propositiion 2.1,
G" fails to be coarse.

Proposition 2.3. Let G be a sequentially compact convergence group and let H
be a coarse convergence group. Then G x H is coarse.

Proof. According to Criterion 1, it suffices to show that each sequence S in
G x H satisfies either (C,) or (C3). Let S be a sequence in G x H. Denote by S, and
S, the projection of S onto G and H, respectively (i.e. S(n) = (S,(n), S5(n)), n e N).
Since H is coarse, S, satisfies either (C,) or (C3).

1. Assume that S, satisfies (C,), i.e., for some s € MON the subsequence S, o s
converges in H to 0. Since for some t € MON the sequence S, o s - t converges in G
to some point g € G, the sequence Sosot converges in G x H to (g, 0). Thus S
satisfies either (C,) (if g = 0) ro (C3) (if g =+ 0).

2. Assume that S, satisfies ( ’;), i.e., for some ke N there are s;€ MON and
z;€Z~\{0}, i = 1,..., k, such that z;S, os; + ... + 2,5, o 5, converges in H to
some nonzero element h. Observe that for each e MON the sequence
(z185(s4(t(n))) + ... + zS,(si(1(n)))> converges in H to h. We claim that for some
t e MON each sequence S; os;0t converges to some point g;€G, i =1,..., k.
Indeed, since G is sequentially compact, for some t; € MON the sequence S; o s, o ¢,
converges in G to a point g, € G, for some t, € MON the sequence S; 05,05 01,
converges in G to a point g, €G, ..., for some t, € MON the sequence S, o s, o
otyo...0ot converges in G to a point g, in G. Put t = ¢, ....0 1. Since z,;S;
oSiol + ...+ zS; 05,0t converges in G to z,g, + ... + z4,, the sequence
{z;8(s;(t(n))) + ... + zS(s,(t(n)))> converges in G x H to (z19y + ... + Zgs, h)
and hence the sequence S satisfies (C3). This completes the proof.

Proposition 2.4. Let G and H be coarse convergence groups. If G is sequentially
precompact, then G x H is coarse.

Proof. Let G’ be a sequentially compact (hence coarse) convergence group such
that G is a dense subgroup of G'. By Proposition 2.3, G’ x H is coarse. According
to Criterion 2, G is algebraically essential in G’. Thus G x H is algebraically essential
in G’ x H. Clearly, G x H is a dense subgroup of G' x H. Thus, by Criterion 2,
G x H is coarse.

3.

In this section we deal with the relationship between coarseness and completeness.

Let G be a convergence group. Recall that a sequence S in G is said to be Cauchy
if for each s e MON the sequence S o s — S converges in G to the zero element of G.
If each Cauchy sequence in G converges, then G is said to be complete. A thorough
discussion of the notion of completeness in various types of continuous sequential
groups can be found in [7].
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Theorem 5 in [3] states that a torsion-free divisible coarse convergence group is
complete. Our next proposition shows that the assumption that the group is torsion-
free is superfluous.

Proposition 3.1. Let G be a divisible coarse convergence group. Then G is complete.

Proof. Let G’ be the Novdk completion ([10]) of G. Choose g € G'\ G. By
Proposition 1.2, G is algebraically essential in G’, i.e. there exists k € N such that
kg + 0 and kg € G. Let <{g,) be a sequence of points of G converging in G’ to g.
Then the sequence <kg,» of points of kG converges in G to kg. Since G is divisible,
we have kG = G. Consequently, for some h € G we have kh = kg. Without loss of
generality, we may assume that k is prime. In fact, if kK = p,p, ... p,, Where each p;
is prime (i = 1, ..., s), take the least te {1, ..., s} such that p,p, ... p,g € G. Then
g1 = Pi1P2---P—19 ¢ G and p,g,e€G (for t =1 set p, = 1), so we can take g,
instead of g. Now, consider the cyclic subgroup C of G’ generated by h — g. Since
k(h — g) = 0 and k is prime, C is simple. As G is algebraically essential in G’, we
have Cn G + {0} and hence C = G. Consequently, h — g€ G and also g€ G.
Thus G’ = G and G is complete.

Corollary 3.2. Every divisible abelian group admits a nondiscrete complete
convergence structure.

Proof. By Theorem 1 in [3], every abelian group admits a nondiscrete coarse
convergence structure. Now apply Proposition 3.1.

According to Theorem 1 in [3], each FLUSH-convergence for a group can be
enlarged to a coarse convergence. Consider the group Q of rational numbers equipped
with a coarse convergence coarser than the usual metric convergence for Q; denote
by Q. the resulting coarse convergence group. Since Q is divisible, it follows from
Proposition 3.1 that Q, is complete (cf. Corollary 2 in [3]). Similarly, consider the
rational torus G = Q/Z equipped with a coarse convergence coarser than the usual
metric convergence for G; denote it by G,. Since G is divisible, it again follows from
Propositiin 3.1 that G, is complete. We are now going to examine the group Q.
more closely.

Answering a problem posed by J. Novdk at the Kanpur Topological Conference
in 1968 (cf. Problem 12 in [8]), F. Zanolin constructed in 1977 a convergence group
(having unique sequential limits) in which there are two distinct points which cannot
be separated by disjoint neighbourhoods (cf. [14]). Later on, P. Kratochvil and
independently K. Wichterle claimed that they can construct a convergence group
no two points of which can be separated by disjoint neighbourhoods (unpublished).
We show that Q, has the the same property. It is a consequence of the completeness
of Q..

Proposition 3.3. No two points of Q. can be separated by disjoint neighbourhoods.

Proof. It suffices to show that Q. satisfies the following condition:
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(c) For each x € Q and for each positive real number ¢ there is in Q a sequence
S = {x,> such that: (i) S converges in Q, to 0; (i) |x — x,| < &for each n e N.
Indeed, (c) implies that no x € Q can be separated in Q, from 0 by disjoint neigh-
bourhoods. Since the convergence in Q, satisfies the Urysohn axiom U, it is homo-
geneous (i.e. a sequence {x,» converges to a point x iff the sequence {x, — x) con-
verges to 0) and hence no two points in Q, can be separated by disjoint neigh-
bourhoods. The proof of (¢) is done in three steps.

1. As stated earlier, Q. is complete.

2. Let {y,» be a sequence of rational numbers converging in the real line to \/2.
It is a Cauchy sequence in Q. and hence it converges in Q. to a rational number y.
The sequence {y, — y» converges in @, to 0 but in the real line it converges to the
irrational number /2 — y.

3. Let & be a positive real number and x a rational number. Then there is an
integer p and a natural number g such that for all but finitely many n € N we have
|x = p(y. — ¥)/4| < &. Clearly, the sequence {p(y, — »)/q¢> converges in Q, to O.
Let S = {x,> be a sequence obtained from <{p(y, — y)/a> by leaving out sufficiently
Jong initial segment. Then S has the properties required by (c).

Remark 3.4. The convergence in Q, has the following interesting ‘‘antidiagonal
property”’:

(AD) For each ve Q, v % 0, there is a p-system (¢8>, 0) (i.e. for each me N,
S = (X is a sequence converging in Q. to 0, cf. [4]) such that each
diagonal sequence S, fe NV (defined by S,(n) = S,(f(n)) = x,;¢), conver-
ges in Q, to v.

Indeed, let v be a rational number, v # 0. According to (c), for each m € N there is
a sequence S,, = {x,,> of rational numbers converging in Q, to 0 such that for all
neN we have |[(v + 1/m) — x,,| < 27™ Since the convergence in Q, is coarser
than the usual metric convergence in Q, it is easy to see that each diagonal sequence
S,, f€ N", converges in Q, to v.

Observe that from (AD) it follows immediately that the closure operator in Q,
fails to be idempotent. It would be nice to find out more about the so-called sequential
order of the closure in Q,, i.e., the least ordinal & (1 < « < w,) such that the a-th
iteration of the closure in Q, is idempotent (cf. [8]).

As shown in [12], the rational torus Q/Z is a minimal topological group. It is
known that the completion of a minimal topological abelian group is minimal again
(cf. [11]). As we shall see, for coarse convergence groups the situation is different.

J. Novék has shown in [10] that each FLUSH-convergence abelian group has
a completion (referred to as the Novak completion) and it can have several non-
homeomorphic completions (see also [7]). We are going to construct a coarse con-
vergence group the Novak completion of which fails to be coarse.

Example 3.5. Put X = {x,; n€ N} U {x,,; m,neN}. Let G be the free abelian
group with X as the set of its generators. We are going to equip G with a coarse
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FLUSH-convergence ®, in such a way that for each m € N the sequence S,, = {Xp)
is a totally divergent Cauchy sequence, the sequences S, and S, are not equivalent
whenever k + [ (i.e. the sequence S, — S, does not converge to zero) and, if p,
denotes the ideal point in the Novdk completion G’ of G to which the sequence S,
converges, then the sequence {p,,» does not have the property (C). The convergence
®, is constructed in two steps.

1. Define a set o of sequences of points of G as follows: & = {{Xpsm) — Xme()?s
me N and s, t e MON} U {{2X,, — X,»; me N} U {{x,>}. According to Theorem 0
in [2], there is a FLUS-convergence G, for G such that & = G5(0) (i.e. each
sequence in o/ G, — converges to 0) and G, is the smallest FLUS-convergence
for G with respect to this property. To prove that &, satisfies axiom H (the uni-
queness of sequential limits) it suffices to verify that no constant sequence (x) &, —
converges to 0 except the case when x = 0. So, assume that for some x € G the
constant sequence {x) &, — converges to 0. Then x is a finite linear combination,
with coefficients from Z\ {0}, of subsequences of sequences from & (cf. [13]).
This yields an infinite system of equations in the free group G with x on the lefthand
side in each of the equations. A straightforward calculation shows that this is possible
only for x = 0. Thus &, is a FLUSH-convergence.

2. Next, according to Theorem 1 in [3], there is a coarse FLUSH-convergence
for G coarser than ® ,; denote it by G,.

Proposition 3.5.1. The group G equipped with &, has the following properties:

(i) For each meN, S,, = {Xny» is a totally divergent Cauchy sequence;

(ii) The sequences S, = {X;,» and S, = {x,> are not equivalent whenever
k+1

Proof. (i) Since o = 65(0) = 6:(0), each S,, is a Cauchy sequence. Further,
2S,, = {2x,,,» converges to x,. Assume, on the contrary, that a subsequence
S,, o s of S, converges to some y € G. Then 28S,, - s converges to 2y and, according
to the uniqueness of limits, we have x,, = 2y. But this contradicts the fact that x,,
is a generator of the free group G.

(ii) For k = I the sequence 2(S, — S;) = <{2x,, — 2x,,> converges to X, — X;.
Thus S, — S; = {X, — x;,) cannot converge to 0 and the Cauchy sequences S;
and S, are not equivalent. This completes the proof.

Denote by G’ the Novak completion of the group G equipped with &,.. For each
m € N, denote by p, the point in G’ \ G to which the Cauchy sequence S,, = {X,,,)
converges in G'. Recall that, by Lemma 11 in [10], if a sequence S converges in G’
to 0, then there is a subsequence S o s of S such tht for all m, n € N we have (S(s(m)) —

— S(s(n))) € G.
Proposition 3.5.2. (i) For each m € N we have 2p,, = X,,.
(ii) No subsequence of the sequence {p,) converges in G'.
Proof. (i) For each m € N, the sequence {x,,,> converges to p,, and the sequence
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{2x,.) converges to x,,. By the uniqueness of sequential limits we have 2P = X

(ii) Contrariwise, assume that for some s € MON the subsequence ¢ Dsty> of {p,>
converges in G’ to some x € G'. Then {Dstsy — X) converges in G’ to 0 and hence
there is t € MON such that ((Pym — X) — (Pewy — X)) = (Pemy — Pewy) € G for all
m,neN. Now, if k & I and p, — p,; € G, then for some y € G we have p, — p, = y.
Then {x,, — x,,»> converges to y. Consequently, {2x;, — 2x,,) converges to 2y and at
the same time to x, — x;. This implies x, — x; = 2y, a contradiction with the fact
that k + ] and x, and x, are generators of the free group G.

Proposition 3.5.3. The group G’ fails to be coarse.

Proof. According to Criterion 1, it suffices to prove that:

(i) No subsequence of {(p,> converges to 0;

(ii) No finite linear combination, with coefficients from Z \ {0}, of subsequences
of {p,)> converges in G’ to a nonzero element.

Condition (i) follows directly from Proposition 3.5.2. To prove (ii), assume on the
contrary that for some m € N there are subsequences P; of {(p,) and integers z; + 0,
i =1,..., m, such that the sequence z;P; + ... + z,P, converges to some p + 0.
By Proposition 3.5.2, we have 2p, = x,, n€ N, and hence 2(z,P; + ... + z,P,) =
=2z,0, + ... + 2,0,, where each Q, is a subsequence of the sequence {x,». Since
each Q; converges to 0, we have 2p = 0. Hence G’ is not a torsion-free group. By
Corollary 1.3, we have a contradiction with the fact that G si torsion-free.

Added in proof. Recently J. Gerlits proved that the sequential order of the
closure in Q, is w, (see page 476).
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