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A universal algebra (Q, fy, f2, f3) is called a primitive quasigroup if f, and f; is
respectively the left and the right division operation of the operation fy; if f; is
denoted by (+) then put f, = ~, f3 = \, thus (Q, -, ~, \) means a primitive
quasigroup.

An identity w = w' on a primitive quasigroup is called balanced if each variable
appears exactly twice in w==w’, once on each side. An identity on a primitive
quasigroup (Q, *, ~, \) is called strictly balanced if it is balanced and contains
neither ~ nor \.

In [4] J. Jezek and T. Kepka found all varieties of quasigroups determined by
a set of strictly balanced identities of length <6; there are eleven such varieties.
In this paper we find all varieties of quasigroups determined by an identity of the
set of all balanced identities of length <6 on a primitive quasigroup (Q, *, ~, \).

1. NOTATIONS AND PRELIMINARIES

Let (Q, *, /, \) be a primitive quasigroup; we shall denote L,x = a . x, R,x =
=x.a, T,x = x~a. Then L;'x = a\x, R;'x = a / x. Further we denote 7 =
={L,R, T,L"",R™*, T™'} and say that for each X € 7 and a € Q, X, is a transla-
tion of (Q, +). If a quasigroup operation is denoted, say, by [J, then write L, RD, ...

I8 ={IF,R5,..}.For (Q,", /,\)put 27 =7 v I v I

If (Q, A) is a quasigroup and A4 is denoted by (+) then put ~'d = /, A7 = \,
AT =V, (A =A, (A7) =% and 2(*)={-, /,V,A % \}.
Relations between translations of 27 are given in Table 1.

From this table we have, for example, (L™')Y = R, TY = Letc, x.y = z iff
y*x =z iff z/y = x etc. Thus each translation of a quasigroup (Q, ), where
O € X(+), is a translation of (Q, *).

1.1. Lemma. Let w = w’ be a balanced identity of length <6 on a primitive
quasigroup (Q,+, 7, \). Then there exist operations [y, Oz, O3, e 2(¢)
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such that w = w' is equivalent with at least one of the identities
@ xOi(yOp2) =x0s5(y Oa2)s
(IT) xO;(yOr2) = (x0s9) Qs 2.
Every primitive quasigroup (Q, *, 7, \) that satisfies the identity (II) is transitive
(ie. (@, ), (Q, 7). (Q, \) are all transitive quasigroups).
Proof. See [2, Lemma 1.1].

Table 1
i * / A" N A
- J
L L R 71 R Lt T
R | R L R~ 71 T L1
T | T 71 L™t L R R™1!
L~ ot Rt T R L T-1
R i R L1 R T 71 L
71 [ 771! T L Lt R~ R
i xX.y=z yEX= 2z zZ/y=Xx I Wz=x x\z=y ZAx=y

1.2. Lemma. Each of the identities 1, Il on Z(+) is equivalent to a balanced
identity on a primitive quasigroup (Q, 7, \).

Proof. It is a consequence of the following statement: For [J; € {*, V, A} there
exists (] €{-, ~, \} such that for all x, y, x (I; y = y [ x (see Table 1).

2. QUASIGROUPS DETERMINED BY IDENTITY I

Let 4, B, C, De XT; denote by Mod (AB = CD) the class of all quasigroups
(Q, ) such that A,B,y = C.D.y for all x,y,z in Q; if A= C and B = D put
Mod (AB = CD) = M(AB).

2.1. Lemma. For every A, BeXJ there exist C,DeJ such that M(AB) =
= M(CD).
Proof. See Table 1.

2.2. Lemma. Let (Q, -, /, \) be a primitive quasigroup. Then the following
relations are equivalent:

(i) there exists a balanced identity of length <6 of type I that is valid on (Q, -,
/,N);
(i) there exist A, B, C, De J such that (Q, ) € Mod (4B = CD).

Proof. It suffices to rewrite I with translations and to use Table 1.

600



2.3. Lemma. A quasigroup (Q, +) € M(AB) iff there exists a permutation ¢ of Q
such that A.B, = ¢ for all xe Q.

Proof. Easy.

A quasigroup (Q, *) is called an LIP (or RIP)-quasigroup if there exists a permu-
tation I, (or I,) of Q such that for all x,ye Q, I,)x.xy = y (yx.Ix = y, respec-
tively). A quasigroup is called an IP-quasigroup if it is both an LIP- and an RIP-
quasigroup. A commutative IP—quasigfoup is called a CIP-quasigroup. Let (Q, *)
be a loop, e the identity of (Q, *) and x . I,x = e for all x € Q; a loop (Q, *) is called
a WIP- or a Cl-loop if for all x, y € Q, x . I(xy) = Iy or xy . I,x = y, respectively

(see [1]).

2.4. Lemma. For each A, Be J let there exist a permutation ¢ of Q such that
AB, = ¢ for all xe Q. Then

(1) L.L, =QeX.Xy=Qy (16) T,'L, =¢@<=ox.yx=y
(2) T.RY' =¢<=x.o(xy)=y (17) T7'T7' = @< px.p == yx
(3) T.'R, =@ ox.xy==y (18) R.L;' = @< o(xy)=yx
(4) Ly'R, = @< xy=yox (19) 447" =¢p=>0¢=1

ES; LR, =@ X.yx =20y §20§ A,CA_Y1 =p=>0p=1

6) R.T, =¢<x.px=9y 2l) TL.RY" =o¢=¢=1

(7) T.R, =o¢owxy.ox=1y (22) L;'R, =¢=9¢=1

(8) LT, =o¢=xy=y.¢x (23) T,'R, =o¢=¢>=1

(9) LR;' = ¢<xy=0¢(yx) (24) T.L, =p=>0*=1
(10) R.R, =@ yx.xX =@y (25) LR;' =¢p=¢*=1
(11) T7'LYY = g o(yx).x =y (26) L.L, =¢p=TR'=9
(12) TL, =o¢<=yx.px=y 27) L'R, =¢=TT.=¢
(13) RJ'L, =gexy=9y.x (28) LR, =¢<RT,=¢
(14) RL, =o¢<xy.x=gqy (29) TR, =o<=L'T.=¢

(15) LT;' =¢<xy.x=¢y

Proof. The relations (1)—(9) are duals of (10)—(18); we prove only (8): T.T, = ¢
iff for every ye Q, T,y = T, 'oy iff x = y. Ty 'y iff T, "¢y =z, and x = yz
iff x = zpyand x = yziff z. ¢y = yz. Further, we prove the implication: L,L, = ¢
for all x implies ¢ = 1. If we put xy = yin x.xy = @y then y = xy = x . xy =
= ¢y, i.e. ¢ = 1. It follows from Table 1 that for each 4 € 7 there exists [] € Z()
such that A = I7. Therefore 4,4, = ¢ implies [5L] = ¢, hence ¢ = 1; this proves
(20). Now, we prove (21): Let T,R;' = ¢, then by (2), x. ¢(xy) = y and if we
write xy instead of y, x. @{x . xy) = xy whence ¢(x.xy) =y, i.e. x.xy = ¢~ 'y
and by (20), ¢! = 1 = ¢. Further, let us prove (22): From Table 1 it follows that
L;'R, = ¢ iff T(RL)™! = ¢ so that, by (21), ¢ = 1. (23) and (24) are known pro-
perties of IP-quasigroups. (25) follows from (9). (26) follows from (20), (21), (1)
and (3). (27) follows from (4) and (8). (28) follows from (5) and (6). (29) follows
from (7) and (16).
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2.5. Lemma. For each A, Be 7, M(AB) = M(B~'4™").
Proof. Easy.

2.6. Theorem. The following relations hold:
M(LL™') = M(RR™!) = M(TT"!) = M(L™'L) = M(R™'R) = M(T™'T),
M(L™'R) = M(R™'L) = M(TT) = M(T~'T?),
M(LL) = M(L7'L™") = M(TR™') = M(RT" "),
M(RR) = M(R™'R™") = M(T™'L™!) = M(LT),
M(T~'R) = M(R™'T),

M(TL) = M(L"'TY),

M(LR™') = M(RL™?),

M(LR) = M(R™'L™!) = M(RT) = M(T 'R %),

M(RL) = M(L"'R™") = M(LT™') = M(TL™}),

M(TR) = M(R™'T™") = M(L™'T) = M(T"'L).
Proof follows from Lemmas 2.3, 2.4, 2.5.

2.7. Lemma. Let (Q, *) be a quasigroup and ¢ a permutation of Q such that
x.yx = @y for all x,ye Q. Then
(i) xy. ox = @y forall x,ye Q;

(ii) @ is an automorphism of (Q, *);
(iii) xy = @yx for all x,y < ¢x.xy = y for all x,y < R =1 for all x;
(iv) LR;' = ¢ for all x <= T, 'R, = ¢ for all x.

Proof. (i). From x.yx = ¢y we have yx.(x.yx) = yx. @y, ie. LR, x =
= yx . @y, therefore px = yx. ¢y, i.e. R, L, = ¢. (_ii). From x . yx = ¢y we have
(x.yx).0x = @y . ox, ie. R,.Lyx = ¢y .ox and by (i), oyx = @y . ox. (iii).
We prove the implications xy = @yx = ¢x .xy = y = yx.x = y = ¢(xy) = yx.
Let xy = @yx; then 9> = 1 so that from x . yx = @y we have o(x. yx) = (P(<P,V) =
= y, whence @x . @yx = y and also ¢x . xy = y, i.e. L, L, = 1. From (ii) we have
oL, = L,.0, whence L, = ¢L,.¢ = LR L, LR, =LR> so that RZ = 1. If we
write yx instead of y in x . yx = @y then x(yx . x) = @yx and according to R} = 1,
xy = @yx. (iv) directly follows from (iii).

2.8. Lemma. L;'T, = 1 for all x iff T.R, = 1 for all x iff R,T, = 1 for all x iff
LR, =1 for all x.

Proof. Directly follows from (29) and (28).

2.9. Lemma. R, = T, for all x iff I2. = 1 for all x.

Proof. Directly follows from (26).
A commutative quasigroup (Q, *) is called a TS-quasigroup if x . xy = y for all

x, y € Q.
2.10. Lemma. If for all x,y€ Q, L.L, = R,R,, then a quasigroup (Q, *) is
a TS-quasigroup.
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Proof. From (20), (26) and the dual of (26) we obtain L.L, = ¢ = R,R, = | =
=T.R;' and T.'L]' =1, whence L;'=R,. Since I2 =1 (ie. L = L;"),
L =R,

2.11. Lemma. If (Q, ) is a TS-quasigroup then for every e X(-), (Q,*) =
=(Q.0) and (Q, O) is a TS-quasigroup.

Proof. Obvious.

By @ we shall denote the group of all central regular permutations of a quasigroup
(2. )

2.12. Lemma. The following relations hold:

(i) Mod (LR == R™'T~') = Mod (LR = T~ 'L),

(ii) (Q, *)eMod (LR = R™'T"") and ¢ = LR, for all x implies ¢ € ®, ¢*> = 1,
¢ is the dual of ¢ (as a central regular transformation), and for each x € Q,
[ZR2 = 1.

Proof. From (29) it follows that R,T,' = ¢ < T, 'L, = ¢; this proves (i).
Now, (ii). From (5) and (7) we obtain (iii) x . (¢"'y) x = y and (iv) x. yp 'x = y
whence (v) ¢ 1y . x = y. ¢ 'x, therefore ¢ ™' € @ (as wellas p € D), (¢~ ')* = ¢!
and yx = @y . ¢ 'x so that (¢, ¢~ 1, 1) is an autotopy of (Q, ). From (iv) we have
(vi) xy. ¢ 'x = y and by (v), ¢ (xy).x = y and (vii) (¢x) y . x = y; therefore
¢ Y(xy) = @x.y, ie. (¢, 1,97 ") is an autotopy of (Q, +). Then (¢, ¢~ ', 1)7".
Ao, Lo D) =(1,0.0", (0. 1,07")(1,0,07") = (¢, 9, 9™?) are autotopies of
(Q, *). By Lemma 2.7 (ii), (¢~', ¢~', ¢') is an autotopy of (@, -) so that
(™o o) (0.0, ¢ ?) =(1,1,973%) is an autotopy of (Q, ). Therefore
¢ % =1,i.e. ¢*> = 1. From(vi) we have (¢x) y . x = yandsince p € B, xpy . x = y,
ie. R.L,= ¢ !; therefore | = ¢~ '¢ = R,.L,L.R, and so LZR? = 1.

2.13. Theorem. Let (Q, ) be a quasigroup and ¢ a permutation of Q such that
x.ypx =y for all x,y€ Q. Then ¢ is an automorphism of (Q, *). If (Q, *) is
a loop then (Q, +) is a WIP-loop and a Cl-loop.

Proof. Obviously, x . ypx = y is equivalent to xy . ¢x = y. Therefore (xy . ¢x).
coxy = ox, (i) y.oxy=ox, (y.0(xy) oy =0¢x.0y, oxy=0¢x.py. Let
x.I,x = 1forall x. Since xI,x . ox = I,x, 1. x = I,x, i.e. ¢ = I and so with respect
to (i), the loop (Q, +) is a WIP-loop and by the assumption a CI-loop as well.

2.14. Theorem. Let (Q, *) € M(LR). Then (Q, *) e Mod (LR = T™'L)iff LR, = ¢
is a central regular permutation of (Q, *) and ¢ = ¢*.

Proof. Let pe ®, ¢* = ¢. Then ¢ ' e ®, (¢*)"! = (¢~ ")*. From LR, = ¢
we have x. (¢ 1y)x = y: since ¢ '€ P, x.y(p"'x) = y, whence xy . ¢ 'x = y
and with respect to (7), T,R, = ¢~ ', i.e. R7'T; ' = ¢ and by (29), ¢ = T 'L,.
The converse follows from Lemma 2.12 (ii).

We shall denote by Mod (w = w’) and Mod (w — w’) the variety and the quasi-
variety of quasigroups determined by an identity w ==w' and the quasiidentity
w — w’, respectively.
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We define 17 varieties:

(30)
V, = M(LL™") Vg = Mod(LL* = LR) Vi3 = Mod (LR™! = LR)
V, =M(L"'R) Vy = Mod (L 'R =LL) Vis = Mod (LR = R™'L™%Y)
V, = M(LL) Vio = Mod (T™'R = TL) Vs = Mod (LR =L 'R™")
V,=M(T"'R) V;; =Mod(T 'R=LR™") Vs =Mod(LR=R T
Vs = M(LR™') V;, = Mod (T™'R = TR) Vi; = Mod (TR = R™'T™1)
Vs = M(LR)
V, = M(TR).

By V;" we shall denote the dual variety of V; forie {1, 2,..., 17}.

2.15. Theorem. Let (Q, *) = G and ¢ denote a quasigroup and a permutation
of Q, respectively. The following relations hold:

V, = Mod (x.yz=x.yz) = V§; V| is the-variety of quasigroups.

V, = Mod (x.yz=yz.x)= V3 V, is the variety of commutative quasigroups.

V, = Mod(x.xy=1z.zy) = Mod (x.xy==y).

Vo, =Mod(x=t.zx>y=t. zy); Vg is the variety of LIP-quasigroups.

Vs = Mod (xy =tz = yx = zt) = Vi; Ge Vs if there exists ¢ such that yx =
= ¢(xy) for all x, y.

Ve = Mod (x.zx==y.zy); Ge Vg iff there exists ¢ such that x.yx = @y for

all x, y.

Mod(x =tx.z -y =ty.z) = V3 GeV, iff there exists ¢ such that

xy.ox =y forall x, y.

Vg = Mod (x.yz) x == yz) = V§ = Mod (x . yx == y).

Vo, = Mod (x.xy = yz.z) = Vy; Vg is the variety of TS-quasigroups.

Vio=Mod(x =t.zx ey = yz.1) = Vyo; Vo is the variety of IP-quasigroups
with I, = 1,.

Vi, = Mod (xy . (yx.z)=1z); Ge Vyy iff (Q, \) € Vyo.

Vi, =Mod(x =tx.zeop=z.ty)=Vi,; Vi, is the variety of CIP-quasi-
groups.

Vi3 = Mod (x(zy . x = yz); Ge V; iff (Q, \) e Vy,.

Vs = Mod (x(yx .x).y=1z); GeVy, iff there exists ¢ such that for all x,y,
x.yx = @y and @* = 1.

Vis = Mod (x . y(zx . y) = z) = V{s; Ge Vys iff there exists ¢ such that for all
X, VEQ, x.yx =@y and xy.x = ¢ 'y.

Vie = Mod ((x . yx) z. y = z); Ge Vyq iff there exists ¢ such that for all x, y,
X.yx =@y, 9P, ¢ = p*.

Vi;=Mod(x =tx.ze y =zy.t) = Vy;; Ge Vy, iff there exists such that for
all x, y, xy . px = y and ¢* = 1.

T
I

Proof. The relations on V; are obvious. The relations on V, follow from (4)
and (22). From (20) and (1) we have the relations on V3. The second relation on V,,
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follows from (3) and (23); the first relation is obvious. The relations on V;—Vs
are easy. The relations on V, follows from Lemma 2.10. The relations on Vjo
follows from (3), (12) and (23). On V: T, 'R,y = LR;'y< T, 'R.R.y =
=Ly<xy.(yx.z) =z By Table 1, T, 'R, = LR;' < (R))"' T, = (L))" -
AT '« (T)) 'R} = ToLy < (Q, \)€ Vio. On V,,: Obviously T, ' = T,, i.e
T,T, =1 and by (27), L, = R,; therefore Mod (T~ 'R == TR) = Mod (T 'R =
== TL) = Vy,, thus V;, = V;, 1 V,. Further, y = t.zy < T, 'Rz = t <

< TR,z =t<zx .t = x. Analogously we prove the relations on V3, V 4, V5>
V7. Lemma 2.12 and Theorem 2.14 yield the relations on V4.

2.16. Example. Let (C, +, *) be the field of complex numbers, a,b,ceC,a.b # 0
and xoy=a.x+ b.y + ¢ for all x,yeC. Then (C,o) = Q is a quasigroup
and the following relations hold:

QeV, iff a = b, QeVs iff a® b%,

QeV; iff b = -1, QeVs iff a = —b%,

QeV, iff b*= 1, QeV, iff a.b=1 and ¢c=0.
The varieties Vy, ..., V,, Vi, VE V¥ are pairwise different.

Proof. Easy.

2.17. Lemma. Let (Q, *) be a quasigroup and A, B, C, D e 7. If M(AB) = M(CD)
then there exists d € {1, —1} such that

AB,Y = C,D, forall x,yeQ.
y=y

Proof. If A, Be 7 then there are 6.6 = 36 varieties M(4B). Each of them occurs
in some relation of Theorem 2.6. The rest of the proof follows from Lemma 2.16,
(30), Theorem 2.6 and (26)—(29).

2.18. Lemma. Let (Q, ) be a quasigroup, A,B,C,D,E,F,G, He . If
(4,B,)* = 1, M(AB) = M(EF) and M(CD) = M(GH) then Mod (AB = CD) =
— Mod (EF = GH).

Proof. By Lemma 2.17, AB = (EF)’ and CD = (GHY (indices are omitted),
where 8,ee{l, —1}. If AB = CD then with respect to AB = (4B)™' we have
CD = (CD)™', AB = EF and CD = GH, therefore EF = GH and thus
Mod (AB == CD) = Mod (EF = GH). From the symmetry we obtain the converse.

2.19. Theorem. For each A, B, C, D € 7 there exists at most one i € {1,2, ..., 17}
such that Mod (AB = CD) e {V,, V{}.

Proof. In the proof we shall write AB = CD instead of Mod (AB == CD). Ac-
cording to Theorem 2.6, Lemma 2.18 and (19)—(25), it suffices to consider all
varieties given in Table 2.

From 61 varieties given in Table 2, the following pairs are dual:

(11, 11) (21, 21) (31, 41) (51, 61) (71, 71) (81, 91) (12, 12) (22, 32) (42, 52) (62, 62)
(72,82) (92,92) (13, 14) (23, 23) (33, 34) (43, 24) (53, 44) (63, 64) (73, 54) (83, 74)
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(15, 61) (25, 25) (35, c1) (45, el) (55, d1) (65, 1) (a1, 91) (b2, b2) (c2, d2) (e2, e2)
(b3, b4) (3. c4) (d3, d3) (€3, €3) (f3, ed) (g3, d4) (b5, b5) (¢S5, ¢5).

Table 2
‘ 1 1 2 3 4 5

|
I (LL7'=LL™' |L7'R=L7'R|LL=LL RR = RR T-'R=T"'R
2 L7IR| LL RR TR TL
3 LL | RR T 1R TL LR~
4 RR TR TL LR™1 LR
5 T 'R TL | LR™! LR RL
6 L | LR™! LR RL TR
7 LR~ LR RL TR
8 LR | RL TR
9 RL ! TR
a TR :
b TL=TL | LR '=~LR '/ LR=LR RL =RL TR = TR
c LR~ LR R1L1 L7 IR™! RIT™1
d LR RL RL TR
e RL | TR L7IR™! R™iT!
Vi TR TR
g | R—IT—I

Thus, for example, the pair (35, c1) is the pair of the variety Mod (T 'R = LR™!)
and its dual variety Mod (TL== LR~ !). The duality of these varieties follows from
Mod (TL== RL™ ') = Mod (TL==LR™") (by (24), RL™* = (RL™!)™' = (LR™").
Similarly we prove the rest of the above dualities. Therefore we investigate the first
members of all the above pairs. The results are summarized in Table 3. We prove
only the following equalities:

42 =V,

43 = Vg,
45 = V5
55 = Vgt
e2 =V,
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From ¢ = L7'R, = T, 'R,, for y = x, we have L, = T, and according
to Lemma 2.8, ¢ = 1 whence L, = R, = T..

From ¢ = L.L, = T,L,, for y = x, we have L, = T,, therefore by (29),
T, = R;', hence L, = R;"', i.e. L' = R, and with respect to (20),
L,=R,sothat L, = T, = R,.

This follows from Lemma 2.7(iv).

From ¢ = T, 'R, = R,L, we have ¢x.xy =y (by (3)), xy.x = ¢y
(by (14)), ¢* = 1 (by (23)) and ¢ is an automorphism of (Q, *) (by the
dual of Lemma 2.7). Therefore L,,L, = L,L,, = 1, oL, =L, ¢ so that
L,=¢L,9 =RLL,RL, =RL, hence R2=1; ¢=¢ '=
= L;'R;" = L,'R, and by (22), ¢ = 1, therefore L, = R,.

By (25), ¢ = L.R;" for all x implies ¢> = 1. By Table 1, Mod (LR™* =
= TR) = Mod (R*)™* T* =I}T*)~! = Mod(T*)"* R* = I&T4)1) =
= (55)* = V§ = V, (the meaning of V§ is analogous to I, R%,...).



d3 = Vg: By (28), R,T, = R.L,, therefore L, = T, so by Lemma 2.8, LR, =1,
ie. RL, = 1.

The other equalities are proved similarly or they are trivial.

Table 3
1 2 3 4 5
|

1o, V, v, \'% v,
2V, Vo Vo V, Vio
3 Vv, Vo Vs v¥ Vit
4 Vi Vo Vo Vo Vi3
50V, Vo |V Vo Vo
6 | V% v, V, Vo Vi,
7V, Vo V, Vo
8 I Vg V, V,
9 | Vg Vo
a | Vg
b Vi Vs Vs V¥ v,
¢ ¢! Vi3 Via Via Vig
d Vo %8 Vg Vie
e | Vi Vo Vis Vg
£ Vi Vs
g Vis

2.20. Corollary. Let a primitive quasigroup (Q, -, 7, \) satisfy a balanced
identity of length <6 of type . Then there exists i € {1,2, ..., 17} such that (Q, *) €
eV;or(Q,)e V.

2.21. Corollary. There are 24 varieties determined by a balanced identity of
length <6 and of type 1. They are Vi, V,, ..., V7, Vi, Vi, V&, Vi, Vi, Vi, Vi

3. QUASIGROUPS DETERMINED BY IDENTITY II

In Section 1 we have proved that each quasigroup satisfying an identity of type II
is a transitive quasigroup. Thus we shall deal with transitive quasigroups in this
section.

We shall use some results on transitive quasigroups presented in [4].
A collection of mappings {¢;; i € S}, where S is a nop-empty index set, will be
called disjoint if ¢,(a) = ¢;(a) implies i = j (cf. [4], Definition 2.2).
Let (Q, *) be a quasigroup, 4, B € T; we shall denote
Q(AB) = {A,B; x,y€ Q} .

If (Q, o) is a group and ¢ (¥) its automorphism (antiautomorphism) then Lo (L)
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is called a quasiautomorphism (antiquasiautomorphism, respectively) of (Q, o)
for each s € Q. For every quasiautomorphism y = L}¢ there exists an automorphism
& of (Q,.) such that y = RJ¢. Analogously, for any antiautomorphism s there
exists an antiautomorphism # such that Ly = Rn (see [2]).

3.1. Lemma. Let (Q, ) be a quasigroup and let

0(1) = {Q(LL), Q(L™'L™"), O(T"'R), Q(R"'T)},
0(2) = {Q(RR), Q(R™'R™Y), O(TL), Q(L™'T™")},
0(3) = {Q(LR), Q(R™'L™"), O(T™'L), Q(L™'T)},
0(4) = {Q(RL), Q(L"'R™"), Q(TR), Q(R™'T )},
0(5) = {Q(LT), O(T~'L""), (TR 1), O(RT™1), QL 'R), O(R" 'L},
Q(6) = {Q(LL™), Q(RR™Y), O(TT "), O(L™'L), O(R™'R), O(T'T)},
0(7) = {Q(LR™Y), Q(RL™Y), Q(TT), Q(T~'T™ 1)},
0(8) = {Q(LT™"), O(TL™ "), Q(RT), Q(T"'R™Y)}.
Leti={1,2,...,8} and M e Q(i) then M is disjoint implies X is disjoint for all
X e Q(i).
Proof. Fori = 2 it suffices to use Lemma 2.4 and Theorem 2.2 in [4]. Analogously
we do the rest of the proof.

3.2. Lemma. Let (Q, *) be a quasigroup, «, B permutations of Q and let x .y =
= ax o fy for all x, y e Q. If (Q, o) is a loop then
(1) Q(LL) is disjoint iff (Q, o) is a group and B its quasiautomorphism,
(2) OQ(RR) is disjoint iff (Q, o) is a group and « its quasiautomorphism,
(3) Q(LR) is disjoint iff (Q, o) is a group and B its antiquasiautomorphism,
(4) Q(RL) is disjoint iff (Q, ) is a group and o its antiquasiautomorphism,
(5) Q(LT) is disjoint iff (Q, <) is an abelian group,
(6) Q(LL™Y) is disjoint iff (Q, o) is a group,
(7) O(LR™") is disjoint iff (Q, o) is a group and af~' its antiquasiautomorphism,
(8) Q(LT™1) is disjoint iff (Q, o) is a group and af~* its quasiautomorphism.
Proof. For (2) it suffices to use Theorem 2.2(ii) <> (iv) in [4]. Analogously we
do the rest of the proof.

3.3. Lemma. If o is a quasiautomorphism and antiquasiautomorphism of a group
(0, o) then (Q, o) is abelian.

Proof. Let o = Ly = L&, where 5 is an automorphism and ¢ an antiauto-
morphism of the group (Q, o). Then Ly = ¢ (¢ = a - b™") whence Lyx = &éx for
all x e Q, therefore Lyl = 1, hence ¢ = 1. Thus for all x,yeQ, xoy =
=n"n(xoy) =n"(nxony) =n"'(Exoly) =n""yox) =n""n(yox) = yox.

3.4. Lemma. If o is a quasiautomorphism and B an antiquasiautomorphism of
a group (Q, o) then of is an antiquasiautomorphism of (Q, o).

Proof. Easy.
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If we rewrite the identity I1 with translations of the quasigroup (Q, *) then
9) AB,C.nyz = 2

for some A, B,Ce 7, [JeX(+) and all x, y, ze Q. Let (@, *), (@, O) be quasi-
groups and A4, B,CeJ then (Q,-, 7, \) is called an (4BC O)-quasigroup if
for all x, y, z € Q, (9) holds ([ need not be in 2(*)).

3.5. Lemma. Let (Q, -) be a quasigroup. The following statements are equivalent:
(i) (Q,+, 7, \) satisfies an identity of type IL.
(ii) There exists OO in X(*) such that (Q, -, », \) is an (ABC [1)-quasigroup.
Proof. See Lemmas 1.1, 1.2, and Lemma 1.2 in [4].

Thus, to classify all primitive quasigroups that satisfy an identity of type IT means
to classify (ABC [J)-quasigroups for 4, B, Ce J and [J € X(*).

A primitive quasigroup (Q, -, ~, \) is called an (ABC)-quasigroup if there
exists a quasigroup (Q, ) such that (Q, -, ~, \) is an (ABC [J)-quasigroup.

We order the set 7 by L< R< T< L ! <R™' < T7! and the set S of all
ordered triads (4BC), A,B,Ce 7 by (ABC) < (DEF) iff A < D or A = D and
B<EorA=D, B=E and C <F. Let 54 mean the dual symbol of 4 (i.e.
oL =R, 0T = T™%,...), §(ABC) = (8ASBSC) and if H is a set, SH = {6X X e H)}.
Let {(ABC)) ={(ABC),(BCA),(CAB),(C 1B~ 14~"), (B4~ 'C"),(4™C"'B~")}
and if G is a set of triads, {G) = U {{X), X € G}.

3.6. Lemma. If a primitive quasigroup (Q, +, », \) is a (DEF)-quasigroup for
some (DEF) € {(ABC)) then (Q, +, », \) is an (XYZ)-quasigroup for all (XYZ)e
€ {(ABC)).

Proof. Easy.

3.7. Lemma. If (Q,+, ~, \) is a primitive (ABC)-quasigroup then (ABC)e
e U u oU, where

U = {(LLL), (LLR), (LLT), (LLL™"), (LLR "), (LLT~"), (LRT), (LRL™ "), (LRR™ 1),
(LRT™Y), (LTT), (LTL™Y), (LTR™"), (LTT "), (LL™'T), (LL"'R""), (LR™'T),
(LR™'T™Y), (LT™'T), (LT~ 'R™Y), LT ‘T, (TTT), (TTTY)}.

Proof. The proof will be based on Lemma 3.6 and the following construction of
ordered sets Sy, S,,...,S;,.... Let S; = S\{(LLL)}. Let S,, m > 1, have been
constructed. Then S,,;; = S,, U {(4BC)} where (4BC) is the smallest element of
the set S\ ({S,> v 6{S,,>). Since S is finite, there exists a positive integer k such
that for all i < k <j, S; # S, = S;. By this construction, we obtain k = 23 and
S,3 = U.

3.8. Lemma. Let (Q, *, /, \) be a primitive (ABC)-quasigroup, aff permutations
of Q,x.y=uaxopy forall x,ye Q and let (Q, -) be a loop. Then (Q, <) is a group
and the relations presented in Table 4 are fulfilled.

Proof. We prove only the relations for (LLR) (analogously we do the rest of the
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Table 4

quasiautomorphism antiquasiautomorphism abelian
group
— - | _ _

o B 1 of o ‘ B «p o
LLL | «
LLR % \ X X % % « «
LET lox X X X X X X
LLL™! i >
LLR™! | X X X X X X X
LLT™! [ x X X X X X X
LRT . X X X X X X X
LRL™! X % 9
LRR™! i % % o
LRT™! | % 9 9
LTT | X X X % % % ©
LTL™! « . " 9
LTR™! 9
Lrr1 L x y 9
LL'T x| 9 o
LL™'RTY T x % "
LR'T X X X X X X X
LR™ T X X X X X X X
LT™'T X % %
LT 'R™! % y y
LT~ 1T— 1 ] X v X % % % «

|

TTT ; "
77T ! v ] 9

proof). Thus we must prove that if (Q, -, ~, \) is an (LLR)-quasigroup then (Q, o)
is an abelian group and «, B, ®f~' are its quasiautomorphisms and antiauto-
morphisms. By [4, Lemma 2.3(iii)], Q(LL), Q(LR) and Q'RL) are disjoint, therefore
by the dual of [4, Theorem 2.2, Theorem 2.4] and by [4, Theorem 2.4], B is a quasi-
automorphism and an antiquasiautomorphism and « is an antiquasiautomorphism
of the group (Q, o). Thus (Q, o) is an abelian group and o, f its automorphisms
therefore o~ " is also an automorphism of (Q, o).

3.9. Lemma. Let (Q, ) be a quasigroup and let (Q, -, 7, \) be a primitive
quasigroup. The following conditions are equivalent:
(i) (0, -, », \) is an (LLL[])-quasigroup.
(i) (xOy).(x.yz) ==z
(iii) There exists a group (Q, o), its automorphism & and a permutation y of Q
such that & =1, x.y=yxo&y, 1E(xOy) =7yx0&y for all x,yeQ
where x o Ix = 1 for all x € Q.
Proof. (i) <> (ii) is evident. (i) — (iii). By Table 4, x.y = ax o fy where f is
a quasiautomorphism of a group (Q, o). There exists s € Q and an automorphism &
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[ =vleovyen kT = m:
A2 =42 A=Y 0=y _M 23—y
I=:3

I

AL =M+ =y —
MY = 2 A + A2 + Y =y —

21 = MM *y A Y A Y = Y —
Y +AD AR =Y

A2 Vg2 A =Y~
I = mM

xoed=dx
(1

(157 ' _2h m3)
(G217 31 °93)

(1 A < oY)
(17 2 m3)
(372 M

@ 1D

(1 ey < W"1°%T)
(11 %)

g ‘1)
Glr19
(15T ‘< )

(1 ‘71 42)

(' x=d[x
C1%7 e 2)
(Ji7 o )
(f7°314,2D

X d=d[]x
(&4 )

3T, 3.9
(%) s A= R0
(U212 )

Ul

(1 44D
(1957 ‘gl
(37 2 M)
57992
(1 ‘1 *Ad7)
372 M)

s A=)
a4
(47 <4 “l)

(110

(14 »)
379 9D
1ST )

(124

(11 *4)

(1l 3)
(573 m)
(M37°2°¢3D
(g - R-)
(114

(Gonts =R )
3729
(120

o+ + + o+ + D+ O+ o+ + +

+ +

xd=zA [] xz

Ax == zA [J xz

dx "z ==z [] x

Ax =z )Jx) 'z
z'dx=(z-)OJx
zx " Az=d X

Az zx =4[] x

zx = (€ ] x) " z4
zd"zx = A O x

dx ‘z==({"2)Ox
Ax =({2)Odx) "z
Adx =z (€ z) [ x)
zdx=(A"z)Ox
Mz xX) ' z==d[x
dz ' x =([x) 'z
dz " x =z (A€ [Jx)
z(Az " X)==d4[x
(A x)z=d [ x
' x = []x) 2z
zd ' x =z (A [ x)
z(@A ' xX)=d4[x
z= (A [Jx)(z4 " x)
zZ== (@24 x)(dJx)

O,_ILL
OLLL
(P

Oy ¥ LT

OL,_ LT
Oy Ly ¥7
OL,_¥7T
O, ¥,_717
0L, 77
O,_LLT
O, L7
O,_7L7
O.LL7

O, 197
O, 347
O, 797
OLd7T
Oy_1277
0,477
0,777
0L77
Oy¥77
0777

§ o1qeL
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of (Q, o) such that By = so &y if we denote axos = yx then x.y = yx.o &y, If
x(y . (x O ») z = z, which is equivalent with (ii), is rewritten by (s) then

(iv) X0 lyy o Ey(x O y) o2 =1z,
whence for z = 1
v) oy Ey(xdy) =1.

If we apply (v) to (iv), we obtain ¢ = 1. Obviously (v) implies I&2y(x [0 y) =
= yX o &yy. The proof of (iii) = (ii) is easy.

Similarly we can prove analogous theorems for the remaining triads of the set U
(see Lemma 3.7). The results are summarized in Table 5, where (Q, o) is a group,
(0, +) is an abelian group, (Q, @) is a 2-group, 7 is an antiautomorphism of (Q, o),
Y, & are automorphisms of (Q, ) or (Q, +) or (0, ®), xoIx =1o0r x + Ix =0
for all x e Q and o, B, y are permutations of Q.

By Table 6, where the same symbols as in Table 5 are used, we define some classes
of quasigroups. ‘ ‘

Table 6
Vis The variety of 2-groups
Vio x.y=x—y+k
Vao x.y=—x+&+k &=1
Va, xy=Ex@H @k =1, k+ &k + Ek+ k=0
V,, X y=x®& @k & =1
Vs, xy=8x®& Dk E=1,¢k=1k
Vs x.y=Ex4+ &+ k =1
V,s x.y=—¢Txt &4k
Vs, The variety of groups
Vs, The variety of abelian groups
V,3g x.y=kox loy
Vo x.y=8x+¢&+k
Vo x.y=8Ex08H Dk & =1, &k=k
Vi, x.y=ExDE Dk =1
Vi, x.y=yx+y
Vi3 x.y=yx®y :
Vig x.y=yx+ &, & =1
Vis x.y=—fx+ By +k
V36 X.y=pxDB Dk
V4 x.y=adx® Py
Ve x.y=ax+ oyt k &2 =1

Table 6 reads like this: For example, Vs, is the class of all quasigroups (Q, *)
that are isotopes of a 2—group(Q, (—B) by therule x.y = éx® £y @k, where £ is an auto-
morphism of (Q, @), & is the identity map Q onto Q and ke Q Vj, is the class of
all quasigroups (Q, -) that are isotopes of an abelian group (Q, +) by therule x . y =
= yx + y where 7 is a permutation of Q.
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3.10. Lemma. V; = V} (Vi is the dual of V,) for all i € {18, 23, 24, 25, 26, 27, 31,
35,36, 37).

Proof. Easy.
If Lemma 3.9 is applied to [J € X(-) then we obtain the following theorem.

3.11. Theorem. Let (Q, [J) be a quasigroup and let (Q, *, 7, \) be a primitive
quasigroup. The following conditions are equivalent:

(i) (Q,+, 7, \)is an (LLL[)-quasigroup and [ € X(*).
(ii) (Q, *, 7, \) is an (LLL[)-quasigroup and [J € {*, *}.
(i) x. y(xy.z)==1z.

(iv) x. y(yx.z) =z

(v) (Q, *) is a 2-group.

Proof. (i) = (ii). Let [ € () and x [J y = t. Then at least one of the following
relations holds: y = xt, y = tx, x = yt, x = ty, t = xy, t = yx. If we apply these
equalities to L,L,L.-, = 1 and use the identity L,L,L, = L .L,L, = L,L.L, we obtain
LLJL,=1orLL,L, =1.(iii) = (v). From Lemma 3.9 we have x.y = yx o £y,
I89(x . y) = yx o &yy, therefore 1E%p(px o £y) = yx o Epy, ie. IE%(x o &) = x o Epy;
for x = 1 we obtain I&%p¢ = &y and for y = 1, I&%y = RS, i.e. y = IERS. Thus
IE2IERSE = ETERS, ie. RSE =IE2RS, whence ERZE = IR;. Consequently, for all
xeQ, Exola=Taolx; x =1 implies éa =Ia = b so that &x = boIxo Ib
and also &’Ix = b o x o Ib, i.e. &L is an inner automorphism of (Q, o). Therefore I
is an automorphism of (Q, o) and consequently (Q, -) is an abelian group. Then
¢* =Tandsince £* = 1,1 = 1,50(Q, o) is a 2-group. Similarly we prove (iv) = (v).
The rest of the proof is easy.

Similarly we can prove analogous theorems for the remaining triads of the set U

(see Lemma 3.7). The results are summarized in Table 7, where the same symbols
as in the tables 5 and 6 are used.

3.12. Theorem. Let a primitive quasigroup (Q, -, /, \) satisfy a balanced
identity of length <6 of type II. Then there exists i € {18, 19, ..., 38} such that
(Q,)eV;u Vi

Proof. See Table 7.
3.13. Corollary. There are 31 varieties determined by a balanced identity of

length <6 and of type I1. They are Vg, Vio, ..., V3g, Vigs Vio> Va1, Vazs Vg, Vi,
Vios V32 Vi3, Vi
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4. MAIN RESULTS

4.1. Theorem. Let a primitive quasigroup (Q, -, 7, \) satisfy a balanced
identity of length <6. Then there exists i€ {1,2, ..., 38} such that (Q, *)e V,u V}.
Proof. See 2.20 and 3.12.

4.2. Theorem. There are 55 varieties of quasigroups determined by a balanced
identity (on a primitive quasigroup) of length <6.

Proof. See 2.21 and 3.13.

4.3. Corollary. Every balanced identity (on a primitive quasigroup) of length <6

is equivalent to at least one of the identities or quasiidentities listed in Theorem
2.15 or Table 7.

Table 7

LLL. xy. ({x.yz)=z Vis . LLR. (x.yz). xy =1z Vio
* yx. (x.yz)=z Vig * (x.yz). yx=1z Vo

/s yx. (x.yz)=z Vis s (xy.yz)y x=1z Vi

v yx.(x.yz)y=1z Vig \% x(yx.z).y=z Vio

N\ xy.(x.yz) =z Vis AN x(xy.z).y=z Vio

A xy.(x.yz) ==z Vis A x(yx.z).y=z A\
LLT. (y.zx) x=yz Vio LLL™ L X.pyz=xpy.z Vi
* (z.yx)x==yz Vi3 * X.yz==yx.z V,4

/ (zy.yx) x=1z V3 /s yX.xz=yz Vis

v x(zx.y).y=z Vou \% x(yx.z) =yz Vis

N x.(x.z»)y=1z V,s N x(xy.z) =yz A%

A x.(z.xp)y=1z Vi A Xy. Xz ==yz V,s
LLR™1. X.yz==z.xy V,q LLT 1. x(y.zx)=yz Visg
* X.yz==2z.yx Vio * x(z.yx)=yz Vio

/s Zx. xy =yz Vis 7/ x(z.yx).y=1z V3o

\% x(zx.y) =yz Vo v x(y.zx).y=z Vis

AN x(xz.y) =yz Vi3 AN x.y(x.zy) =z Vi,

A XzZ.Xxy=yz Vis A x.y(z.xy) =z Vig
LRT. (y.xz) x=yz Vis LRL™L. xX.zy=xy.z Vyq
* (z.xy)x=yz Vi, * X.zy=yx.z Vy4

/ z.xy)x.y=z Vig / yx.zx==yz Vi

v (x.y0)y.x=z A\ v x(z.yx)=yz Vio

N\ x. (x.y2)y=1z Vi AN x(z. xy) =yz Vs

A x. (z.yx)y=1z v, A Xy.zx=yz Vis
LRR™L. X.yz==y.xz Vi, LRT™L. x(y. xz) =yz Vi,
* xX.yz==y.zx V,4 * x(z.xy) =yz Vis

/ ZX.yx=yz Vfg / x(zy. xy) =z Vis

v x(y.zx) =yz Vig v x.yx.zp) =z \'

N\ x(y. xz) =yz Vis AN x.y(x.yz)=1z Vig

A Xz.yx=yz Vig A x(yz. xy) =z Vao
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Continued tab. 7

LTT.

*
/

\Y

N

A
LTR™ L.

*

7/

h.
h
B,AN g BAaN g >

~
>jI

~

~N

|
4\*:“1

/

LT~ i1,

B oaN *

TTT 1.

*

X.yz==Xxz.y
Xy.z=zy.x
(zy.x). xy =1z
(xz.y) x=yz

x(xz.y) =yz

xy.(zy. x)=z

x(y. xz) = yz
x(xz.y)=yz
(z.yx)x=yz
NV = XYy
XYV T N
XYy = XYy >
X Y2 T )y
(yx.z) x==yz

yx.zx=yz
IX.yx =yz
(zx.yx)y =7z
(xy.zy)x=7z
x(xy.zy) =1z
x(zy . xy) =z

yX.xz=yz
ZX. Xy =yz
(zx.xp)y =z
(xy.yz)x=1z
x(xy.yz) =z
x(zy.yx) =z

Xy.z==x.yz
xXy.z=yz.x
(zx.v).xy =z
(xy.z2)x=z

x(xy.z)=yz
xy.(zx.y)=1z

X.ypx=1z.xy
Xy.y=y.zx
(x.zy) . yx =1z
(z.xyp)x =yz
x(z.xy) =yz
xy.(y.zx)=1z

Xz.yx=yz
yX.xz=yz
Xz .xy=yz

LTL™ L.

LTT ™.

LL™'R™L,

LR

LT 'R

TTT.

Q\*

R AN > AN ¥

4\*

>, d B, A *

(y.xz). x=yz
(xz.y) x=yz
(y.zx) x =yz
XYy = X2V

TR XX TV
Xy = Xy, —>
T T )Y

(zx.y) x =yz

X.yz==y.xz
X.yz==xz.y
(x.zy). xy =z
(y.xz) x =yz

X(y. xz) = yz

xy.(x.zy) =z

Xz.zZx =yz
XZ.xy=yz
Xy.z==yz.x
(xy.2z) x=yz
(yx.z) x=yz
Xy.z=xz.y

XZ.yx=yz
Xy.zx ==yz
(xy.zx)y =z
(xz.yx)y =1z
x(yz.xy) =z
x(yx.zy) =1z

x(y.zx)=yz
x(zx.y) =yz
(z.xy) x=yz
XY = XYy
Y X T VN
X{Yy = XV
XXy T Vo
(xy.z) x==yz

Xy.zx =yz
Zx. xy =yz
Zx.xy =yz
Xy.zx =yz
ZX . Xy =yz
Xy.zIx 2=yz

yx.zx =yz
Zx.yx=yz
Xy .xz==yz
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