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ARITHMETICITY AT 0 

JAROMIR DUDA, Brno 

(Received June 19, 1985) 

1. CONGRUENCE PERMUTA BI LIT Y AT 0 

The classical theorem of A. I. Mal'cev asserts that a variety V is congruence 
permutable iff there exists a ternary polynomial p such that the identities p{y, x, x) = 
= p[x, X, y) = y hold in V, see [13]. Recently H.-P. Gumm and A. Ursini discovered 
that the identities r(0, x, x) = 0 and r[x, x, y) = y (more precisely the equivalent 
identities s{x, x) = 0 and s(x, 0) = x; put s{x, y) = r[0, y, x) and, conversely, 
r(x, y, z) = 5(z, s{y, x))) play an important role in the theory of ideals of universal 
algebras having a constant 0. Since a number of nice structural properties follow 
from the original Mal'cev's ternary polynomial we first find a suitable structural 
characterization of the above identities s(x, x) = 0 and s(x, 0) = x. 

Definition 1. An algebra A with a constant 0 is called congruence permutable at 0 
whenever [0] 6) о ï̂  = [O] ^ о 6) holds for any G^W e Con A. 
A variety F with a constant 0 is called congruence permutable at 0 whenever each V 
algebra has this property. 

Theorem 1. Let V be a variety with a constant 0. The following conditions are 
equivalent: 

(1) V is congruence permutable at 0; 
(2) there exists a binary polynomial s such that s(x, x) = 0 and s(x, 0) = x 

hold in V. 
Proof. (1) => (2). Let Л be a F free algebra with free generators x and> .̂ Take the 

principal congruences 0(0, y) and 0(x, y) on A. Then x G [O] 0(0, y) о 0(x, y) and 
so X e [0] 0(x, y) о 0(0, у), by hypothesis. In other words, we have <0, x> e 
e 0(x, y) о 0(0, у) from which <0, s> e 0(x, y) and <5, x> e 0(0, y) follow for some 
se A. Apparently s is the desired binary polynomial. 

(2) => (l). Conversely, we have to prove the equality [0] 6> о ï ' = [0] !F о 0 for 
arbitrary 0,We Con A,AeV. Let aelO'\0 oW, then <0, b} e 0 and <b, a> e !F 
for some element b e A. Applying the binary polynomial s from the hypothesis to 
these two statements we find that <0, s(a, b)> = <s(b, b), s(a, b)> e W and 
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<5(a, b), a} = {s{a, b), s{a, 0)> e 0, i.e. <^0, a} G W о 0 whence [0] 0 о «F ç 
^ [0] T о 0. The converse inclusion can be handled similarly. 

Next we want to show some other structural equivalents to the congurence 
permutability at 0. The following auxiliary result will be useful in the sequel. 

Lemma 1. Let A be an algebra with a constant 0 and let R, S,T ^ A x A. Then 
(a) [0] Ä о S = ([0] R'] S {here the symbol [X]T denotes the union (J [x] Tfor 

X ^ A, T^ A X A); ^^^ 
(b) [0] Я о 5 о T = [0] 5 о Я о T whenever [OJRoS =[0]So R. 

Proof. The first point is elementary 
(b) Applying part (a) we successively get [0] R о S о Г = [[0] R о S] Т = 

= [[0] SoR'\T=[Ö]SoRoT. 

Theorem 2. Let A be an algebra with a constant 0. The following conditions are 
equivalent: 

(1) A is congruence permutable at 0; 
(2) [0] 6) V ?̂  = [0] 6) о Wfor any 0,We Con A. 

Proof. (1) => (2). Apparently it is sufficient to verify the inclusion [O] 0 v !F Ç 
Ç [0] 0 о W, So let ae[Ö]0vW, then <0, аУе0 w W, i.e. <0, a> e ( 0 о Wf for 
some и ^ 1. If n > 1 we have [0] {0 о Wf = [0] 0 о W o{0 о Wf'^ = 
- [0] ï ' о 0 о (6) о Wf-^ = [0]W о{0 о Wy-^ = [0]W о0 oW о{0 о Wy-^ = 
= [0] 0 о ^ о ((9 о wy-^ = [0] {0 о Wy~\ by Lemma 1(b). Repeating this process 
one concludes a E[O]0 oW which was to be proved. 

The converse imphcation (2) => (1) is evident. 
In [18], H. Werner characterized the congruence permutable varieties in terms of 

compatible binary relations. For congruence permutable at 0 varieties Werner's 
results can be adapted e.g. in the following form (recall that the symbols R{a, b) 
and T[a, b) denote the smallest compatible reflexive binary relation and tolerance, 
respectively, containing the pair <a, b>). 

Theorem 3. Let V be a variety with a constant 0. The following conditions are 
equivalent: 

(1) V is congruence permutable at 0; 
(2) R{x, 0) = jR(0, x) for any xeAeV; 
(3) T{x, 0) = R(x, 0) for any xeAeV, 

Proof. (1) => (2). Apply the binary polynomial s from Theorem 1 (2) to the pairs 
<x, x>, <x, 0> e R{x, 0). Then <0, x> = <s(x, x), s{x, 0)> e R{x, 0) and so Ä(0, x) Ç 
£ R{x, 0). The converse inclusion follows by a symmetrical argument. 

(2)=»(3). By hypothesis we find Я(х, 0) = R{0,x) == R~\x,0), i.e. R{x,0) is 
a tolerance. Hence T(x, 0) ç R(x, O), the other inclusion being trivial. 

(3) => (1). Let A Ы a, V free algebra with one free generator x. By (3) we have 
T(x, 0) = R{x, 0) and so <0, x> € R{x, 0). Then 0 = т(х), x = т(0) for some unary 
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algebraic function т over A, i.e. 0 = t(x, x), x = t(0, x) for a suitable binary poly­
nomial t of V. Theorem 1 completes the proof. 

Remark 1. Further results on congruence permutability at 0 as well as on con­
gruence «-permutability at 0 can be found in [5]. 

2. ARITHMETICITY AT 0 

Another important Mal'cev's is formed by the congruence distributive varieties, 
see [12]. The concept of congruence distributivity has been recently weakened to 
that of congruence distributivity at 0. From [4] we adopt 

Definition 2. An algebra A with a constant 0 is called congruence distributive at 0 
whenever [0] (^ i v 6)2) л ï ' = [0] (Ö^ A W) v {02 л W) holds for any con­
gruences 0^, 02 and W on A. 

A variety V with a constant 0 is called congruence distributive at 0 if each V 
algebra has the above property. 

It is already known that also the congruence distributive at 0 varieties are definable 
by a Mal'cev condition. The characterizing identities can be found in [4]. 

The arithmetical {= congruence permutable and congruence distributive) algebras 
naturally combine the advantages of both attributes. Taking into account the 
preceding definitions the notion of arithmeticity at 0 readily follows: 

Definition 3. An algebra A with a constant 0 is called arithmetical at 0 whenever A 
is congruence permutable at 0 and, simultaneously, congruence distributive at 0. 

A variety V with a constant 0 is called arithmetical at 0 if each V algebra has the 
above property. 

Before stating our main theorem we prove 

Lemma 2. Let A be a congruence permutable at 0 algebra. Then A is congruence 
distributive at 0 (see Definition 2) iff the dual equality [0] [0^ л 02) v W = 
= [0](6)i V W) A {02 V W) holds for any 0^, 02, 4^ e Con A. 

Proof. Suppose that A is congruence distributive at 0. Then [O](0i v W) A 
л {02 V W)= [0] (01 л {02 V W)) V {W A {02 V W)) = [O] {0, A (в^ V W)) V 
V ^ = [0] {0, A {02 V W))oW = [[0] 01 л {02 V Щ¥ = [[0] (01 л 02) V 
V (01 A W)]4' = [O](0i л 02) о (01 л W)oW = [O](0i л 02) V !F, by Lemma 
1 and Theorem 2. 

The converse implication holds on any algebra with 0. 

Theorem 4. Let V be a variety with a constant 0. The following conditions are 
equivalent: 

(l) V is arithmetical at 0; 
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(2) [0] (0, л 02) о ^ = [0] ^ о 01 л [0] W о 02 for any ^ i ' ^2 . ^ ^ Con А, 
AeV; 

(3) there exists a binary polynomial b such that b{x, x) = b{0, x) = 0, b[x, 0) = 
= X hold in V. 

Proof. The implication (1) => (2) is a direct consequence of Theorem 2 and 
Lemma 2. . 

(2) => (3). Let Л be a Ffree algebra with free generators jc, y. Take the congruences 
01 = 0(0, x), 02 = 0{x, y) and Ч' = 0(0, j;) on A. Since хеЩ^Р o0^ л 
л [0] *P о 02, we have x e [0] (0i л 0^) о ï̂  as well. Now <0, x> G (0^ л 02) о î ' 
gives <0, Ь> e 0(0, x) л 0(x, j ) and <b, x;> e 0(0, y) for some binary polynomial b 
of F. The first statement implies b[x, x) = b(0, y) = 0, the second one yields 
b{x, 0) = X. 

(3) => (1). The congruence permutability at 0 is ensured by the identities b{x, x) ^ 
= 0, b{x, 0) = X, see Theorem 1. 

To prove the inclusion [0] (0^ v 02) л ï ' ç [0] (0^ A W) v (02 л W), 
01, 02, We Con A, AeV, observe first that the binary polynomial и defined by 
u(x, y) = b{x, b{x, y)) satisfies the identities u(x, x) = x, u(x, 0) = м(0, x) = 0. 
Now let X e [0] (0i , v 02) л !F, then <0, x> e 0 i v 02 and <0, x> e W. In virtue 
of Theorem 2 the first statement can be rewritten to <0, x} e 0^ о 02, i.e., we find 
that <0, a> G 01 and <a, x> G 02 for some element aeA. Applying the above 
mentioned binary polynomial и we get that <0, w(x, а)> = <м(х, 0), u{x, a)} e 0^ 
and <M(X, a), x> = <w(x, a), u[x, x)} e 02- On the other hand, <0, x} eW imphes 
<0, u{x, a)y = <w(0, a), u(x, a)} e W and so <w(x, a), x> e !F, by transitivity. Alto­
gether we have <0, w(x, a)> G 0 i л W, <м(х, a), x> G 02 л W frbm which the 
desired conclusion <0, X > G ( 0 I Л ^) V (02 л W) readily follows. 

Remark 2. (l) One easily sees that the condition (З) from Theorem 4 can be 
replaced by: t^{x, x, O) = ^1(0, x, O) = 0, ^i(x, 0, O) = x (or, equivalently, by 
ti(x, X, 0) = ^1(0, X, 0) = 0, ri(x, y, y) = x) for some ternary polynomial t^. Notice 
that the original Pixley's result (see [16]) states: A variety V is arithmetical iff 
t{y, y, x) = t{x, y, x) = t(x, y, y) = X for some ternary polynomial t of F. 

(2) The congruence distributivity at 0 follows directly from the existence of the 
binary polynomial и (see [4; Thm. 1 for и = 2]) in the proof of implication (3) => (l). 
However, the full version of this proof will be useful in Section 3. 

Examples 1. (l) Any BCK-algebra is arithmetical at 0. Recall first (e.g. from 
[11; p. 423]) that a set A with a binary operation * and a constant 0 is called a BCK-
algebra if the following conditions hold: 

(i) (x * 3;) * (x * z) ^ z ^ y, 
(ii) X * (x * 3;) ^ j ; , 

(iii) X ^ X, 
(iv) 0 ^ X, 
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(y) X s y and y й X imply x = y, 
(vi) x ^ j i f F x * j = 0. 

In particular, conditions ( i ) , . . . , (vi) give x * О = x, see [ И ; p. 424] again. Since the 
identities x * x = 0 * x = 0 are evident the binary polynomial b(x, y) = x * y 
ensures the arithmeticity at 0 for any BCK-algebra. Notice that BCK-algebras are 
in general not congruence permutable, see [6] and references there. 

(2) Any pseudocomplemented л-semilattice (i.e. an algebra <^, л , * , 0, 1> of 
type <2, 1, 0, 0> where a* denotes the pseudocomplement of ae Ä: x A a = 0 iïï 
X ^ a*, see [2] for the details) is arithmetical at 0 since the binary polynomial 
b[x, y) = X A y^ satisfies the identities b(x, x) = x л x* = 0, b[0, x) = 0 л x* = 
= 0, and b{x, 0) = X л 0* = X. 

(3) The complementary semigroups form a variety arithmetical at a constant. 
Recall from [3] (see also [19; p. 37]) that a complementary semigroup is a com­
mutative semigroup <S, • > with an additional binary operation * for which 

(i) x{y * j ) = X, 
(ii) x(x * y) = y{y * x), and 

(iii) X * (3; * z) = x>' * z hold. 
Then <S, ^ > (here x ^ j^ means: x divides y) is a v-semilattice with the join 
X V у = x(x * y) and the smallest element 1 = x * x which is the unit of the semi­
group <S', •>• 

Taking b(x, y) = у ^ x we get that b{x, x) = x * x = 1, b(l, x) = x * 1 = 
= (x V 1) * 1 = x(x * 1) * 1 = (x * 1) X * 1 = (x * 1) * (x * 1) = 1, and b[x, 1) = 
= 1 * X = 1(1 * x) = 1 V X = X. 

3. ARITHMETICITY AT 0 AND THE EXTENDED CRT 

In the proof of Theorem 4 a binary polynomial и satisfying the identities м(х, x) = 
= X, w(x, 0) = M(0, X) = 0 was used. The same polynomial can be found in [4; 
Thm. 1 for и = 2]. Since the presence of the above polynomial can be equivalently 
expressed by a ternary polynomial v such that v{x, x, O) = x, Ü(X, 0, O) = v{0, x, O) = 
= 0 (put t>(x, y, z) = M(X, y) and w(x, y) = v[x, y, 0)) we now introduce the concept 
of the near 0-unanimity polynomial as follows: 

Definition 4. Let A be an algebra with a constant 0, и an /i-ary (n > l) polynomial 
of A. и is called a near O-unanimity polynomial whenever i/(x, . . . , x ) = x, 
W(X, 0, 0 , . . . , 0) = w(0, X, 0 , . . . , 0) = . . . = M(0, ..., 0, X) = 0 hold in A. 

It is well-known that the classical near unanimity polynomials (recall that 
i?(x, y,..., y) = v{y, X, y, ..., y) = ... = v[y, ..., y,x) = у for any near unanimity 
polynomial v) characterize the varieties whose congruences satisfy the extended 
Chinese remainder theorem, see [1, 17] for the details. This fact motivates 

Theorem 5. Let V be a variety with a constant 0. The following conditions are 

201 



equivalent for an integer n > 1: 

(1) (extended CRT at 0) Л [0] 6>, л [a] W + 0 whenever Л [O] O^ л [a] ï^ Ф 

=¥ 0, 1 uj й n.for aeAeV and в^, ..., 0„, Те Con A\ ^^' 

(2) \p\{ke)oW = кщ{кв^оТ for any 6 ) i , . . . , 0 „ , TeConA, AeV; 

(3) There exists an n-ary near ^-unanimity polynomial in V. 

Proof, (l) => (3). Let У4 be a Ffree algebra with n{n> \) free generators x^, ..., x„. 
Take the congruences 

W = ^ ( X i , X 2 , . . . , л:„_1, x„), 

6)1 = (9(xi ,X2, . . . , x „ - - i , 0 ) , 

02 = 6 ) ( X i , X 2 , . . . , 0 , X j , 

0,, = 0(0, X2, . . . ,x^_i , x„) on A, 

Since the hypothesis of (l) is fulfilled for x^ = (2 we conclude that <Xi, u} e W and 
<0, M> e 0i, 1 ^ i й n, for some м e Л. Apparently и is the desired near 0-unanimity 
polynomial of V. 

(3) => (1). Conversely, let и be an w-ary near 0-unanimity polynomial of V. We 
have to prove that (l) holds for arbitrary congruences 0^, ..., 0„, 'F G Con Л. To 

n 
do this take elements c^, .,.,c„eA such that CJE /\[p] 0^ л [a] ?P, 1 ^ j ^ n. 

We claim that w^Cj,..., c„) e Д [0] 6>,- л [a] !F. Clearly w^c ,̂ ..., c j G [a] ï ' since 

<a, Cj} eW for 1 ^ 7 ^ n. Further, c^,. . . , Cy_ 1, Cy+1, ..., c„ G [0] 6)̂ . implies 
<w(0, ..., 0, Cj, 0 , . . . , 0), u[ci, ..., Cn)y G 6)y, i.e. we find that w(ci, ..., cJ G [O] 0^ for 

n 

1 й j й п. Altogether, we have u(c^, ...,c„)e/\ [O] 0i л [a] ^ as required. 
i = i 

(2) =^ (3). Take the same V free algebra and the same congruences as in the proof 
of (1) => (3). 

(3) => (2). This impUcation can be verified similarly as (З) => (1); we omit the 
details. 

R e m a r k 3. It is evident that any n-ary (n > l) near 0-unanimity polynomial w„ 
is also an m-ary near 0-unanimity polynomial u^ for each m ^ n. 

Corollary 1. Let V be a congruence permutable at 0 variety. Then V is congruence 
distributive at 0 iff there exists a binary near O-unanimity polynomial in V, 

Proof. Apply Theorem 2, Lemma 2, and Theorem 5. 

Corollary 2. A near O-unanimity polynomial ensures the congruence distributivity 
at 0 on any algebra with a constant 0. 
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Proof. This can be shown in a similar way as the implication (3) => (l) in the 
proof of Theorem 4. So, let и be an n-ary near 0-unanimity polynomial. From 
X e [0] (e^ V 6)2) л W (see the proof of Theorem 4) we get 

<0, xyeW and 
<aj-, a,+ i> G 6)1, / even, 
<«;, flj+i> e 6)2, /' odd, 

for some elements 0 = aQ,..., a^ = x. Consider the sequence 

0 = u{x, 0, 0 , . . . , 0), u[x, a^, 0 , . . . , 0), u[x, 02, 0 , . . . , 0 ) , . . . , u[x, aj^, 0, ..., 0) = 
= u(x, X, 0, ..., 0), w(x, X, ai, ..., 0), u{x, x, a2,.. -, 0), ..., u[x, x, a^,..., O) = .. . 

, . . = M ( X , X , . . . , X, 0 ) , M ( X , X , . . . , X, « i ) , M ( X , X , . . . , X, «2)» • • -5 w(^> ^» • • -5 ^ j % ) = 

Now it is a routine to verify that x e [O] (в^ л W) v {O2 ^ ^)» as claimed. 

Example 2. Apparently м(х, j ) = x л j ; is a near 0-unanimity polynomial in 
the variety of the л -semilattices having the least element 0. Consequently, the л -
semilattices with 0 are congruence distributive at 0. For the sake of completeness 
notice that the л-semilattices with 0 are in general not congruence distributive; 
consider e.g. the direct product of two element chains 2 x 2 . See [15] for detailed 
information. 

4. ARITHMETICITY AT 0 IN O-REGULAR VARIETIES 

Recall that an algebra Ä with a constant 0 is O-regular if the congruence class 
[0] 0 uniquely determines the whole congruence Э on Ä. A variety F with a constant 
0 is 0-regular whenever each F algebra has this property. H.-P. Gumm and A. Ursini 
discovered in [10] that the 0-regular and congruence permutable at 0 varieties (briefly 
called the ideal determined varieties in [10]) form a very suitable material for a study 
of universal algebra ideals. 

Theorem 6. Let V be a variety with a constant 0. The following conditions are 
equivalent: 

(1) F is ideal determined [i.e. 0-regular and congruence permutable at O); 

(2) there exist an integer m ^ 1 and binary polynomials s, d^, . . . , (i^ such that 

s(x, 0) = X, 
s(x, x) = Jjfx, x) = ... = djx, x) = 0, 
and the implication 
diix, y) = ... = dJx, y) = 0=> X = y 
holds in V. 
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(3) There exist an integer m ^ 1, binary polynomials s, d^,..., d^, and ternary 
polynomials qi, ---^Чт such that 

s(x, 0) = X, 
s{x, x) = di{x, x) = .,. = djx, x) = 0, 
q^ix, y, 0) = X, 
q/x, y, d/x, y)) = qi+i{x, y, O), 1 ^ / < m, 
qjx> y^ djx, y)) = у 
hold in V; 

(4) There exist integers n > m ^ 1, binary polynomials d^, ..., J^, and (3 + m)-
ary polynomials p^, ...,/?„ such that 

Pifx,};,0,0, . . . ,0) = 0, 
p/x, y, y, di^(x, y), ..., djx, y)) = X, 
p/x, y, y, di(x, y),..., djx, y)) = Pi+/x, y, y, 0, ..., O), 1 S i < n, 
pjx, y, y, Ji(x, y),.,., dJx, y)) = y 
hold in V. 

Proof. [8] and [10] together give ( l ) o ( 2 ) . Combining [7] and [10] we find 
that (1) о (3). Hence it remains to verify the equivalence (l) о (4): 

(4) <:> (1). It is a routine to check that d^ix, y) ^ ... = dJx, j^) = 0 imply x = у 
which proves the 0-regularity of V. Congruence permutabiHty at 0 is ensured by the 
binary polynomial s(x, j ) = Pi{x, y, 0, d^ix, y\ ..., dJx, j )) . 

(2) => (4). Put и = m + 1 and p / x , y, z, u^, ..., w j = qj-i{x, y, w^-i), 1 < j ^ 
S п. Further, let Л be a Ffree algebra with free generators x and y. As shown in [10], 
the elements 0 and x belong to the ideal generated by a subset {y, di{x, y),..., dJx, y)} 
of Ä. Consequently, there exists a (3 + m)-ary polynomial p^ (an ideal polynomial 
in the terminology of [10]) such that 

Pi(x,3;,0,0, . , . ,0) = 0 and 

Pi(x, y, y, i i (x , j ^ ) , . . . , dJx, y)) = X. 

The proof is complete. 

Examples 3. (1) Any variety of BCK-algebras is ideal determined. We have already 
proved that any BCK-algebra is congruence permutable at 0. Now define ^^(x, y) = 
== X * y and d2(x, y) = y ^ x. Then d/x, x) = d2{x, x) = x * x = 0. Conversely, 
X * J = 0 and j ; * X = 0 imply x S У and у ^ x, i.e. x = y. 

(2) Following W. H. Cornish [6; p. 484], a 0-regular variety with characterizing 
polynomials J^, ...,d,„ (see Theorem 7) is called strongly 0-regular whenever 
dj{x, O) = X for some j e {l, .. . , m}. Clearly, any strongly 0-regular variety is ideal 
determined. 

Apparently, congruence equalities are closely related to their variations at 0 on 
0-regular algebras: 
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Lemma 3. Let Ä be a 0-regular algebra, n^, П2 two lattice polynomials on Con Ä. 
Then n^ = П2 is satisfied in Con Ä iff[0] n^ = [0] 712 holds on A. 

Proof. Suppose [0] Til = [0] 7Г2. Then [0] тг̂  x [0] тг̂  = [O] П2 x [O] 712 and 
so TTi = 0([O] TTi X [0] TTi) = <9([0] П2 x [0] 712) = Я2. The converse impHcation 
is trivial. 

R e m a r k 4. Notice that Lemma 3 does not hold whenever the operation of the 
relation product is admitted in тг̂ , тгз- Counterexample: BCK-algebras are con­
gruence permutable at 0 but not congruence permutable in general, see e.g. [6] 
and references there. 

Now we want to apply some previous results to ideal lattices of algebras from ideal 
determined varieties. Recall that in this case the ideals coincide with the 0-classes of 
congruences. Hence the meet of ideals [O] W, [0] Ф is given by an evident formula 
[0] W A [0]Ф = \ß]W A Ф. The dual statement does not hold, consider e.g. the 
maximal lattice congruences on the three element chain. The description of [O] W v 
V [0] Ф is given in 

Lemma 4. Let A be an algebra with a constant 0 and let W, Ф e Con A. Then 
(a) [0] W V [б]Ф = [0] 6)f[0] ÎF X [0] ^ u [0] Ф X [0] Ф); 
(b) [0] !F V [0] Ф = [0] W V Ф whenever A is 0-regular. 

Proof, (a) For the sake of brevity put Б = [0] !F and С = [0] Ф. Denote by E the 
congruence on A for which ß v С = [0] л. Then £̂  ^ (Б v C) x (Б v C) 3 
^ (Б u C) X (Б u C) ^ Б X Б u С X С and so £* ^ e{B x Б u С x C). In this 
way we find that E ^ 6)([0] W x [0\W и {0\ Ф x [0] Ф); the converse inclusion 
is trivial. 

(b) It suffices to prove the inclusion [0] !F v Ф Ç [O] ¥̂  v [O] Ф. By hypothesis, 
W = 0f[O] W X [0] W) and Ф = 6)([0] Ф x [0] Ф). Consequently, W v Ф ^ 
Ç e([0] ï ' X [0] ^ u [0] Ф X [0] Ф) and so [O] *F v Ф ^ [O] 6>([0] W x [0]W и 
u [0] Ф X [0] Ф) = [O'jW V [0] Ф, by part (a) of this lemma. The proof is 
complete. 

Since the 0-regular varieties are congruence modular, the ideal lattice of any algebra 
from an ideal determined variety satisfies the modular law. Combining Theorem 4 (З) 
with [8] we get a characterization of the ideal determined varieties whose algebras 
have distributive ideal lattices. 

Theorem 7. Let V be a variety with a constant 0. The following conditions are 
equivalent: 

(1) V is ideal determined and each A e V has a distributive ideal lattice; 
(2) V is 0-regular and arithmetical at 0; 
(3) there exist an integer m ^ 1 and binary polynomials b, d^, ..., d^ such that 

b{x, 0) = X, 
b(0, x) = b(x, x) = di{x, x) = ... = d,j,(x, x) = 0, 
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and the implication 
di{x, y) = '.. = dm{x, y) = 0=>x = y 
holds in V. 

Examples 4. (l) Any variety of BCK-algebras has all the properties mentioned 
in Theorem 7, see Example 1 (l) and Example 3 (l). 

(2) Only the trivial variety of Abelian groups is arithmetical at 0 (and hence 
arithmetical): The binary polynomial Ъ from Theorem 4 (3) can be written in the 
form b[x, y) = mx + ny for some m, n e Z. Then b{x, x) = mx + nx = 0, 
fe(0, x) = nx = 0 and b[x, O) = mx = x imply x = 0, as claimed. 
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