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1. Introduction. We proved in [9] that a uniform space uX is supercomplete if and
only if the locally fine coreflection of uX x #BX is equinormal. Here we shall
continue this work by characterizing the supercomplete p-spaces whose product
with every supercomplete space is supercomplete. In the spirit of Telgdrsky [20]
we show the importance of C-scattered spaces in this context. The results differ
from the corresponding results for paracompact spaces (being obtained by [16] and
[20]) and the role of p-spaces is different since supercompleteness is not preserved
under uniformly continuous, perfect onto maps.

The study of completeness in uniform hyperspaces is facilitated by Isbell’s theorem
[12]: the hyperspace H(uX) of a uniform space uX is complete if and only if X is
topologically paracompact and the Ginsberg-Isbell locally fine coreflection ([7]) AuX
is fine. (The result is to be contrasted with the result of [17], improving [22], which
states that if uX is complete then so is the uniform hyperspace K(uX) of all compact
subsets of X. See also [2] and [10] for a short proof.)

In order to apply the locally fine coreflection here, we need some preliminary
definitions. Let u and v be filters of coverings of a set X, ordered by the relation of
refinement. Then v/p denotes the family of all covers of X having a refinement of the
form {U, n V}}, where {U;} € p and for each i, {¥j} € v. The successive derivatives
4@ are defined by setting @ = py, p@*V = p@[p and p® = Y{u®: a < B} if B
is a limit ordinal. There is the least ordinal « such that p@*+1 = y® and for which
we define Ap = u@. These derivatives can be used instead of the original Ginsburg-
Isbell derivatives as explained in [9]. The fine uniformity of X (resp. the fine uniform
space associated with X) will be denoted by #(X) (resp. #X)). If X and Y are com-
pletely regular spaces and the locally fine coreflection of #(X) x Z#(Y) is fine,
ie. AF(X) x #(Y)) = #(X x Y), then we say that X x Y has the A-property.
(Strictly speaking the A-property is a property of the pair (X, Y).) The completion of
a uniform space uX will be denoted by nuX. For a family ¥~ of subsets of X, ¥~ |\ A=
= {Vn A: Ve ¥} denotes the restriction of ¥" to a subset A of X. Similarly if p
is a family of covers of X (e.g. a uniformity), then p[*A = {#%[°A: % € p} denotes
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the restriction of u to A. Recall that a subspace 4 of a topological space X is called
P-embedded [19] if every continuous pseudometric on A can be extended to a con-
tinuous pseudometric on X, or, equivalently, if #(4) = #(X) | A. A closed subspace
of a collectionwise normal space is P-embedded [19]. Paracompact p-spaces were
introduced in [1]. Recall that X is a paracompact p-space if and only if there is
a metrizable space Y and a perfect map of ¥ onto X. ([1], Theorem 16). Finally,
a topological space X is called C-scattered [20] if every nonempty closed subspace F
of X contains a point with a compact neighbourhood in F.

2. The product of a fine paracompact C-scattered space with a fine paracompact
space. We have shown in [8] that for every completely regular space X and every
compact space K the product X x K has the A-property. Here we shall extend the
result to the case where K is replaced by a C-scattered space, provided that the factors
are paracompact. The result would follow quicker by using results in [14] and [15],
but the proof would be based on a rather non-elementary notion of the hypercomple-
tion of a locale and thus we give a completely elementary argument for the general
reader’s benefit. The technique of exhaustion has been used previously by J. R. Isbell.

Theorem 2.1. Let X be a C-scattered paracompact space and let Y be a para-
compact space. Then X x Y has the A-property.

Proof. We shall show that every open cover of X x Ybelongsto A(#(X) x #(Y)).
It then follows that A(#(X) x #(Y)) = #(X x Y). We will define a sequence of
pairs {W,, S,>, where S, is a closed subset of X and W, is an open subset of X such
that W, n S, is compact.

Step 0. As X is C-scattered, there is a point x, € X and an open neighbourhood W,
of x, such that W, is compact. Let S, = X.

Step o. Suppose that (W, S;> has been defined for all g < o and let S, =
= X\{W,: B < a}. Then S, is a closed subset of X. If S, = 0, then the inductive
definition stops here. Otherwise there is a point x, € S, and an open neighbourhood
W, of x, in X such that W, n S, is compact.

Let a be the least ordinal such that X = J{Wj: B < a}. Then {<Wj, Sp>: B < o} is
called an exhaustion of length o. Let P(x) be the following statement:

“If Z, is a C-scattered paracompact space, Z, is a paracompact space and Z,

has an exhaustion of length <a, then every open cover of Z, X Z, belongs to

AF(2)) x #(2,).”

If X has an exhaustion of length 1, then X is compact and it follows from 5.1.8.
in [8] that P(1) is valid. Assume that P() is valid whenever B < « suppose that X
has an exhaustion {(W;, S;>: B < a} of length o and let & be an open cover of X x Y.
We shall consider two cases.

Case 1. & = B + 1. Then X \{W,:y < B} = W, and hence S; = S; is compact.
Let ye Y. For each x € Sy choose an open neighbourhood U, , of x and an open
neighbourhood ¥, , of y such that U, , x V, , = G for some G € 4. As S; is compact,
we can find a finite subset F, = S, such that S; = N{U,,: xeF,}. Define ¥, =
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=) Vy,:x€F,}. Then V, is an open neighbourhood of y and for each x€F,
there is a G, , €9 such that U, , x V, = G,,. Now ¥ = {V,: ye Y} is an open
cover of Y and thus ¥ € #(Y) since every open cover of a paracompact space is
normal. As S is closed, there exists an open subset O, of X such that

Sp= 0,0, N{U,,:xeF,}.
Now Z, = X\ 0, is a closed subspace of X and clearly Z, has an exhaustion of

length <p. By the induction hypothesis, every open cover of Z, x V, belongs to
MF(2,) x F(V,)). Therefore

412, x B)eMF(2Z,) x #(7)).
The closed subspaces Z, and V, are P-embedded, whence
7(2,) x #(V,) = (F(%) | 2,) x (F(V) | ) = (F(X) x #(V))[(Z, x T;)

by the definition of the product uniformity. On the hand, A preserves subspaces and
it follows from the preceding two formulas that
912, x V) eMFX) x FONI [ (2, x V) -

Now #, = {X\0,} U {U, ,: x € F,} is an open cover of X. As X is paracompact,
#, belongs to #(X). By the above, the restriction of ¢ to any element H x ¥,
where H € #,, is a “A-uniform” cover of H x V, relative to #(X) x #(Y). (Recall
that U, , x V, = G.,!) As {H x V,: He #} is a uniform cover of X x ¥, with
respect to #(X) x #(Y) (because V, is P-embedded) it follows that the restriction of 4
to X x V, is a A-uniform cover. But ¥" € #(Y) and therefore {X x V,:ye Y} is
a uniform cover of X x Y; as a consequence of the definition of A via the successive
derivatives, ¥ is a A-uniform cover X x Y relative to F(X) x-#(Y), ie. Ye
e (F(X) x #(Y)).

Case 2. a is a limit ordinal. Then X = (J{W: B < «} and each W} has an exhaus-
tion of length <B + 1. Thus, by the induction hypothesis, for each g < «

g [, x Y)e[M(FX) x FON][ (W, x ¥)
because W, is P-embedded. As X is paracompact, {W;: < a} € #(X). It follows
that ¢ belongs to A(#(X) x F(Y)). This completes our proof.
Remark. R. Telgdrsky proved in [20] that if X is a C-scattered paracompact space
and Yis a paracompact space, then X x Y is paracompact. His result follows from
the proof above. Moreover, if X has a countable cover by closed C-scattered sub-

spaces and Y is paracompact, then X x Y is paracompact. As we shall see later in
this paper, the latter statement cannot be extended to the case of A-property.

Corollary 2.2. Let uX be a C-scattered supercomplete space and let vY be a super-
complete space. Then uX x vY is supercomplete.

Proof. As uX and vY are supercomplete, it follows from Isbell’s theorem that X
and Y are paracompact, AuX = FX and vY = ZY. By Theorem 2.1, (F(X) x
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x F(Y)) = F(X x Y).Thus, (uX x v¥) = AAuX x WY) = (F(X) x F(Y)) =
= #(X x Y), as required. Moreover, X x Y is paracompact, by [20].

3. Some lemmas. It was stated in Exercise VII 8(¢) of [13] that a fine separable
metrizable space X has the property that X x Y is supercomplete for every fine
separable metrizable space Y iff X is locally compact. However, the statement is
not valid as can be seen from Theorem 2.1. Anyhow, the claim becomes true if the
words “locally compact™ are replaced by the word ‘““C-scattered”. As a matter of
fact, a corresponding statement is true in the class of paracompact p-spaces. To
prove this we shall need a generalized version of Exercise VII 8(d) in [13]. First we
will establish three lemmas. A map f: uX — vY is called A-uniformly continuous
if f:ApX — vY is uniformly continuous. A product of A-uniformly continuous
maps is A-uniformly continuous.

Lemma 3.1. Let f: pX — vY be A-uniformly continuous. Then f~'(%)e Au for
each % e Av.

Proof. The lemma can be proved by a straightforward induction.

Lemma 3.2. Let uX and vY be uniform spaces, let f: uX — vY be a A-uniformly
continuous perfect onto map and let vY be supercomplete. Then uX is supercomplete.

Proof. Let ¥~ be an open cover of X. We must show that ¥ € Au. For each
y € Y there is an open uniform cover %, € u such that ¥" [ St(f~*{y}, %,) is a uni-
form cover, since the point-inverse f ~*{y} is compact. Note that

ye Y—f[X - St(f"l{y},”lly =W,,

W, is an open neighbourhood of y and that f~'[W,] = St(f~'{y}, %,). Now
W = {Wy: y €Y} is an open cover of Y and consequently #” € Av since vY is super-
complete. By the previous lemma, f~'(#°) € 1u. But

f7H) < {7k )y e Y

and therefore for each We ", ¥ | f ~'[W] is a uniform cover of f ~*[ W]. It follows
that ¥~ € Ay, as desired.

Recall that a completely regular space X is Cech-complete if X is a G,-subspace
of BX. Z. Frolik proved in [5] that X is Cech-complete and paracompact iff there is
a complete metric space Y and a perfect onto map f: X — Y.

Corollary 3.3. The product of a countable family of Cech-complete super-
complete spaces is supercomplete.

Proof. Let {u,,X,,} be a sequence of Cech-complete supercomplete spaces. For
each n there exists a complete metric space Y, and a perfect onto map f,: X, = Y,.
As p,X, is supercomplete, Ap, X, = FX,. It is well known that f,: X, - Y, is
uniformly continuous — consequently each f, is A-uniformly continuous. Let pX =
= II{p,X,} and let Y = II{Y,}. The product II{f,} is perfect ([5]) and A-uniformly
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continuous. As Y is a complete metric space, it follows from Lemma 3.2. that uX
is supercomplete. (See also [7], 4.2.)

Remark. It was shown by Frolik [5] that the product of a countable family of
éech-complete paracompact spaces is paracompact.

Lemma 3.4. Let X and Y be completely regular spaces such that X x Y is Lindeldf.
An open cover % of X x Y belongs to A(F(X) x #(Y)) if and only if there exist
Cech-complete paracompact subspaces M < BX, N < BY such that X < M,
Y N and % can be extended to an open cover of M x N.

Proof. To prove necessity we shall proceed by induction. Hence Jet % € A(#(X) x
x Z(Y)). Then there is an « such that ¢ e (#(X) x #(Y))®. To start with, let
@ = 0. Then ¢ is a uniform cover and thus there exist % € #(X) and ¥ € #(Y)
such that  x ¥~ < 4. We can find continuous pseudometrics ¢ and ¢ on X and Y,
respectively, such that % (resp. ¥") is a uniform cover of oX (resp. a¥). Let Z,
and Z, be the corresponding natural metric quotients and let g: ¢X — Z{, h: 6Y > Z,
be the quotient maps. Let i: Z, — nZ, and j: Z, — nZ, be the natural embeddings.
Put ¢, =iog, ¢, =joh. Then ¥ = (¢; x ¢,) (%) is a uniform open cover of
the subspace Z, x Z, of n(Z, x Z,) and therefore ([13]) 4’ can be extended to an
open (uniform) cover # of nZ; x nZ,. Let e;:nZ; —» pnZ, and e,: nZ, - pnZ,
be the natural embeddings and let ¥,: BX — pnZ,, ¥,: BY — PrZ, be the Stone-
extensions of e; o ¢ «id and e, o ¢, o id, respectively, ([21], p. 9). The situation can
be described by the following commutative diagram.

XN .ox—2sz,—snz,

BX V1 prZ,

Then y/, and ¥, are perfect onto maps and hence M = Y7 *[nZ,] and N = y; [nZ,]
are Cech-complete and paracompact. Now (¥; X ¥,)™* (##) is an extension of ¥
to an open cover of M x N,

Thus, suppose that the claim is valid whenever B < «. We can assume that « is
a successor ordinal, say « = B + 1. Then there is an open uniform cover {U,:s € S} —
where we can assume that S is countable — of #X x £ Y such that for each s € S,
¢ MU, has a refinement {U, N V;}, where {7} € (#(X) x #(Y))® is open. By
the inductive hypothesis, there exist Cech-complete paracompact subspaces M, M, <
< BX, N, N, = BY such that {U,} can be extended over M x N and for each s € S,
{V;} can be extended over M x N,. Define M' = \{M:seS}n M and N' =
= N{N,:se S} n N. Hence ¥ has an open refinement which can be extended over
M’ x N'. Let #" be an extension of {U, n V;} to an open cover of M’ x N’. For
each G € & choose an open subset G’ of M’ x N’ such that G = G’ " (X x Y) and
define G" = Y{We#: Wn (X x Y) = G} U G'. Then {G": Ge %} is the desired
extension of ¢ to an open cover of M’ x N'. Furthermore, M’ and N’ are Cech-
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complete and paracompact since the property of being Cech-complete and para-
compact is preserved in countable intersections. (For, this property is preserved in
countable products and hence in limits of inverse sequences.)

For sufficiency, let ¢ be an open cover of X x Y and let M = X, N < BY be
Cech-complete paracompact subspaces such that X <« M, Y< N and ¢ has an
extension to an open cover 4 of M x N. Now #M x #N is supercomplete
by Corollary 3.3. Thus, e F(M x N) = A(F(M)) x #(N)). As A preserves
subspaces, ¥ eA((F(M) x F(N) MNX x Y) = A[(FM) x F(N) MX x Y)] =
= A(FM) [ X) x (F(N) N Y)] = (#(X) x #(Y)) and our proof is complete.

We shall use Lemma 3.4. in the form of the following corollary.

Corollary 3.5. Let X and Y be completely regular spaces such that X x Y is
Lindelof. Then X x FY is supercomplete if and only if for each compact
K < (BX x BY) — (X x Y) there exist Cech-complete paracompact subspaces
M < BX, N < BY such that X =« M, Yc N and (M x N)nK = 0.

Proof. For necessity, suppose that #X x FY is supercomplete. Then X x Y
has the A-property. Given a compact set K = (BX x BY) — (X x Y), choose for
each (x, )€ X x Yan open neighbourhood U, x ¥, of (x, y)in BX x BYsuch that
(clixU, x clgyV,) " K = 0. Then 4 = {(U,n X) x (V,n Y):(x,y)eX x Y}isan
open cover of X x Y and hence by 3.4 there exist Cech-complete paracompact
M < BX, N = BYsuch that X « M, Y = N and ¢ has an extension & to an open
cover of M x N. Let Ge % and choose xeX, yeY such that Gn (X x Y) =
= (U,nX) x (V,nY). AsX x Yis dense in BX x BY,

G < Clipxxpn(G N (X x Y)) = clgxU, x clgyV, = (BX x BY) — K.
Thus, (M x N)nK = 0.

For sufficiency, we use 3.4 to show that every open cover of X x Y belongs to
MF(X) x F(Y)).If gis an open cover of X x ¥, then & can be extended to a family
%’ of open subsets of BX x BY.LetK = (BX x BY) — |J(¥'). By assumption there
exist Cech-complete paracompact M = X, N = BY such that X = M, Y = N and
(M x N)n K = 0. It follows that %' [*(M x N) is an extension of ¢ to an open
cover of M x N.

Finally, we shall need a lemma that enables us to move from paracompact
p-spaces to separable metrizable spaces.

Lemma 3.6. Let X be a metrizable space which is not C-scattered. Then X contains
a separable closed subspace which is not C-scattered.

Proof. As X is not C-scattered, there is a closed subspace F = X which is nowhere
locally compact in itself. For each x € F, let {B,} be a countable base of closed
neighbourhoods of x in F. For all xe F and n < o, the set B, , is not compact
and thus there is a closed, discrete countably infinite subset S, , = B, .. Let xo € F
be arbitrary. Define Y, = (J{S, ,: n < w}. Assume that ¥,, has been defined and

let ¥,.q = U{S,.:x€ Y,} U Y,. Finally, let Y= {Y,:m < o}. Then Y is the
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closure of a countable subset of F and hence Y is separable. Suppose that ye Y
and let U be a neighbourhood of y. There is an m < w, an x€Y,,_, and n < @
such that B, , < U. Thus, S, , = U and hence U is not compact. As a consequence,
Y is nowhere locally compact.

4. A partial converse of 2.1. Paracompact p-spaces were introduced in [1]. Recall
that X is a paracompact p-space if and only if there is a metrizable space Y and
a perfect onto map f: X — Y. ([1], Theorem 16.)

Theorem 4.1. Let X be a paracompact p-space which is not C-scattered. Then
there is a separable metrizable space Y such that FX x FY is not supercomplete.

Proof. There is a metrizable space Z and a perfect onto map f: X — Z. It was
proved in [17] that the class of C-scattered spaces is perfect (i.e.[17] the images
and pre-images of C-scattered spaces under perfect maps are C-scattered). It follows
that Z is not C-scattered. By Lemma 3.6 Z contains a closed separable subspace F
which is not C-scattered and we can assume that F is nowhere locally compact in
itself. Let F be a metrizable compactification of F. The remainder F—F is dense
in F. (For, otherwise F would contain an open subset whose closure in F would be
contained in F.) Put E = f~![F] and note that f I\ E is a perfect map. Let g: BE — F
be the Stone-extension of f [* E. Now F is a compactification of F — F and hence
there exists a quotient map h: B(F — F) - F that is the identity on F — F. (Let h
be the Stone-extension of the identity.) Let 4(F) be the diagonal of F x F and define
K = (g x h)"!'[A(F)]. Then K is a compact subset of BE x B(F — F) such that

K < (BE x B(F — F)) — (E x (F - F)).
Indeed, suppose that (p, g) € K. Then
(9(p) h(a)) € A(F) = (F x F) = (F x (F — F)).
Hence, if peE and qeF — F, we would have (g(p), h(q)) = (9(p), g) € F X
x (F — F), which is impossible.

First we shall show that FE x #(F — F) is not supercomplete. To obtain a con-
tradiction, suppose that FE x F(F — F) is supercomplete. As E x (F = F),
being a product of two Lindeldf p-spaces is Lindelsf, it follows from Corollary 3.5.
that there exist Cech-complete spaces M = BE, N = B(F — F) such that E < M,
F—FcNand (M x N)nK = 0. Thus, (9[M] x h[N]) n A(F) = 0 from which
it follows that g[M] n h[N] = 0. As h keeps F — F fixed, we have F — F < h[N].
On the other hand, g extends f > E and hence F = g[M]. Now F n h[N] =0,
for otherwise g[M] n h[N] # 0. Thus, h[N] = F — F. It follows that also g[M] =
= F. Now f [ E is perfect and hence g[BE — E] = F — F ([21], p. 275). Thus,
M c g"[F] c E and consequently M = E. Similarly N = F — F. 1t follows
that E is Cech-complete and therefore so is F. Thus, both F and F — F are Cech-

complete. Hence, both F and F — F are F,-subsets of F. As a consequence, they are
of the first category in F. But then F is of the first category which contradicts the
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Baire Category Theorem. Thus, #FE x #(F — F) is not supercomplete. Put
Y= F — F. As ] preserves subspaces, every closed subspace of a supercomplete
space is supercomplete. It follows that #X x ZYis not supercomplete, as required.

Corollary 4.2. Let uX be a supercomplete p-space. Then the following statements
are equivalent:

i) H(uX x vY) is complete for every p-space vY such that H(vY) is complete;
ii) X is C-scattered.

5. Concluding remarks.

Remark 1. Call a uniform space uX o-discretely refinable, if every open cover of X
has a c-uniformly discrete refinement (i.e. a refinement which is a countable union
of p-uniformly discrete subfamilies). The d-discretely refinable spaces have been
studied by Frolik [6] under the title “paracompact uniform spaces”. (They are
originally defined in [4].) There was a problem whether every complete o-discretely
refinable uniform space is supercomplete. Here we see (by examining the proof of
4.1.) that for example the product space #J x &F Q, where J is the space of irrationals
and Q denotes the space of rationals, is a complete Lindel6f space which is not super-
complete. Actually, we can use the idea behind the proof of 4.1. to show that #Q x
x & Q is not supercomplete. It is enough to note that (I xI) — [(@ n 1) x (Q n1)]
contains the sphere with the radius 1/4 and center (a, 1/2), where a € ]1/4, 3/4[ is
transcendental. It easily follows from 3.5. that #(Q nI) x #(Q nI) is not super-
complete. Let X be a separable metrizable space and suppose that FX x FX is
supercomplete. Does it follow that X is completely metrizable? More generally,
let X be a paracompact p-space such that #X x X is supercomplete. Does it
follow that X is Cech-complete?

Remark 2. It was proved by Morita in [16] that if X is a metrizable space such
that X x Y is paracompact for every paracompact space Y, then X is a countable
union of closed locally compact subspaces.

Remark 3. Let uX be a C-scattered supercomplete space. By Corollary 2.2. each
finite power "(uX) is supercomplete. It follows from [3] that the hyperspace F(X)
of all finite subsets of X is paracompact. One can ask if K(uX) is supercomplete.
However, the space X given in the proof of Theorem 1 in [18] is a C-scattered cosmic
space such that K(X) is not paracompact. Hence, #X is a C-scattered supercomplete
space such that K(#X) is not supercomplete. Nevertheless, one can show that if v¥Y
is a Cech-complete supercomplete space, then so is K(vY) the proof being similar
to that of 3.3.

Remark 4. Theorem 4.1. is not valid in the class of all paracompact spaces.
Indeed, let X be any paracompact space in which intersections of countable families
of open sets are open. Then X x ZY is supercomplete for any Lindelf space Y.

Remark 5. Recently Miroslav HuSek and Jan Pelant have shown that AIIFX; =
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= ZIIX, for any family {X i} of paracompact Cech-complete spaces X;. Their
proof uses the fact the above equality holds for finite products, and this follows
from Corollary 3.3.

Remark 6. A product X x Y of topological spaces X and Y is called rectangular
if every finite normal cover of X x Y has a o-locally finite refinement by cozero-
rectangles. Using the fact that every uniform cover has a o-uniformly discrete refine-
ment, it is easy to see that any product which has the A-property is rectangular. By
Remark 1 the converse is far from being true. It has been shown in [11] that a product
X x Y of completely regular spaces X and Yis rectangular iff y(X x Y) = X x yY
and yX x yYis rectangular, where y denotes the topological (Dieudonné) completion.
A similar statement is true for the A-property. Indeed, suppose that X x Y has the
A-property. Then

NFVX x FyY) = (FnFX x FrFY) = AnFX x nFY) =
= In(FX x FY) = tA(FX x FY) = 2F(X x Y) = Fy(X x Y),

were we have used the facts that n#F = #n% and An = mA. On the other hand,
suppose that (X x Y) = 9X x yYand yX x yY has the A-property. Then

AFX x FY) = In(FX x FY) = A nFX x nFY) =
=N FYX x FyY)=F(X xyY)=Fy(X x Y) =nF(X x Y).

Since 7 can be cancelled in any equation muS = nvS, we have A(FX x F Y) =
= Z(X x Y), as required. One obtains as a corollary a uniform-theoretic proof of
the result (of Pupier and Morita) that p(X x K) = yX x K whenever K is compact
and X is completely regular.
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