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1. INTRODUCTION AND BACKGROUND 

We will assume that the reader is familiar with the common terms, definitions, 
theorems, and notation of lattice-ordered groups (the reader unfamiliar with these 
can find them either in [2] or [6]) and go on to the following less familiar terms or 
more recent developments. 

An l-variety is an equationally-defined collection of /-groups; from a well-known 
result due to Birkhoff [3, p. 153], a collection i^ of /-groups is an /-variety if and 
only if f^ is closed with respect to /-subgroups, /-homomorphic images, and cardinal 
products of its elements. The /-varieties used in this paper are ê, the /-variety of 
one-element /-groups; £^, the collection of all /-groups; JV, the /-variety of normal-
valued /-groups; and j / , the /-variety of abelian /-groups. A torsion class [18] is 
a collection of /-groups closed with respect to convex /-subgroups, joins of convex 
/-subgroups, and /-homomorphic images. A quasitorsion class [16] is a collection 
closed with respect to convex /-subgroups, joins of convex /-subgroups, and complete 
/-homomorphic images. A radical class [14] is a collection of /-groups closed with 
respect to /-isomorphic images, convex /-subgroups, and joins of convex /-subgroups. 
It is known [12] that every /-variety is a torsion class and clearly every torsion class 
is a quasitorsion class and every quasitorsion class is a radical class. 

For every radical class ^ and /-group G, there exists a convex /-subgroup M(G) 
of G which is the join of all convex /-subgroups of G that are in ^ . By definition, 
M(G) E 0t and clearly m{G) is an /-ideal of G [14]. m{G) is called the ^-kernel of G. 

For any radical class ^ , the mapping G -^ M((J) on the collection of /-groups 
has the following two properties: 

i) For any С e ^(G), ^(C) = Cn ^ ( G ) , 

ii) if ф: G -> Я is an /-bijection, <?^[^(G)] = ^ ( Я ) . 
Conversely, any mapping / on the class of /-groups satisfying the above properties 
is called a radical operator or a radical mapping; such radical operators always 
define a unique radical class ^ such that ^(G) = / ( G ) for every /-group G [14]. 
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If Ш and ̂  are radical classes, define Ж^" to be the class of /-groups G such that 
9'{G\ß{G)) - G\0l{G), m'Sf is then a radical class [15], called the product of 0t 
with Sf. It is known that the product of /-varieties remains an /-variety [17] and that 
the product of torsion classes remains a torsion class [18]. 

Inclusion gives a natural lattice ordering on the collection of radical classes of 
/-groups. This lattice is then complete and Brouwerian [14]. The subcollections of 
torsion classes and quasitorsion classes are complete sublattices of this lattice ([18] 
and [16], respectively.) 

Every /-group G can be represented as a set of order-preserving permutations of 
a totally-ordered set Q [11]. When such a representation is important, we will use 
the notation (G, U) and refer to (G, Q) as an l-permutation group. 

If G is an /-group and (Я, Q) is an /-permutation group, the wreath product 
of G with (Я, Q) [13], denoted G #̂ ^̂  (Я, Q), is the /-group defined on the set ^G x H 
with binary operation (/ i , /zi)(/2, /̂ 2) = {Q, /11̂ 2̂)5 whereof: Q -^ G: À ->/i(Я)/2(^/11) 
and with (/, h) being positive if for all Я e O, Я/г ^ Я and for all Я G 0 with Ih = Я, 
/(Я) ^ e in G. The restricted wreath product of G with (H, Q), denoted G ^̂ ^ (Я, ß) , 
is the /-subgroup of G '^'^ (Я, ß) consisting of those (/, h) such that /(Я) = e for 
all but a finite number of Ле Q. 

The group operation of an /-group will be denoted multiplicatively. Z will denote 
the group of integers and R the group of real numbers under the usual additions and 
orders. For any /-group G, G //J-^ (n) Z denotes the /-subgroup of G iT^ (Z, Z) of all 
elements (/, h) such that if к = m (mod n),f[k) = f{m). 

2. THE PRIME PRODUCT OF TWO LATTICE-ORDERED GROUPS 

In [1] was developed a general theory for obtaining extensions of one /-group Ä 
by another /-group B. Let ^ ( ß ) denote the lattice of principal convex /-subgroups 
of B, ^(Ä) the lattice of cardinal summands of A, and (9{Ä) the /-automorphisms 
of A, Let я be a lattice homomorphism of ^(Л) into ^{A) and a a group homo-
morphism of В into Ф[А) such that: 

i) n{{e)) = (.) 
ii) (т{Ь) lß{B{b))y is the identity for any b e B, and 

iii) for any /?i, b2 Е Б , (j[b^) [n{B{b2))] = n{B{b-[^b2b^)), 
Then, defining (Ö^, Ь^) («2, ^2) = («lo'(bi) («2), bib2) and defining (a, /?) ^ (e, e) if 
Ь ^ e and bX/7) ^ e (where a = B{a) b'{a) and g(a) G n[B{b)) and b'(^) G [7Г(Б(Ь))] ' ) , 
A X В h then an /-group, called in this paper the upper product of A by В deter­
mined by n and (7, and will be denoted A x ̂ ^ B. 

Among the standard extensions of one /-group by another that are upper products 
for suitable n and a are cardinal sums, wreath products, and if В is an o-group, 
lex extensions. We add one more now. 

Let P be a prime /-ideal of B. Then for any b^ and bi in Б, B[b^) n B[b2) £ P 
implies that either b^ or /?2 ŝ an element of P. Thus, if we let cr: Б -> Ф[А) be the 
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trivial homomorphism and define 

<m-\^4X'^ 
n and G satisfy conditions (i), (ii), and (iii). We will call this upper product the 
P-product of A and В and will denote this by A x p B. Note that if P = Б, we have 
the cardinal sum of A and В and if В is an o-group and P = (e), A x p В = A x^ B. 
Note that {a, b) ^ {e, e) in A x pB if Ъ EB^ P ov b eP^ and a e A'^, 

According to the theory developed in [1], У4 x P is a prime subgroup of Л XpB. 
For every (a, e)e A x p Б, a value of (a, e) is of the form M x P, where M is a value 
of a in Л. Thus A x P contains every value of any element of the form (a, e) and so, 
if P is a regular subgroup of В then A x p P is an essential value in Л x pB and so 
is closed. This fact will be used often in the next section in the building of examples. 

3. THE ORDER-CLOSURE OPERATOR 

In [10], Conrad developed the theory of X-radical classes. A K-radical class M is 
a radical class such that for any /-group G e M, jr(G) is an element of a predetermined 
class Tof lattices. Some of the more prominent X-radica] classes are the completely-
distributive /-groups ( ^ ^ ) , the class of /-groups whose root system of regular sub­
groups has a minimal plenary subset (#<;^), the class of /-groups with bases {^^d), 
the special-valued /-groups {9^//tec) which are those /-groups in which every positive 
element is a join of disjoint special elements, and the archimedean /-groups {séicfi). 
For any K-radical class Ш, it is known [10] that ^(G) is a closed /-ideal. In this section, 
we deal with closed-kernel radical classes, showing that for each radical class M, 
there exists a minimal closed-kernel radical class ^^ containing ^ and we discuss 
this closure property. 

Theorem 3.1. Let ^ be a radical class and G an l-group. Define M\G) = cl(^(G)), 
the order closure of M[G) in G. Then G -^ M^(G) is a radical mapping and M^ 
is the least closed-kernel radical class containing Ш. 

Proof. Let С e ^(G). cF(^(C)) = c f (C n ^(G)) = cF(C n ^(G)) ел С ^ 
Я cl^(^(G)) nC.lfe S XE cl^(^(G)) n C, x = yg^ for [g^] ç ^(G)+ and since С 
is convex, each g^ is an element of C. Thus x e c f (^(C)) and so ^%C) = Cn m%G). 

Now let ф: G -> Я be a bijective /-homomorphism. Then ф[M{G)'] = ^{И) and 
so ф\ß\G)'\ = ^\H). So we have a radical mapping. 

Now if .9^ is a closed-kernel radical class containing ^ , clearly ^*^(G) = cl(,^(G)) ^ 
cl(^(G)) = 6e{G) for every /-group G and so ^^ ^ ^ . • 

The following proposition, which is easy to prove, shows that the map M -^ M'^ 
is a closure operator on the lattice of radical classes. 
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Proposition 3.2. Let ^ and 6^ be radical classes. 

a) m^' = ^^ 
b) / / ^ Ç 5 ,̂ ^^ Ç У'̂  
с ) ( ^ n c ^ ) ^ = ^ " n e ^ ^ 

In contrast to the later closure operators we will consider, for any radical class ^ , 
M^ is usually a radical class that closely resembles ^ . In fact, quite a nice result holds 
if we take the closed-kernel closure of a quasitorsion class. 

Tlieorem 3.3. / / ^ is a quasitorsion class, so is 01^. 
Proof. Suppose G - cl(^(G)) and that X is a closed /-ideal of G. Then m{G) n К 

is a closed /-ideal of M{fj) and 
m{G)K ^ m{G) 

к M{G) n К 
which is in ^ . 

However, cl(^(G/X)) - AJK for some closed convex /-subgroup A of G. Since 

G = cl(^(G)) Ç cl(^(G)K) Ç Л, implying cl(^(G/K) = GJK. D 
The above result is not true for torsion classes, however, as the following example 

shows. 

Example 3.4. Let ^^'n be the torsion class of finite-valued /-groups and <9^/г£с the 
quasitorsion class of special-valued /-groups. Then ^IM C= 6^/^^^ and so ^^'n^ Ç 

Let G = fj Z. G is then in W/n^ but G/ ^ Z is not special-valued and so not in 
#-/>/. П '^ ' '^^ 

We should remark here that not every closed-kernel quasitorsion class is ^^ 
for some torsion class ^. The largest torsion class contained in s/isd is Ж^^, the 
hyperarchimedean /-groups, but Ж^/^{С(К)) = (0) and so Ж^/г^'{С(Е)) = (0), 
implying that J^^^Â Ф Ж^^^ and thus J^^^Â Ф ^^ for any torsion class ^, 

At this time, it is not known whether c9̂ /̂ -c = ^^ for some torsion class ^. 
In fact, as far as the author knows, the (unique) largest torsion class contained in 
^ / ^ ^ has not been determined. Along these lines, we can remark that for any 
positive integer n, {^iny^9^^sc, as for any positive integer n, ZiV^"^^ Z is in 
^ / ^ ^ but not in {^in'J. 

Theorem 3.5. The closed-kernel radical classes form a complete lattice under 
inclusion, where M г\^^9' = Ш r\ Sf and M у^9" =-(ß ч Sey, 

The following example shows that the lattice of closed-kernel radical classes is 
not a sublattice of the lattice of radical classes. 
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Example 3.6. Let 

and for each integer n of the real Hne, let V„ be the Hahn group ¥(Гп, R), where 

/:-

For each integer n, we identify the point n of the real line with the top point of Г„ 
to get Л above. 

00 

Let G be the set of functions on A generated by ^ F„ and the continuous functions 
— 00 

on the top real line. G is then an /-subgroup of V(A, R), 
00 

séicâ((j) = {g e G: g{ô) = О for all ô e[j Г„ and such that g has bounded sup-
— 0 0 (DO 

port on the top real Hne}, while Sf ̂ ec{(j) = ^ F„. Since séà,cÂ((j) n Sf ̂ £c((j) = (0), 
— 00 

(j^^^Â V c$^/^^) (G) = j^^€Â{G) Ш c ^ / ^ G ) . 

Let ajß) = 

1, и < 5 < и + 1оп the real line 
Ô — (n — 1) , n — l^ö<non the real line 

-0 + (n + 2), и + 1 < 5 ^ n + 2 on the real hne 
0, elsewhere . 

and define 5, •<'>={ô: 

Graph of an 

Ô = m on the real Hne 
otherwise . 

Then a„ e sé^â{G) for all integers n and s^ e ^^sc{G) for all integers m. The 
function g which is identically 1 for all points on the real Hne and 0 elsewhere is 
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easily seen to be the join in G of {{ci„] u {sj^t}] for all integers m and n, but g ф 
ф ^^4{G) m 9'^.ec{G\ D 

In this, the lattice of closed-kernel radical classes has much the same relationship 
to the lattice of radical classes that the lattice of closed convex /-subgroups has to 
the lattice of convex /-subgroups of an /-group. We review here some of the peculiari­
ties of jr(G) that complicate matters when dealing with the closed-kernel radical 
and quasitorsion classes. 

c€{(j) is not a sublattice of ^(G) [5]; in fact, the join of a tower of closed convex 
/-subgroups need not be closed. If iC is a closed /-ideal of G and A\K is a closed 
convex /-subgroup of G/K, then A is closed in G but if К is a closed /-ideal of G 
and Л is a closed convex /-subgroup of G containing X, A\K need not be closed 
in G\K. Example 3.9 will have such a closed /-ideal and closed convex /-subgroup. 

Lemma 3.7. {т"". ^^)^ = ^^ . ^ ^ 

Proof. ( ^ ' ' ^ ' ) ( ^ ) = cl(^(G/^^(G))) and so ( ^ ^ ^ ^ (G) e jr(G). 

Hence (^^. Se^y = ^^ . ^ ^ П 

Theorem 3.8. The closed-kernel radical classes are a subsemigroup of the radical 
classes. 

Theorem 3.8 is not true for quasitorsion classes, however; in fact, the product 
of a closed-kernel quasitorsion class with itself need not be a quasitorsion class, 
as the following example shows. 

Example 3.9. Let 

•I 1 1 
and let H be the /-subgroup of V(A, Z) generated by 

^ 1 1 1 \ /1 2 3 \ / l 4 9 16 

i^OOO / \ 0 0 0 / \ 0 0 0 0 

and I{A, Z), Then 1{Л, Z) is a prime /-ideal of Я. Let G = i? x ̂ f^^^) H-
sé^â((j) = Rx [he H: h has support only on the lower tier} and GJS^ÏCÂ{G) is 

archimedean also. So G e se^ß}. 
But К — R Xs(A,z) ^(^ ' ^) is ^ closed /-ideal of G and GJK is /-isomorphic to 

Z x'~ Z x"^ Z, which is not in sé^câ'^. 
The map M -^ Ш^ is not a semigroup endomorphism. For let Я be the /-subgroup 

00 

of П -Z'generated by (1, 2, 3,...) and (l, 1, 1,...); let G = Я if^ Z. Then ^in(G) = 
1=1 

CO 00 

= ( E Z •^) X {0} and Gl3Pin[G) is not finite-valued. So S^i^^G) + G. 
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But ^/n%G) = П ^ X {0} and {^см'У (G) = G. 
— 00 

In [15], Jakubik showed that if ^ ç ^ and ^ are all radical classes, then , ^ ' ^ 
need not be contained in S^'^. In fact, an easy example shows that ^ need not be 
contained in ^'^ even for quasitorsion classes, which of course gives Jakubik's 
result if we let Ш = S^ the /-variety of one-element /-groups. For if И is the same 

00 

/-group as in the preceding paragraph, ^1п{Щ = Y^ Z. But Hi^^'^{H) is /-iso-
1 = 1 

morphic to Z X *" Z, which is not in sé^â. So ,^'LCÂ ф ^inséra. 
Jakubfk's result is still true in general for closed-kernel quasitorsion classes. 

CO 

Example 3.10. Let Я be the same /-group as above. Then ^ Z is a prime /-ideal 
o fH. Let G = i? х ^ ^ Я . ^ = ^ 

Let Me<x.^-öum denote the class of /-groups that are cardinal sums of the reals, R. 
Mea^öum is a torsion class [18] and so Msu.^oum'^ is a quasitorsion class. For G, 

i = 1 

That G G M£xb{<ium^'sé^cÂ is plain and Me-a^<ium'^ ^ sé^â is also clear. But 
00 

sé^icÂ[G) = R X g ^ ^ Z and GI^^CÂ{G) is /-isomorphic to Z x^ Z$ séïcâ. 

So M^^a.^'ôum^^sé^Â is not contained in sé^â^. 

Proposition 3.11. / / ^ and ^ are closed-kernel quasitorsion classes, then ^ ^ 

Proof. Let G e ^ . ^ (G) e j r(G) implies that G\Se{G) G ^ . П 
We look now at the minimal K-radical class Ш^ containing a given radical class Ш, 

This is easy to describe in terms of Ш\ Let T be the class of lattices that are iso­
morphic to j r (G) for some G sM. M^ is the K-radical class determined by T. 

Proposition 3.12. J^ /^ / = S^fo^c. 

Proof. Let GeSffo^c with zl(G) being the minimal plenary subset of T{(J). Then 
V{A{G\ R) G 9/^^^ and l(A{G), R) e ^in. So Ж{(}) is isomorphic as a lattice to 
Ж{1{А{(}\ R)) and thus G G ^ / ^ ^ . 

Clearly J^/^^ Ç ^ / ^ / ; . П 

Proposition 3.13. 

Proof. Clearly Ж^/г^ Я s/иЛ. 
Let G G J3f<̂ ^̂ . Then Ж(G) = ^(G) is a complete Boolean algebra. By the Stone 

Representation Theorem [20, p. 51], Ж{G) is isomorphic as a Boolean algebra 
to the clopen sets of a compact totally-disconnected HausdorJBF space X. 

Let Я be the subgroup of C(X, Z) generated by the characteristic functions of 
the clopen sets of X. H is then a Specker /-group [8] and Ж(Н) is isomorphic to the 
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clopen sets of Z as a Boolean algebra. So jr(G) is isomorphic to Ж{Н) and thus 
G E Ж|^/^. П 

Not every closed-kernel radical class is a K-radical class. For let ^ = ^in n se. 
Then m^ = Sf^ec (by the same proof that ^In^ = ^'^e^ and ^"^ Ф 9"^ec as 
Z ^^ (̂2) Z is not in ^^ but is in 9^^ec, 

4. THE POLAR CLOSURE OPERATOR 

In the last section, we defined new radical classes from old by taking the order 
closure of the kernels. In this section, we define new radical classes analogously by 
taking the double polar of the kernels. This yields the class of radical classes whose 
kernels are always polars. Among these radical classes are the completely-distributive 
/-groups, the class of /-groups whose root system of regular subgroups has a unique 
minimal plenary subset, and the class of /-groups with bases. 

Since the lattice of radical classes is complete, for any radical class ^ , the join 
of all radical classes ^ such that Ш c\ 9^ ~ ê exists and will be denoted M^, Clearly 

Theorem 4.1. For any radical class M, M\G) = ^(G)'. 

Proof. Let G be an /-group and С e ^(G). Denote the polar operation in G by ' and 
in С by *. Then т{СУ ^ Cn m{C)' ^ Cn m{G)\ Let e S ge M{C) and e S 
^ heCn ^(G)'. Then 

g A he С n m{G)' n Ш{С) ç Ш{С) n ^(C) = [e) . 
So m{cy = Cn M{G)\ 

Clearly if ф: G ~-> H is a. surjective /-isomorphism, ^[^(G)] = ^(Я), implying 
^[^(G)'] = Щну, Thus the map G -> ^(G)' is a radical mapping defining a radical 
class 9. 

That 9̂" S ^-^ is obvious and for any /-group G, M^{G) n ^(G) = (e) impHes 
m'-G) Ç m{Gy = 9{G). So m\G) = m{G)\ 

Proposition 4.2. If M is a radical class such that for any Ugroup G, ^(G) is 
always a polar, Ш = Ш^^. П 

Theorem 4.3. The lattice of radical classes is a pseudocomplemented lattice 
whose skeletal elements are precisely those radical classes with polar kernels. 

Thus the ,,polars" of the lattice of radical classes have polar kernels. This fact 
will give us a welcome respite from the pathologies of the order-closure operator 
that became evident in the examples of the last section. 

Proposition 4.4. For any radical class M, ̂ ^^ is an idempotent radical class. 
Proof. If m'-^Gy = (e), G = ^^-^(G)" = ^-^-^(G). 
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If ^^\Gy Ф {e) and M'-^G) Ф {M'-^f (G), A = {ß^'f (G) n 0t\G) Ф [e\ But 

and so Л ç ^ - ^ ^ ( G ) , a contradiction. П 

Corollary 4.5. ^d^ iöö^ and ^a^6 are idempotent radical classes. 

Proposition 4.6. No proper quasitorsion class is a polar kernel radical class. 

Proof. Let ^ be a proper quasitorsion class. Let G e ^ and let (Я, Q) be an 
/-permutation group which is not in ^ . Let A = G ш^ (Я, ß) . Then M{Ä) — ^G 
and A\m{Ä) c- Я which is not in M, But m[Ä)" = Л. П "'"'' 

This of course shows there exist idempotent radical classes that do not have polar 
kelners, for Ж , the /-variety of normal-valued /-groups, is idempotent. 

Clearly the map ^ -> M^^ is a closure operator and M^\G) = M{Gy, This closure 
operator will be much nicer than the order-closure operator but does not have much 
resemblance to the original radical class. 

Lemma 4.7. For any radical classes Ш and ^ , 

Proof. 

^ ^^ ^ ^̂  (e) 0t{0t\G^) ^ \0l{0t\G))) ^ ^ I j 

Theorem 4.8. The map Ш -> Ш^^ is a semigroup endomorphism. 

Proof. First, both {Жб^У^ (G) and (m^^*^^^) (G) are polars of G. 
Suppose that {M'S^Y^ (G) ф (^-^^•^^•^) (G) for some /-group G. Then 

{Жб^У^ (G) n (^^-^•^^•^)-^ (G) ф (e). Let г < j ; be in this intersection. Then 
у G m\G) and so y e {Ж^^У~ (^^(<^)) = ^^\^\G)) = (^-^-^-e^^^) (^^(G)) ç 
£ (^^•^•^-^•^) (G), a contradiction. 

Conversely, suppose {M^^'Sf^^) (G) ф {^9")^^ (G). Then (^^-^•^-^-^) (G) n 
n ( ^ ' ^ ) ^ (G) Ф {e). Let e < X be in this intersection. Then x e (т^^'У^^) (G) n 
n ^^(G) = ^^^Щ"- (G)). But .^(^^(G)) с ( ^ • ^ ) (G) implies that C^^-^(^-L(G)) С 
Ç ( '̂c^^)-^-^ (G), also a contradiction. Q 

Corollary 4.9. The polar radical classes are a subsemigroup of the radical 
classes. 

Corollary 4.10. For any ordinal oc and radical class M, iß'^Y^ = M^^, 

Proof. Suppose for any ordinal ß < a, {0Y^ = ^^^. 
Then if a = 7 + 1, {m^f^ = [Ш^'Щ^^ = {^^^*т^^ = ^^^^^^^ = M^\ 
If a is a limit ordinal, M"- = \J 0 and so ^^ Ç M^^ impHes -̂̂ -̂  с (^«)-^-^ с ^-L-L. Q 

This now allows us to answer a question raised by the author in [4] . 
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Corollary 4.11. For any ordinal a, 9^у/гес- ^ ^d. 

Theorem 4.12. A polar kernel radical class is closed with respect to l-homo-
morphic images by normal polars. 

Proof. Let <9̂  be a polar kernel radical class, С е У , and P be a normal polar of G. 
Then Р'еб^ and P ' ^ {P' Ш P)lP implies that (P' Ш P)lP ^ ^ (G/P) . But 9{GIP) = 
= QjP for some polar ß of G and Р ' Щ Р ^ Ô implies that 0 = G. So GjPeS^. D 

Corollary 4.13. If ^ ^ 9 are polar kernel radical classes, then Ш*9 — 9. 

Corollary 4.14. If ^ ^ 9 and ^ are polar kernel radical classes, Ж^ ^ 9"'^, 

Corollary 4.15. If Ш "=, 9" and 9' ^ % are all polar kernel radical classes, then 
m'9' ^ 9'^. 

Theorem 4.16. The polar kernel radical classes are an Isubsemigroup of the 
radical classes. 

One might be tempted to investigate radical classes whose kernels are always 
cardinal summands. These classes of /-groups, however, are not very interesting. 

Proposition 4.17. J^ and ê are the only radical classes whose kernels are always 
cardinal summands. 

Proof. Suppose not. Thus there exists a proper radical class ^ such that G = 
= ^(G) Ш ̂ \G) for any /-group G. Let (e) Ф Ae M and (^) Ф P G ^ ^ ; let G = 
= (У4 Ш ^) X ^^' ^{G) == ^, which is not a cardinal summand of G. П 

5. CLOSURES WITH RESPECT TO /-HOMOMORPfflC IMAGES 
AND TO /-SUBGROUPS 

If {M;} is a collection of radical classes that are all closed with respect to /-sub­
groups or are all closed with respect to /-homomorphic images, then clearly П^д is 
hkewise closed with respect to /-subgroups or /-homomorphic images, respectively. 
Thus, since the lattice of radical classes of /-groups is complete and since J^, the 
/-variety of all /-groups, is a radical class, we have the following theorem. 

Theorem 5.1. For any radical class M, there exists unique minimal radical 
classes Ш^ and ^ ^ closed with respect to l-subgroups and l-homomorphic images, 
respectively, that contain Ш. Moreover, the collections of s-closed and h-closed 
radical classes form complete lattices under inclusion. 

Clearly the mapping Ш -^ M^ and Ш -> ^^' are closure operators on the lattice 
of radical classes. Since these operators are not based on the convex /-subgroup 
structure of the /-groups, the results in this section are not nearly as nice or complete 
as in the last two sections. 
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Proposition 5.2. For any radical class Ш, 0t is the least torsion class that con-
tains M. 

Proof. ^^ is a radical class that is closed with respect to /-homomorphisms and 
so is a torsion class. Clearly if ^ с ^ and ^ is a torsion class, Ш^ ^ 9". П 

The following is an immediate consequence. 

Corollary 5.3. The h-closed radical classes form a lattice subsemigroup of the 
radical classes. 

We can also construct the kernels of ^^ and ^^ from that of ^ by using the following 
lemma. 

Lemma 5.4. Let 6^ be a class of l-groups that is closed with respect to convex 
l-subgroups. Let G be an l-group and define ^(G) = V { ^ ^ ^(G): С is Uisomorphic 
to an element of .9"). Then G -^ ЩС) is a radical operator which generates the 
least radical class containing 9^, 

Proof. Let Ce'êiG), m{C) - \/{DE'^{C): D is /-isomorphic to an element 
of 9} = V{C n D: De ^ ( G ) and D is /-isomorphic to an element of c^} = С n 
n A{i) e 9'(G): D is /-isomorphic to an element of ^ } = С n ^(G). 

If ф: G -^ Я is an /-bijection and if Ce^(G) with С being /-isomorphic to an 
element of 9, then ф{С) is also /-isomorphic to an element of ^ and so ф(ЩG)) = 
= ^ ( Я ) . So we have a radical operator and this clearly must generate the least 
radical class containing ^ . П 

Proposition 5.5. For any radical class 01 and l-group G, ^\G) = \/{C E^<^(G): 
there exists Я e ^ and Le ^{И) such that С '^ HJL}. 

Proof. Let ^ be the collection of all /-homomorphic images of elements of ^ 
and let ^ denote the class of all /-groups G that equal V { ^ e 6^ n ^(G)}. 

To apply the above lemma, we must show that 9 is closed with respect to convex 
/-subgroups. But if Я e ^ and С G ^(Я) , then Я ^ KJL for some Ke^ and 
LeSe{K\ implying that С c:=̂  B\L for some L ç Be^{K). So С e 9 and ^ is 
a radical class. 

Now let G G ^ and M e if(G). 
GjM = \/{CM\M:Ce6/' n^{G)], But each such CMJM is /-isomorphic to 

C\{C n M) which is in 9 and so G\M e ЗГ. We have, then, that Ш^ <^ ^ and clearly 
^ Ç ^^ D 

The description of Ж is nearly as easy. Let ^ be a radical class and Ш^ be the 
radical class generated by all /-subgroups of elements of ^ . Since the lattice of /-
subgroups of an /-group is not Brouwerian, we can not claim that M^ — Ж. So 
define M2 to be the radical class generated by all /-subgroups of elements of M^ ; 
define ^ 3 , ^ 4 , . . . analogously. It is easy to check, then, that Ж — \l^i. 

Proposition5.6. For every nontrivial polar kernel radical class M, Ж = ^^ = j ^ . 
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Proof. If ^ = if, we are done. Otherwise, let [e) Ф G e ^ and let (Я, Q) be an 
/-permutation group not in M. Then G if^ (Я, Q)e^ and so Я e ^\ Likewise, 

^ ^ Gir,{H,Q) ^ 

The last proposition enables us to say that ^^\ ê<i<f, and ^£ü<f all equal S£. Also 
well-known [9] are that sé^câ^ = sé^Â, Ж^^^г^ = Ж^/г, and ^ / ^ ^ = J^/^. In 
[19], [1], and [4] are various proofs that 9^^sc = Jf. 

Proposition 5.7. For any two radical classes Ш and У , {^^^9"^^ = ^ ^ ' ^ ^ and 

Proof. The first is true since the product of torsion classes is a torsion class. For 
the second, m'9 is clearly contained in m^'9^ and so {m'9f ç m^'9^. It is not 
known if m^'9^ я (Ж^у. 

Thus the /z-closure behaves relatively nicely through the product of two radical 
classes. The map ^ -~> ̂ '^ is easily seen to be a lattice homomorphism. П 

In marked contrast, Martinez [18] has shown that ^^ v 9^ need not be closed 
with respect to J-subgroups and so the s-closed radical classes do not form a sublattice 
of the radical classes. We now show that sé^â*^иЛ is not closed with respect to 
/-subgroups, demonstrating that the 5-closed radical classes are not closed under 
multiphcation. 

Example 5.8. Let Я be the /-group of Example 3.9 and let A be the /-subgroup 
of Я generated by 

and 

and 0 XpJ?, where P = J ] ^ - ^ ^ ^ 4 ^ ) = Z ^ ><F^' ^̂ ^̂  A\sé^câ{A) is /-iso-

morphic to Z X *" Z X ^ Z, which is not archimedean. 

6. INTERCHANGING ORDERS OF CLOSURES 

In this section, we show that usually the four closure operators outHned earlier 
do not commute with one another. 

Example 6.1. There exists a radical class M such that M^^ ф ^^^' Let Ж<)иш 
denote the torsion class of cardinal sums of 2^. Then S^oum^ == Жоиш while R ф 
Ф ^oum". Thus R Ф ^<И1<12г^^. But since 2^<ium^ includes all cardinal products of 2£^ 
Stoum""^^ [21] includes all abehan /-groups. 

Proposition 6.2. For any proper nontrivial torsion class ^ , 9'^^ Ф 9'^^. 
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Proof. Let сГ be a proper nontrivial torsion class. Then ^^ is a proper nontrivial 
polar radical class and so 5'^^ = S£. Clearly ^^^ = ^^^ Ф ^ . • 

Proposition 6.3. For any radical class Ш, M^"" = ^^ = Ш^, 

Proof. This is clear since polars are closed convex /-subgroups. Q 

Example 6.4. There exists a radical class ^ such that M'^^ Ф ^^''. Let M = 
= se сл^гп. Since for every root system A, 2'(zl,jR)e^, 7 (Л , / ? )б^ ' ' for every 
root system A and so ^ " = se. 

But ^^^ = ^'^ Ç ^ ^ ; thus C{B) Ф m''. 

Example 6.5. There exists a radical class ^ such that 01^^ ф Ш^\ Let ^ = Л. 
Then Jf'^ = Л'Р Ф ^ while Л^^ = ^ . 

The remaining possibihty is whether or not Ш^^ = Ш^^ for every radical class M, 
Thus far no proof is known of this result and no counterexample is known. Indeed, 
in a surprising number of cases (though not all), 01^^ and Ж^ turn out to be /-varieties. 
This indicates that the 5-closure and the /z-closure might be strongly linked in some 
way. The following is a result in this direction and shows what can happen when one 
concatenates the various closure operators. 

Proposition (i,^, A radical class M is an l-variety if and only if ^ = M^^^^, 

Proof. One direction is clear. For the converse, let G e ^ = 01^^^ and let Л be an 
/-subgroup of G. Since M' Ç ^'^'^ = Ш, AeM. 

If L e J^(G), then G\Le Ш^ ^ m'^ ç т'^"" = т. 
Finally, if {G^} Ç ^ , then TlG^^e^'' Ç ^^ '̂̂  - m, and thus M is closed with 

respect to /-subgroups, /-homomorphic images, and cardinal products. So M is 
an /-variety. Q 

Concatenating the closure operators also allows us to obtain sé^â from Jf |^ / . 

Proposition 6.7. sé^cÂ = Ж^/^'^''^'. 

Proof. Let G be an archimedean /-group and let X be the Stone space of ^(G). 
Then G can be viewed as an /-subgroup of ^ ( Z ) [7]. However, for any topological 
space Z , ^ ( Z ) is the order closure of C(X), 

Now since R e Жу-fi, every cardinal product of reals is in Ж^^/г"', therefore, for 
every topological space Z , C(X) is in Ж^^''^ So Q){X) is in ^ ^ / / ^ ^ and thus 
G e Ж^/г''''. 

Clearly Ж^/i'''' с ^^^Â. Q 
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