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1. INTRODUCTION

In this paper we consider nonlinear elliptic boundary value problems of the type
(1.1) du + Ayu + g(u) = f(x), xin Q,
Bu =0, x on 0Q,

where Q is 2 smooth bounded domain in R and 1, is the smallest eigenvalue of — 4

together with the homogeneous boundary conditions Bu = 0. The nonlinear function

g: R — R considered here is superlinear and is one of the following two types:
(i) lim g(u) = oo (or —oo), referred here as “two-side unbounded” and g is
|u) > o

superlinear;

(ii) g(u) approaches oo (or — o) in one side superlinearly and g is bounded in the
other, referred as ‘‘one-side unbounded”.

Some typical examples of nonlinear problems to which the results of this paper
may be applied are as follows:
(a du + du — ¢ = f(x), xe Q,

u=20, x€0Q
for A > A, (the case when 4 < A, has been well-studied in the literature).
(b) Au + Ay + afulf u + Blulfu” + Y(w) = f(x), xin Q,
u=20, x on 09,

where the restrictions on o, §, p and g may be seen later.
The nonlinearities here are referred to as “jumping nonlinearities” in the literature.

©] du+u*=f(x), xe Q< R¥ and N<2,
u=20, xeodQ.
(@) du + g(u) = f(x), xeQ@,
oulon = 0, xed,

ul, us0
where g(u) ={L|sinu, u>0.
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It must be noted here that the results of this paper imply the existence of a solution
to (d)if [ f(x) dx 2 0in contrast to what one would obtain by applying Landesman-
Lazer type results [8, 12].

By appropriately rewriting (a), (b), () in the form (1.1) it can be seen that they
are examples of “two-side unbounded” mnonlinearities whereas (d) is an example
of the “one-side unbounded™ type. A discussion of how the results for the above
examples compare with the existing literature may be seen in Section 4.

The qualitative type of results obtained in this paper may be briefly described as
follows: rewriting (1.1) as

(1.2) Au + Au + g(u) = fo d(x) + f1(x),
Bu =0,

where ¢(x) is the eigenfunction associated with 1;, and f, is orthogonal to ¢, we
obtain estimates on f, in order that (1.2) has a solution for a given fy(x). We then
show that the set of f,, for which (1.2) is solvable for a given fy(x) is a semibounded
interval. Thus an auxiliary functional can be defined mapping f;(x) to the finite
extreme point of this interval. We use this functional to discuss the multiplicity of
solutions of (1.2). Three general techniques are utilised in this paper: a priori bounds,
upper and lower solutions, the Leray-Schauder degree.

2. THE “TWO-SIDE UNBOUNDED”’ CASE

Let Q be a bounded domain in RY, N > 1, with a smooth boundary 4Q and such
that the maximum principle holds, and let A, be the first eigenvalue of — 4 together
with Dirichlet boundary conditions and ¢ the corresponding normalized eigen-
function which is known to be nonnegative. With respect to the nonlinear function
g: @ x R = R we assume that:

(2.1) gislocally Lipschitzian in u (uniformly in x) and a-Holder continuous in x
so that the corresponding Nemytskii operator generated by g is well-defined
from C°* to C°=.

(2.2) lim g(x, u) = c0 uniformlyin xe@;
lu)=
(2.3) lim [g(x, #) + A,u] = oo uniformlyin xe@Q;

(2.4) there exist y, B e L°(Q) with y, 8 = 0 such that
lg(x, u)] £ y(x)u” + B(x), for xe@ and u 20,

where ¢ < (N + 1)J(N — 1) if N = 2.
For any fe C®%(2) we consider, for the existence and multiplicity of classical
solutions the nonlinear problem,

(2.5) du + Ju + g(x,u) = f(x), xe Q,
u=20, x€dQ.
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STEP 1. A Priori Bounds

Lemma 2.1. Any possible solution u(x) of (2.5), for a given f, satisfies
lulcz.ec = @(If co.c)

where ¢ is a non decreasing function (depending only on g).

Note. Throughout the rest of this section C will denote a constant indepedent
of u and instead of using various symbols for constants in the inequalities, we will
use C always.

Proof. Let u(x) be a solution of (2.5). Then u(x) can be decomposed as u =
= uy$ + u, where u, is orthogonal to ¢.

By applying maximum principle arguments and utilizing (2.2), (2.3) we derive
that for any solution u(x) of (2.5)

ux)=2C, xeQ
and

(26) oG, u()] S 99 [ + B9, xe @,

where p*(x) = B(x) + max {|g(x, &)|: C £ £ 20, xe Q}.
Then, from (2.5) and Garding’s inequality, there exists C > 0 such that

27) ug[s < c[ Lg(x, W) uy dx — L fuy dx].

Also
Jl g(x, u)u, dx = J‘ g*g* *u, dx,
2 Q

where p € (0, 1) is to be chosen later. Then

(2) L o, ) uy dx < UQ o] & dx]"[ QL"JJE‘L’Z" dx]l—ﬂ.

¢u/l—u

Further, as g = inf {g(x, u): x€ @, ue R} > — oo, then

J' olddxs [ goax+ 2|g|fg¢dx.

Since u is a solution to (2.5), [@ 9¢ dx = [o f¢ dx. Thus
‘[ lg| ¢ dx gJ fpdx + 2|g]f ¢ dx < Ce,
[o] (2] 2

1/1- 1-
Jg(x,u)uldxgc[ ‘il—l—u—ll——”dx] n§
@ 2

¢n/1-u

<c [ L(ﬂul" + £*) w7 dx]““ <

d,u/l'ﬂ

From (2.8),

388



= [”7”00 L l'ﬂ_l“_xli“ dx + [8*]. J‘ |2 dx]l—u

¢u/l -K
We now let u = 2/(N + 1) and denote by K(o) the jonstant such that

lul” = luod + us|” < K(o) [Juo|” + |u|"] -
Then by using the inequality ([4, 6])

—|| £ Cl|v 1,2
2] = cluly
forve Hy*(2),0 <t < 1and

1 1 1-¢

q 2 N

we have
J‘ g(x, u) u, dx C[luola((N—l)/(NH)) Huluwlﬂ + uu1||c;‘g(11:ll—1)/(N+1))+1 + "“1"W1»2] .
Q

From (2.7) we conclude
leta]ls,2 < Clluo| @ D/®+DY L [y, [ogh- DI+ 4 4]
Hence, there exist constants C, D such that
(2.9) l#1]lwrz S Clug)* + D, A <1.
Since u(x) is a solution to (2.5) we have

f 9(x, uod + uy(x)) ¢(x) dx < ||f] J. ¢ dx
and this in conjunction with (2.9) we conclude that

lullws.z = &(|£]l) -

By using standard bootstrap and regularity arguments from the theory of elliptic

p.d.e. it follows that
lule = e(f[co.e) -

Remark. The proof of Lemma 2.1 follows along the lines of [4].

Before we proceed to the next step we introduce the set-valued mapping R defined
as follows: for any f, (fixed) such that [, f,¢ dx = 0 let

(2.10) R(f;) = {p € R: there exists a solution of (2.5) with

fG) = f1(3) + po(x)} -
Let g be defined by

(2.11) g=1Infg(u) < .

ueR

Then, multiplying (2.5) by ¢ and integrating, it follows that
(2.12) R(f)) = [, ).
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STEP II. Qualitative Properties of R

Lemma 2.2. If e R(fy), then [p, ) = R(f).

Proof. We prove this by using the method of upper and lower solutions. For any
v 2 u = 0it follows from

du + du = fi(x) — g(x, u) + pP(x) < fi(x) — g(x, u) + v ¢(x),
that the solution u(x) corresponding to the p-problem (i.e., d4u + A,u + g(x, u) =
= f1(x) + p ¢(x)) is an upper solution for the v-problem. A lower solution to the
v-problem can be easily constructed such that the upper and lower solutions are
ordered. Hence there exists a solution to v-problem, i.e., v € R(f).

Lemma 2.3. R(f,) is closed and nonempty.

Proof. Let y, » p and p, € R(f;). Then from the a priori estimates of Step 1 it
follows that [u,]c2.« is equibounded where u, is a solution corresponding to the
u,-problem. This implies that a limit a point u of a subsequence {u,} is a solution of

4u + Au + g(x,u) = f1 + po,
u=20,
i.e., u € R(f,) implying R(f,) is closed.
Finally, let f; be the unique function satisfying
Afy + 4fy =fi — 9,(x,0) in @,

where g(x, 0) = g,(x, 0) + go¢, g, orthogonal to ¢, [o f;¢ dx =0and f; =0 on 0Q.
Further let

oo Ji() = o(x.0) a).
é(x)
Then it follows from the Lipschitz property in (2.1) that g, < oo and f; is an upper
solution for the p, + go-problem. Proceeding as in Lemma 2.2, we conclude that
Ho + go € R(f,) i-e., R(f,) is nonempty.
The above lemmas in Step 2 enable us to define the functional @ as follows:

(2.13) d:f,eC’* >R, J‘ fi¢ =0 and &(f,) = min R(f,).
2

STEP III. Existence of Solutions

It now easily follows from the above considerations that:
Theorem 2.1. The nonlinear problem
du + du+g(x,u)=f, +pp, in Q,
u=0, on 0Q
has a solution if and only if p = ®(f).

390



STEP IV. Existence of Multiple Solutions

We first note that if u > ®(f;), then a solution of the &(f;)-problem is a strict
upper solution for the u-problem. As remarked before, a strict lower solution can
be easily chosen. Then, following the lines of [6], it can be seen that there exists
a constant K >0 and a bounded, open subset 8, of the space made up of all functions u
in C®%(Q) satisfying u = 0 on 0Q such that
(2.19) deg(I — T,;,,0,,0) %0,
where T, ;, is defined as follows:

T,;v=0 and (4 —Kl)u+ g(x,v) + (4, + K)v =f,(x) + pd(x), in
together with = 0 on 0. In other words T, , may also be denoted by

Tosi =@ =KD [=g = (s + K)I + fi + p(x)] .

By virtue of the a priori estimates of Step I, there exists a ball B containing 6,
such thatI — T, ; + 0 on 3B where ®(f,) < 4 < p. This implies that deg (I — T, ,,,
B, 0) is a constant for A € [®(f}), u]. Also deg (I — T, ;,, B, 0) = Ofor allv < &(f),
because there are no solutions when v < &(f). Hence, by the continuity of the Leray-
Schauder degree, we conclude that

deg (I —Typs,y.5,» B,0) = 0.

The excision property of the Leray-Schauder degree then enables us to obtain the
existence of a second solution for the y-problem where pu > &(f;).

We now discuss the continuity of the functional ®. Let f;, — f; in C®* where f,,,
is orthogonal to ¢. That {45( f1)} is bounded may be seen from the p, introduced
in the proof of Lemma 2. Let {f;,} be a subsequence such that ®(fy) — p. Further
let u, be a solution of the &(f;;)-problem, i.e.,

Aug + Ay + 9(x, w) = fo + O(fu) ¢, in Q,
u. =0, on 0Q.

Passing to the limits (using subsequences) we derive that u = &(f;) and
lim inf @(f,,) = &(f,)

If u > ®(f,), let 0 be such that deg(I — T, ,, 6, 0) + 0. Hence for sufficiently
large k, deg (I — Ty,s,,» 0,0) = O and this implies ®(f, ;) < p for large k. Hence
lim sup &(f; ,) < @(f1) and this establishes the continuity of ¢ from the set of
functions f; in C°* and orthogonal to ¢ into R. We can now state the following:

Theorem 2.2. There exists a functional ®: C°* n [ functions orthogonal to ¢] - R
which is continuous and such that the nonlinear problem

Au + dyu + g(x,u) = fi(x) + fo(x), in @,
u=0, on 0Q
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has:

a) no solution if fo, < ®(f,);
b) at least one solution if f, = &(f,);
c) at least two solutions if fo > &(f,).

Remark 1. All the results above held when (2.2) and (2.3) are replaced by

lim g(x, u) = —oo uniformlyin xe@,
|u] =
lim [g(x, ) + A;u] = —co uniformlyin xe@.
u—>o0

Growth hypotheses on g analogous to (2.4) must also be assumed.

3. THE “ONE-SIDE UNBOUNDED” CASE

In this section we consider the nonlinear problem
(3.1) du = g(u) — f(x), xeQ,
Oufon =0, xedQ,
where g: R — R satisfies:

(3.2) gislocally Lipschitz, i.e., there exists for each bounded subset K of R a constant
¢(K) such that
lg(u) — g(v)] < clu — 9|, u,veK;

(3-3) lim g(u) = oo ;
(3.9) lgw)| =M for uz0;

(3.5) there exist «, f and p such that
lo(w)] < aful” + B
forallueRwhere ] S p<owif N=2and1 < p <N|(N-2)if N> 2.

Let us assume that f(x) in (3.1) is in C®%@) for a € (0, 1). We now introduce the
truncated function g, defined by

-7 1

glu) if wu

for any positive integer n. We first note that g, is also a Lipschitz function from R to R.
Associated with (3.1) we thus have the nonlinear problem

(3.6) du = g,(u) — f(x), xeQ,
oulon =0, xedQ.

Clearly, if u is a solution of (3.1), it must be a solution of (3.6) for some n = n, and
hence a solution for all n = n,.

—hn

IV 1IIA

—n,
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STEP 1. A Priori Bounds

We now obtain a priori bounds on the solutions of (3.6). Thus let u = uy + u,,
o€ R and [, u, dx = 0, be a solution (3.6) for an arbitrary but fixed n. Then we
know that there exists a, > 0 such that

[islwe S apldul,, 1<q <o

l4ul, = lga@)]o + 170, -

But

Further

[94()] [ |g.(u)|* dx] <
< [@ule + o [ ol e] "

by virtue of (3.5). Also noting that (g g,(u) dx = [, fdx implies [q|g(u)| dx <
< [of dx + 2[inf g(&)] meas (Q) = y,, we have
lgu@)]ly < vi'(@]u]” + B)=>".
As in Section 2 let K; > 0 be such that
(laf + [6]) = Ky(Jal” + [5]?)
for all a, b € R. Thus
l9u(@)lla = 71" (@K Juol” + aKyfJuy]|” + p)a=" <

< Kyi/q[(ocKl)(q_l)/q Iuolp((q—l)/q) + (ocKl)"_I/" ”uln{:o(a-l)/q + ﬁ(q—l)/q] .

Since
N NJ2
N-2 (N/2) ~1
we can choose g > N2 such that p < g/(g — 1) and then let K, be such that
[ullwze 2 K,|ju]o for uew>4(Q).
Letting 0 = p(q¢ — 1) ¢! < 1 we have
Kllus]o < Juslwen < agllduly < asfuol” + anflua]% + By + |I£],

and thus we conclude that

<

lus]l = aluol” + b,

where a and b are independent of the “n” in (3.6).

STEP II. Equivalence of Solvability of (3.1) and (3.6) (For Large N)

Let &, > 0 be such that g(¢) > (meas Q)" [, fdx for all & < —&, (using(3.3)).
Then g,(¢) > (meas Q)™* [ofdx for all £ £ —¢&; and n 2 &,.

Now let & > 0 be such that & + a¢|° + b < —&, for & £ —¢,.

If ug < =&, uo + uy(x) S up + [Jug|e < uo + alue)” + b < —&. Then
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g.(u(x)) > (meas Q)~* fofdx for all xe Q and n = &,. However for any solution u
of (3.6) we have [ofdx = [qg,(u)dx. Thus all possible solutions of (3.6) for
n = &, satisfy

uo = —¢; and uy|, < alue” + b

Denoting by M = inf {¢ — a|¢|” — b: & = —¢,} we have for any possible solution

of (3.6) for n = &,
u(x) Z up — alup|” — b= M forall xe@.

Let ny > max (|M|, &). Then if u, is a solution of (3.6) for n = n, = &, we have

u(x) = M for x € @ and then by the definition of g,,
0u(x) = 9u(x), xc.

This implies that u(x) is a solution of (3.1).

It is easy to see that if u(x) is a solution of (3.1) then u(x) = M and u(x) is a solution
of (3.6) for n = n,.
Summarizing we have:

There exists ny such that the solution set of (3.1) coincides with the solution set of
(3.6) for n 2 n,,.

STEP III. Definition and Qualitative Properties of R(f,)

As in Section 2. we write f(x) = f, + fi(x) with [of; dx = 0 and define R(f,) as
follows:
R(f) = {AeR: du = g(u) — (f, + 4) in Q,
du[dn = 0 on 0Q has at least one solution} .
We now recall two results which will be used in the following discussions.

Lemma 3.1. [7] If g is locally Lipschitz and bounded with g(co) = lim sup g(u),
g(— ) = lim inf g(u) then the boundary value problem uz

(3.7) . du = g(u) — f(x), in Q
Oufon =0, on 0Q

has at least one classical solution for f(x) € C®*(Q) if
g(—o0) > (meas Q)'lj fdx > g(o0).
Q2

Lemma 3.2. [1] If g is locally Lipschitz nad bounded, the existence of an upper
and lower solution (not necessarily ordered) implies the existence of a solution
of (3.7).

For the truncated problem (3.6) we have g,(o0) = g(0) and g,(— ) = g(—n).
Thus, by Lemma 3.1, (3.6) has at least one solution if

(3.8) g(—n) > (means Q)“J;f dx > g(o0).
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Further by Step 2 it follows that (3.1) has a solution if

(3.9) (meas Q)71 _Lf dx > g(c0).

This implies that R(f;) > (g(c0), o). Also by integration of (3.1) it follows that
R(f,) <= [g, ), where g is as in (2.11).

Lemma 3.3. R(f,) is connected.

Let 4, € R(f1) and A4 > 1,. We shall show that A € R(f;). Let 1 > max {4, g(0)}
and choose n, (cf. Step II) such that the problems
(3.10) du =g(u) — (fy(x) + @), oulon =0, a=2,, 1, and 4,
is equivalent to (3.6) for n = no. Then solutions of (3.10) for « = 4,, 4 may be
treated as lower and upper sooutions of
(3.11) du = g, (u) — (f1(x) + 1), in Q

oulon =0, on 0Q.

By Lemma 3.2, there exists a solution of (3.11) and thus 4 e R(f).

STEP IV. Existence Result for (3.1)

As in Section 2, we now define &(f;) = inf R(f;) and summarizing the above
steps we have:

Theorem 3.2. There exists a functional &: C°* N [functions orthogonal to the
constant functions] — R such that the nonlinear problem
du = g(u) — (fi(x) + fo), x€Q,
dufon =0, xeoQ
has:

a) no solution if fo < @(f,);
b) at least one solution if fo > ®(f,).

Remark 3.1. The results of Sections 2 and 3 also hold in the case N = 1. In this
case, however, the polynomial growth conditions (2.4) and (3.5) are not required.

Remark 3.2. Dirichlet or Neumann boundary conditions can be used in all of the
above results in Sections 2 and 3.

4. DISCUSSIONS AND REMARKS

1. Introductory remarks via the bounded case. For the sake of clarity and con-
tinuity of the discussions that follow, we first review the case when g is a bounded,
continuous function. Further let

(4.1) g(—o0) =u1ir_nwg(u) < g(u) < g(w) = “lirg g(u) .
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We consider the nonlinear problem

(4.2 Au + Au + g(u) = fo ¢(x) + f1, in Q,
Bu =0, on 0Q,

where A, is the first eigenvalue of — 4 together with the boundary conditions Bu = 0
and ¢ is the corresponding I*-orthonormalised eigenfunction. Then the well-known
result due to Landesman and Lazer [9] states that the condition

(4.3) g(— o) qu dx < fo < g(o0) qu dx

is a necessary and sufficient condition for the existence of a solution to (4.2). Cor-
responding to (4.1) there exist analogous results with the inequalities reversed.

In the case when (4.1) does not hold, (4.3) is not a necessary and sufficient condition
for existence. However an existence result may be stated in terms of the functional @.
Thus we have: given g: R — R bounded and locally Lipschitz there exist functionals
@, and &_ such that #_ < &, and the nonlinear problem (4.2) has at least one
solution if ®_(fy) < fo < @+(f;), no solutions if f, < ®_(f;) or fo > P.(fy)-
This result can be easily proved by following the ideas and results in [cf. Theorem
3.1, 1]

Returning to the case of the problem (4.2) under the hypothesis (4.1), it can be
seen that @, = g(w) [ ¢ dx, &_ = g(— o) [o ¢ dx and (4.2) has no solution
if fo = ¢, or &_. However in the case of the pendulum equation

u" +asinu = f, + fi(x), xe(0,2n)
u(0) = u(2m), u'(0) = u'(2m),
where a > 0, it can be proved that there exist solutions when f, = 45+(f,) or
fo = dL(fl). In this case, unlike the Landesman-Lazer situation, &, and &_
depend on f;.
Finally we note that under the hypotheses of Theorem 2.1 (and Theorem 3.2)
g(0) = oo and it is in this sense that the results of this paper may be seen as an

extension of the g-bounded case to the cases of g being either one-side unbounded
or two-side unbounded.

2. The approach of using the functionl @ to discuss multiplicity and existence
results for nonlinear elliptic problems is motivated by the ideas in [3].

3. Examples of the two-side unbounded case. In [10] the author studies the super-
linear elliptic problem

(4.9 du + du —e' =f(x), in Q,
dufon =0, on 09,
for the case A = A,, the second eigenvalue of —4 together with Neumann boundary

conditions. The author remarks that the ideas in [10] are not extendable when
A > A, and that the monotonicity was essential to the methods of the paper.
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We can write (4.4) as

(4.5) du + du + (A —A)u—e" = fod + f(x), in Q,
dufon =0, on 0Q.

Note that with Neumann boundary condition A, = 0 and ¢ = 1. But we have
written it in the above form to illustrate more general boundary conditions. Then
g(u) = (A — A;) u — ¢ and thus for A > 4, g(u) > — o0 as |u| > o, i.e., g is two-
side unbounded. The case A < 1, is well-known in the literature of monotone operator
theory. We can now apply Theorems 2.1 and 2.2 to conclude that, when 4 > 4,
there exists a C®“-continuous functional & satisfying the following: for every f ,(x) €
€ C°*(@Q) and [, f; dx = 0, the nonlinear problem (4.5) has at least two solutions
for fo > @(f,), at least one solution for f, = &(f,) and no solution for f, < &(f;).

A second class of nonlinearities to which the results of Section 2 can be applied,
is the class of jumping nonlinearities [2, 7]. Thus we consider the nonlinear problem

(4.6) du + au™ + Bu” + Y(u) = fo ¢(x) + fi(x), xe @,
Bu =0, xe o,
where u*(x) = max {u(x), 0} and 4™ = u — u*. Also ¥: R > R is assumed to be
Lipschitz on bounded subsets of R and is itself bounded. Rewriting (4.6) as
du + Aju + out + Pu” — dyu + Y(u) = fo d(x) + f1(x), xe 2,
Bu=0, x € 0Q

it follows that g(u) = au™ + pu~ + Y(u) — 1,u satisfies the hypotheses of Theorem
2.1 and 2.2 if B > 0 and « > A;. Thus there exists a functional @ such that (4.6)
has at least two solutions if f, > ®(f;), at least one solution if f, = &(f;) and no
solution if fo < &(f).

It can be easily seen that the above results are also valid for the class of superlinear
jumping nonlinearities

Au + Ayu + afulPu” + Blultu” + Y(u) = fo d(x) + f1(x),
Bu =0

under appropriate hypotheses on p and q. Related results may also be seen in [14].

4. One-side unbounded case. The results of Section 3 can be applied, for example,
to the nonlinear problem

Au + Au + |ulPut = f, ¢(x) + fi(x), xe @,
Bu=0, xed.

With appropriate restrictions on p related to the dimension N of the underlying
domain €, the above problem was considered as an example of one-side unbounded
nonlinearities in [12] for the case of Neumann boundary conditions. For related

results concerning Landesman-Lazer type sufficient conditions for the above problem
and a comparison with the results in [12] we refer to [8].
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Another interesting consequence of the results in Section 3 is illustrated by the
following example: consider the nonlinear problem:

(4.7) du + g(u) = fo + f1(x), xeQ,
oulon =0, xeoQ,

where

_ flul?, u <0 andpasin(3.5),
g(u)—{asinu, uz=0.

where a £ A,, 4, being the first positive eigenvalue of the Neumann problem. By the
results in [5], '
(4.8) Au + asinu = fi(x), xeQ,

oulon =0, xeoQ,

has a solution u(x) for all f,(x) such that [q f;(x) dx = 0. It is obvious that if u(x)
is a solution then u(x) + 2kn for any integer k is a solution. Choosing k large enough
it follows that (4.8) has at least one positive solution. Clearly such a solution is also
a solution of (4.7) for f, = 0. As in Section 3, R(f,) is nonempty and connected.
Thus, for any f;, ®(f;) < 0. And hence for any f, = ®(f,), the nonlinear problem
(4.7) has at least one solution. Note that in this case lim sup g(u) = a and thus ap-

plication of Landesman-Lazer type results (cf. [12]) would have only allowed to
infer the existence of solutions of (4.7) for f, = a. We refer to [13] for results related
to this section.

5. From the results of Section 2 we can also conclude that
du + u* = fo + fi(x), xe Q,
oulon =0, xedQ,
can be studied for existence and multiplicity in @ = RY, N = 2, 3. Related results

for this class of problems may be seen in [11].

6. The proof in Sections 2 and 3 in conjunction with the results in [8] leads to
a similar result as in [1]: under the hypotheses of either Section 3 (or Section 2),
the existence of upper and lower solutions to (3.1) (or (2.5)), no necessarily ordered,
implies the existence of a solution. This leads to the question: when g is one-side
unbounded and does not have proper limits, does the existence of upper and lower
solutions (which are not necessarily ordered) imply the existence of a solution?

7. The quantity p, introduced in Lemma 2 of Section 2 may be used to estimate @.

8. The question of continuity and related properties of @ in Theorem 3.2 remains
open.
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