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1. INTRODUCTION

In this paper we are concerned with the oscillatory behavior of the functional
differential inequality of the form

(E) (=17 x0) sen () 2 p() [T i)l n 22,

where z is a natural number, «; € R, = [0, o) with oy + ... + @, = 1, the function
p: R, — R, is integrable on each finite segment and is not identically zero in every
neighbourhood of infinity, the functions g;: R, - R, (i = 1, ..., m) are continuous
and lim g(f) = 0.

t— o

By a solution of (E,) we mean a function x: [y, ©) — R, t, € R, such that
(a) x® (k =0,1,...,n — 1) is absolutely continuous on [,, o),

(b) sup {|x(s)|:t < s < o0} > 0 for any 1 = 1,
(c) there exists a ; €(#, o) such that x satisfies (E,) almost everywhere on [#,, o).

A solution of (E,) is called oscillatory, if it has an infinite sequence of zeros
tending to infinity. Otherwise it is called nonoscillatory.

The purpose of this paper is to study oscillations of solutions of (E,) generated
by general deviating arguments g; (not necessarily delay or advanced arguments).
Some results on oscillation of functional differential equations and inequalities
with general deviating arguments have been obtained in the papers [2, 57,9,15,
19, 22,24, 26—28]. The main results of this paper are new and are independent of
the analogous ones known for delay and advanced differential equations. Some
specific comparisons to known results will be made in the text of the paper.

The following notation will be used throughout this paper:

D={teR;:g{t)gt(i=1,...,m)}, A={teR,ig()zt(i=1,..,m)}.
Let g7, d;, a;: Ry —» Ry (i = 1,..., m) be nondecreasing functions such that
g7(t) < min(t,g41)) and dt) <t =< aft) for teR,,
g{t) = dft) for teD and ayt) <gft) for teA.
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Let Dy(t) = D n [d{1), 1] and A(r) = A [t,at)] for teR,.
To obtain our results we need the following two lemmas.

Lemma 1 [6]. Let x be a nonoscillatory solution of (E.,). Then there exist an
integer 1€{0,1,...,n} with n + 1 + z even and a number t, € [t,, o) such that

(N) X()x®(@) >0 (k=0,1,....,1 — 1),

(=D () x®(1) >0 (k=1,..,n— 1)
for t = t,.

Lemma 2 [7]. Let x be a nonoscillatory solution of (E,) satisfying the inequality
N,) with le{l,...,n — 1} and n + | + z even. In addition, let
1

(1) J' " HxO(f)| dt = oo .
Then the following inequalities hold for sufficiently large t = t,:

@) K00 J"’%me

and
(3) kxE9O0)| z x|, (k=1,...,1).

z)'

2. MAIN RESULTS

Theorem 1. Consider the differential inequality (E,) subject to the condition

¥ mWﬁU p(s) [T [7(5)] D ds +
i*(t)

tow  j=1 i=1

m

+ [ o] @H@(ﬂHM®T>w—na

Then
(i) for n even, every solution of (E,) is oscillatory,
(ii) for n odd, every solution of (E,) is either oscillatory or lim x*(r) = 0 (k =
=0,1,...,n — 1) monotonically, =
(iii) for n odd every solution of (E,) is either oscillatory or 11m |x(’"(t)] =
(k=0,1,...,n — 1) monotonically,
(iv) for n even, every solution of (E,) is either oscillatory or lim x*(r) = 0 or
lim |x®(#)] = o0 (k = 0,1,...,n — 1) monotonically. e
. .
Proof. Suppose that the inequality (E,) has a nonoscillatory solution x(t) & 0
for t = t,. Therefore for sufficiently large t = ¢,, by Lemma 1, there exists an integer
1€{0,1,...,n} with n + [ 4 z even, such that x(¢) satisfies the inequalities (N).

Case (i). Then we have neven, z = landanodd [ € {1, 3, ..., n — 1}. We observe
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that(4) and (N,) (1 < I < n — 1) imply that the condition (1) of Lemma 2 is satisfied.
Therefore (2) and (E,) yield

EROE

i ! J‘m i1 p(s)iﬁlx(gi(s))lz,» ds >

j #7174 p6) [T (a6l ds.

t

(n = 1)!

v

which yields, by (3),
- ! ° n—1— " - oy - a;
00012 e [ FL o1 e gt
. . t =
From the above inequality for je{1,..., m} and 1 = ¢, we get

1(n — ,Ix(l ROHO)) s (g o #1100~ D [ = D(g* ()% ds
(o= g PO 2 [ o Lot = s +
# [T [l R

Since |x¢~")(t)| t~* is nonincreasing for 1 < I < n — land ¢  t, by (3), we obtain
for se[g}(r), ] and ie {1, ..., m}

(6) |xt=(g¥(s))| = *8 X 0(g¥(0)| -

Therefore from (5) and (6), in view of the increasing character of |x"~")(7)|, we derive
fort z 1,

1(n — leugl)(g;‘(t))! > N CHO) N sl 1p(s v (Y1 ds
S e L,*m o(9) [LLoi(o)]"™ ds +
)

+ [T | s o) TT [oF(9)]¢ P ds.
i=1 t i=1

=

Forle{l,...,n — 1} the following inequalities hold for s = ¢,:

®) e T Lo = ¢ T [ *(s)]'“f

1\

2 oo f] [EO] < T poroe-
and

(9) sn~l—1 il'jl [g;k(s)](l—l)z, > iI’jl [gik(s)](n-—Z)zi i
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Using now (8) and (9) in (7) we get

|x” RCHU) N N CHOIN T 9 TT [*(s)] D ds
g; (1) =EIJ1[ g: (1) ] {Lm!)p()g[g,()] "

# L1 0ot [ 7o) [T ot o]

t

Raising both sides of the above inequality to «; and then multiplying the resulting
inequalities we obtain
(1 1)(g t))l aj
0Tl [‘——~—] >
LY R 0
m x(l—l) * t a; m t m e 1)y
1 [l *(gz())l] 1l [J p(s)H[g’ik(s)]( Dai g 4
9;*(t)

i=1 g,-(t) ji=1 i=1

+ [1tsior [ i frone— o],

t

v

which contradicts (4).

Case (ii). Then x(f) satisfies the inequalities (N;) for 1€{0,2,4,...,n — 1}.
By arguments similar to those in the proof of (i), we prove that the case
le{2,4,...,n — 1} is impossible. Therefore x(f) satisfies (N,) for I = 0, i.e.

(10) (=1 x()x®(t) >0 (k=0,1,...,n—1) for t=1.

We shall prove that lim x(f) = 0. Suppose to the contrary that lim x(f)) = C > 0.
t— 00

Then |x(g4(1))] = C(i = 1,...,m)for t 2 t, = t,. From (10) it follows that (see [7])

Jw "~ Hx™(n)| dt < o0,
t2

which implies, by (E,),

© >J "~ x™(1)| dt gf ! t)H|x (D) de = Cj "~ plt)dr.
t 2

2 tz

But this gives a contradiction, since (4) implies that
(1 [ ot ot ar - o
s i=1

Case (iii) and (iv). Then x(t) satisfies (N,) for 1€{0,2,4, ..., n}. The case | = 0
holds only when n is even. Then, by arguments analogous to those in the proof
of (ii), we have lim x®(¢) = 0 (k = 0, 1, ..., n — 1). Similarly as in the proof of (i),

t—=

we prove that the case I € {2,4,...,n — 2} is impossible. In the case [ = n we have

(12) x()x™(t) 20 and x(f)x®() >0 (k=0,1,...,n —1)
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for t = t,. We shall prove that lim |x®(t)] = o0 (k =0, 1,...,n — 1). From (12)
t—
it follows that there exist a point ¢; = t, and a positive constant y such that

(13) |x(g(t)| = 7977 '(t) (i=1,...,m) for t=t;.

Integrating now (E,) from 5 to ¢, by (13) we obtain

0] 2 o) + o [T o as 2
= )’Jl p(s)I'j [9:(s)]" Dt ds = an p(s) ]f[ [g%(s)] @~ D*ds .

From the above inequality and (11) we get hm ‘x(")(t)l =w (k=0,1,....,n — 1)
Thus the proof is complete.

Corollary 1. Consider the linear differential equation with general deviating
argument

(14) x(t) + p(t)x(9(t) =0, n=2,

where p is the same as in (E,), g: Ry — R, is continuous and lim g(f) = 0. Let
the function g*(t) < min (¢, g(t)) be nondecreasing on R,.If '~®

(15) timsup{ j [o* (&1 p() s + 4*(1) j " [T 205 ds} > (n - 1),

t— 00 t
then every solution of (14) is oscillatory, if n is even, and every solution of (14)
is either oscillatory or lim x*(t) =0 (k=0,1, ..., n —1) monotonically if n is odd.

t=> o
Remark 1. From Corollary 1, in the case of ordinary linear differential equations

(g(1) = t), we obtain the result of Chanturia [1, Th. 2.3]. In the case of advanced
differential equations (g(f) = t), Corollary 1 gives the result of Kusano [8, Th. 3].

Remark 2. Recently, conditions of nature similar to that in Corollary 1 have
been obtained by Olah [15, Th. 1], [16, Th. 2] and [17, Th. 1] (cf. also [2, C. 2.17]
and [14, Th. 8]). These conditions for the equation (14) have the following forms:

(16) liri1_>s;1p [g*()]"~* jw p(s)ds > (n — 1)!

t

for the general deviating argument g(t) and

(17) lim sup g(7) N g""%(s) p(s) ds > (n — 1)!,

t— 0 t

(18) lim sup [%J;sg"“(s) p(s)ds + tf q:;—(s—) p(s) dS] > (n - 1)!

in the case g(f) < 1.
We note that the condition (15) of Corollary 1 is independent of the above con-
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ditions (16)—(18) for oscillations. For example, if we put p(t) = (n — 1)l e3"~* ™"
and g(f) = €73t in the equation (14), then the condition (15) of Corollary 1 is
satisfied. In this case none of the conditions (16)—(18) is satisfied.
Corollary 2. Suppose that [] [g¥(t)]*" has a nonnegative derivative on R,. If
i=1

there exists a positive nonincreasing function y on R, such that

j 71 (r)dr < oo and f p) [T o7 (]~ w(T1 [g7()]) dt = oo,
i=1 i=1
then the conclusion of Theorem 1 holds.
Proof. Proceeding identically as in the proof of Corollary of [15], we prove that
im sup ] Fo7 [0 Lot~ s = o,
t—= o i=1 ¢ i=1

Therefore the condition (4) is satisfied and the conclusion of Theorem 1 holds.

Remark 3. Similar conditions as in Corollary 2 can be found in the papers [7, 15,
17, 21, 23].

Theorem 2. If
(19)
lim supH U [s — a0 TT[d0) — gd9)]™ p(s) ds]’ > (n—v 1))
(1) i=1

=0

for some ve{0,1,...,n — 1} then every bounded solution of (E,) is oscillatory.

Proof. Assume that (E,) has a bounded nonoscillatory solution x(t) + 0 for
t = t,. Then for sufficiently large t > #; > t, we have, by (E,),

(200 (=1 x()x™(1) =0 and (=1Fx()x®(&) >0 (k=0,1,...,n—1).

From the equality

YO(7) = Lt - ) gy (t—s) x™M(s) ds
(1) D R IR OF

we obtain, in view of (20), for ve {0,1,....,n — 1} andu = t = t,
(22) |x(”)(t)| > ( % \x(n)(s)l ds
and
@) (0 2 = o).
V!
From (23) we have for se Dy(r)(j = 1,...,m)and t > t,

(24) FOE [d—“)—:—‘m O] (= 1,0y m).
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Therefore from (22), (E,) and (24) we get for t > t; and ve {0,1,...,n — 1}, je
efl,....m

o)z [ Bt g a2
dj(t)

2 [ B SO i T oo 2

(1) (n V-

2 koo [ B8Ot [T - oo o
i=1 pyey V!

Raising both sides of the above inequality to «; and then multiplying, we obtain
JIL OO
m _ n—v—1
2 [Tt 1 [ f [s 4GOI ) n [4(6) = gs)]™ ds] ,
i=1 Dy

o Vn—v—
which contradicts (19). Thus the proof is complete.

Corollary 3. Suppose that in the equation (E,), g/t) <t (i=1,...,m) on R,.
Then every bounded solution of (E,,) is oscillatory, if

(25) mwwH[ﬁ@B—Mﬂ“W@mT>@~DL

t—> o

Remark 4. The oscillatory character of the bounded solutions of delay differential
equations and inequalities has been considered in many papers, see for example
[3, 4,7,10—13, 18, 20, 25, 28]. A conditions similar to that in Corollary 3 for delay
differential equations and inequalities can be found in the papers [13, Th. 2], [18,
Th. 1] and [25, Th. 2]. From these results it follows that every bounded solution
of (E,) is oscillatory, if

(26) lim sup t [s — g()]""* p(s)ds > (n — 1)!,

t= o 9(t)

where g(f) = max (g,(t), ..., 9,(f)) and g,{t) are nondecreasing. We note that the
condition (25) of Corollary 3 is better than (26).

Theorem 3. Let n = 3 be odd. Consider the differential inequality (E,) subject
to the conditions (4) and (19). Then every solution of (E,) is oscillatory.

Proof. The above theorem follows from Theorem 1 and 2.

Theorem 4. Let n = 3 be odd. Consider the differential inequality (E,) subject
to the conditions

(27) lim sup H [J‘ spls) [1[g¥(s)]" % ds +
9;%(t) i=1

t— o ji=1
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e Floror oo [l toroe-as] "> = oy

and

(28)

lim sup ﬁ [J [aj(t) —s]"! ﬁ Lgis) — a(0)]"* p(s) ds]al >vl(n—v— 1)
t— 00 j=1 Aj(t) i=1

for some ve{0,1,...,n — 1}. Then every solution of (E,) is oscillatory.

Proof. Suppose that the inequality (E,) has a nonoscillatory solution x(r) % 0
for t = t,. Then Lemma 1 implies that either

(29) (1) x"(t) =20, x(t)x¥(t)>0 (k=0,1,....,n—1),
or there exists an odd e {1, 3,...,n — 2} such that
(30) (D) x®() >0 (k=0,1,...,1—1),

(=)' x(t)x®(1) >0 (k=1,...n—=1) for t =1t =t,.
Let (29) hold. Then from (21) we have for u = t = t; and ve {0,1,...,n — 1}
(31) \x(”(“)\ EJ E"_‘)W ‘x(u)(s)‘ ds

and

(52) )] 2 (e = 07 ).

From (32) for se A,() (j = 1,...,m)and ¢ = t, we obtain

(33) MMW%%@@—MM%WMWi=me.

Then from (31), (E,) and (33) we derive for je{1,...,m}, ve{l,...,n — 1} and
=7

o) 2 ﬁ@;? o) ds 2

EJ [a(»gt)_v] 1) pis) [ [x(gs))| ds
Aj(1)

2 f[ \x(”)(ai(t))I"'J [a' ((t) i _v; pis )H [9i(s) — aff)] ds.
i=1 am YHn =

Raising both sides of the above inequality to «; and then multiplying the resulting
inequalities we get

I\

a0 2
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vl (n — )

which contradicts (28). Thus, the case (29) is impossible.

Suppose now that (30) holds. Then, in view of (27) and (30), the assumptions of
Lemma 2 are satisfied. Therefore, by arguments similar to those in the proof of
Theorem 1, we obtain the inequality (7). Since le{1, 3, ..., n — 2}, we get for s > t,

(3 o [ Lot = - ff [ *@]’“' >
- Iﬁ l: *(s)](n 2)a; _ S'l:—,[l [g%(s)]"~ >

2 [T 1 [ f D =515 50 1 L) = e d]

and

(33) s [ty = e [ [29] 2
=g [ *(S)](" st

Using now (34) and (35) in (7) we obtain

n— v!x” Yg; ) AN T ([ 's) TT Ta*(sV 1= ds
( *(t) B "EII [ g;k(t) :, {fg,*(z) n )'1:[1 [g'( )] b

t
Proceeding as in the corresponding part of the proof of Theorem 1, we get a contra-
diction with the assumption (27). Thus, the inequalities (30) cannot hold. This
completes the proof.
Theorem 5. Let n be even. Consider the differential inequality (E,) subject to
the conditions (19) and (28). In addition, let for n = 4

m t m
(36) limsup [] [J. spls) [T [gF(s)]" " ds +
g;* (1) i=1

t— o0 ji=1

+ [0t s [ o0 s[> 260 =2
i=1 . i=1
Then every solution of (E,) is oscillatory.

Proof. Let x be a nonoscillatory solution of (E,) on an interval [1,, o). Thus,
by Lemma 1, x satisfies the inequalities (N;) with 1€ {0,2,...,n — 2, n}. The cases
I = 0and [ = n are impossible, by the assumptions (19), (28) and Theorem 2 and 4,
respectively.

Suppose now that e {2,...,n — 2}, which is possible only if n = 4. Therefore,

594



by arguments similar to those in the corresponding part of the proof of Theorems 1
and 4, we obtain the inequalities (7), (34) and (35). Combining (34) and (35) with (7)
and using the fact that 2 < [ < n — 2, we have

o = IO 5 g [EEZEOIT T oo +

gf(f) e g:k(t) g;%(1)

+ [Tt |

sps) ];[1 [gF(s)]" >t ds.

t

From this inequality, similarly as in the proof of Theorem 4, we obtain a contradic-
tion with the assumption (36). Thus I ¢ {2, ..., n — 2} and the proof is complete.

3. FINAL REMARKS

For simplicity, we consider the linear differential equation with a deviating ar-
gument

(L) x(t) = p(t) x(g(1)) »

where n is even, p: R, — (0, ) and g: R, — R, are continuous, g(f) is non-

decreasing and lim g(f) = oo. Let g4(f) = min (1, g(t)), g*(t) = max (1, g(t)), D =
t—w
={teR,:g(t) <t} and A = {teR,: g(1) > t}.

It is known that in the case of ordinary differential equation, i.e. g(f) = t, the
equation (L) always has nonoscillatory solutions satisfying the inequalities (N,)
and (N,). The situation is different when g(r) # ¢. For example, in view of Theorems 1
and 2, every solution x of (L) is either oscillatory or lim [x®(t)] = o0 (k =0, 1, ...

t— 00

= 1) monotonically, if the following conditions hold:
(37) lim sup {J‘r g% '(s) pls) ds + g4(1) J’OD g5 *(s) p(s) ds} >(n—1),
e g*(1) t
and for some ve{0,1,...,n — 1},
(38) lim supj [s = (017" [94(2) — 9(s)]" p(s) ds > v!(n — v — 1)!.
1o Dalg«(1),1]

On the basis of Theorems 1 and 4 we can prove that every solution x of (L) is
either oscillatory or limx®(t) =0 (k =0,1,...,n — 1) monotonically, if (37)
holds and e ‘

(39) lim sup j [0%() = sT"* " [g(s) — g*(O]" p(s)ds > v!(n — v — 1)1
s Anlt,g*(1)]
for someve{0,1,...,n — 1}.
From Theorem 5 it follows that every solution of (L) is oscillatory if (38) and (39)

595



hold. In addition, when n = 4, the following inequality is satisfied:

(40) tim sup { j :m $9372(5) p(5) ds + (1) j 01750 ) ds} > 2(n - 2.

1= 0

Recently, Kusano [9, Th. 1] has proved that every solution of (L) is oscillatory
if there exist two sequences {f.}, {r,} such that f, e 4, t, > o0 as k > oo, 7, €D,
T, — 0 as k - oo,

(41) T g(ti)
min { j [o(z) — o] p(s) ds, j [9(s) — a(t)]"" p(s) ds} > (n - 1)
g9(tx) 1
forallk =1,2,...and

42) J' “[oa()" 7 plt) dt = oo forsome &> 0.

In some cases the conditions (38)—(40) are better than the conditions (41) and (42).
For example, consider the differential equation with general deviating argument
(43) x™(t) = px(t + sint), p a positive constant .

Then © ©
D=U((2k+l)1r,(2k+2)n), A =\ (2km, (2k + 1) 7)
k=0 k=0

and

(t)— t+sint for teD, *(t)— t+sint for ted,
I\ =4 for t¢ D, 9= for t¢A.

If we choose t; = (2k + 1)n + 4n (k=1,2,...), then D n [g«(t), t] =
= [g4(,), ;] and
1)

J. [s — gu()]"" p(s)ds = pJ‘k [s — g«(t)]" " ds =
Dolge (1), tx]

g5 (1)

= s[tk - g*(tk)]" = S

Thus, the condition (38) is satisfied for p > nl. If we choose ;, = 2kn + in (k =
= 1,2,...), then we can prove by a similar argument as above that also the condition
(39) is satisfied for p > n!. Therefore for p > n! all solutions of (43) are oscillatory.
The conditions (41) and (42) (cf. [9]) imply that every solution of (43) is oscillatory
for p = (n — 1)!(sin1 — $)' ™" Finally, we remark that (n — 1)!(sin1 — $)'™" >
> n!forn = 2.
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