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The system of all lexicographic product decompositions of a linearly ordered
group G will be denoted by Ly(G). On this set we can define a quasiorder in a natural
way (by using the well-known theorem of A. I. Malcev concerning the existence
of isomorphic refinements). In this paper we investigate the partially ordered set
L(G) corresponding to the quasiordered set Lo(G) (in the sense of [1], Chap. I, § 1).

INTRODUCTION

For any two lexicographic product decompositions o and f of a linearly ordered
group G A.I1 Malcev [5] constructed a pair of new lexicographic product decom-
positions o" and ' of G such that
(i) o is a refinement of o and B’ is a refinement of f§;

(ii) o’ and B’ are isomorphic.

This construction was generalized by Fuchs [2] (for lexicographic product
decompositions of directed groups) and by the author [3], [4] (for a certain type of
lexicographic decompositions of linearly ordered groupoids and for mixed product
decompositions of directed groups).

Now let Ly(G) be the set of all lexicographic product decompositions of linearly
ordered group. For « and B in Ly(G) we put o < f if o' = a. The relation < is
a quasiorder on the set Ly(G). If « and f are elements of Lo(G) such that « < f8
and B < o, then they will be said to be equivalent. Let L(G) be the set of all equi-
valence classes with the natural induced relation <. Then L(G) is a partially ordered
set. For o € Ly(G) let ¢(«) be the element of L(G) containing .

In [3] it was shown that L{G) is a lattice and that (under the above notation)

we have
c(o') = ¢(B) = c(a) A c(B).

The lattice L(G) possesses a greatest element which will be denoted by I. In view
of a result of Malcev [5] (concerning the existence of linearly ordered groups which
have no lexicographic product decomposition with irreducible factors) the partially
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ordered set L{G) need not have the least element. Hence L(G) need not be a complete
lattice.

In this paper we investigate certain convex [-subgroups of G corresponding to
a given lexicographic decomposition o (ca]led lower sections of «). Next, the fol-
lowing results concerning L{G) are proved.

The lattice L(G) is distributive. For each o e Ly(G) with ¢(x) < I the interval
[e(2),I] of L{G) is a complete and completely distributive lattice. This lattice is
a Boolean algebra if and only if it is finite.

I. PRELIMINARIES

The group operation in a linearly ordered group will be denoted by the symbol +
(the commutativity will not be assumed).

For the notion of lexicographic product of partially ordered groups cf., e.g.,
Fuchs [2], Chap. I, § 7. In accordance with [2], the lexicographic product of linearly
ordered groups A4; (where A runs over a linearly ordered set A) will be denoted
by Iieq A4;.

Throughout the whole paper we assume that G is a nonzero linearly ordered group.

Let ¢ be an isomorphism of G onto I',.4 A;. Then the triple (G, ¢, I';c4 A;) will
be said to be a lexicographic product decomposition of G. When no misunder-
standing can occur, then we also say that ¢ is a lexicographic product decomposition
of G.

We put A" = {Ae A: A, + {0}}. The set A’ is linearly ordered by the induced
linear order. Let (G, ¢, I',.4 A;) be a lexicographic product decomposition of G.

For ge G let ¢(g) = (..., g, ... Dsea. Put
?'(9) = oesGas o Diear -
Then (G, ¢', I'je4- A;) is also a lexicographic product decomposition of G.

Let us have lexicographic product decompositions (G, ¢, ;.4 4;) and (G, ¥,
I\r B).

If there exists an isomorphism u of A’ onto T’ such that for each 1€ A’, there
exists an isomorphism of A4, onto B, then the lexicographic product decom-
positions ¢ and Y are said to be isomorphic.

The lexicographic product decompositions ¢ and Y will be considered as equal
if there exists an isomorphism y of I',.4 A, onto I,y B, such that the following
conditions are fulfilled:

(i) the diagram

Flefi AA

G

x

1

I
F teT Bt
is commutative;
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(ii) there exists an isomorphism i of A" onto T’ (the meaning of T” is analogous
to that of A’, if A is replaced by T) and for each 4 e A’ there is an isomorphism y;
of 4, onto B,;, such that, whenever <...,a;,...>c4 € [seqdy and x(<..., az, . Dey) =
= (..., by .. Dper, then for each A e A’ we have by, = y,(a,).

Under this notion of equality, the collection of all lexicographic product decom-
positions of G is a set; let us denote this set by LO(G).

Let us remark that if « and 8 are isomorphic lexicographic product decompositions
of G, then o and § need not be equal.

Again, let ¢ and Y be lexicographic product decompositions of G. For A, < A
we denote by G(A,) the set of all g € G such that g; = 0 for each 2 € A\ A, (where
0(g9) = <.y ga - Dsea)- If Ay = {4} is a one-element set, then we denote G(A,) =
= G(4,). A similar notation will be employed for T; = T.

The lexicographic product decomposition ¥ will be said to be a refinement of ¢
if for each A, € A’ there exists T; < T” such that the mapping defined by

g o ey Gps oo Dper
for each g € G(4,) is a lexicographic product decomposition of G(4,).
Now let
o= (G; N Al) , B= (G; v, FueM Bu)
be any two lexicographic product decompositions of G.
For each pe M and 1€ A let C,; be as in [2], p. 27 (cf. also Section 2 below);

further let C;, be defined analogously. Then the following result is valid (cf. [5]
(with another notation)):

1.1. Theorem. (Malcev [5]) Let a and B be as above. Then there exist lexico-
graphic product decompositions
q’ = (G9 ?y; [').eA FueM' Clu) >
ﬂl = (G; lpl; FueM FJ.EA Cul)
such that
(i) o' is a refinement of « and B’ is a refinement of B;
(i) o' and B’ are isomorphic.
If @ and f are as above, then we denote
o = f(a, B).
Hence we have f' = f(B, «).
It is easy to verify that if the relations & = o, and = B, hold in Ly(G) (cf. the
above definition of equality in Ly(G)), then

f(o, B) = f(a1, By)
is valid in Lo(G)-
For o, f € Lo(G) we put « < Bif f(a, p) = o

1.2. Lemma. (Cf. [3].) The relation < is a quasiorder on the set Lo(G).
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If o€ Lo(G), then we denote ¢(a) = {a; € Lo(G): & < o, and o, < a}. Let L/G)
be the system {¢(o)},croq)- For ¢(a), ¢(B) € L{G) we put (o) < ¢{f) if « < B; then
L(G) is a partially ordered set under <.

1.3. Propositior. (Cf. [4].) L{G) is a lattice under the relation <. If «, B € Ly(G),
then in L(G) we have

c(f(2 B) = c(f(B, @) = o) A ¢(B).

Let o be as above. Assume that A’ is a one-element set. Then ¢) is the greatest
element in L(G); we denote c(a) = I.

The linearly ordered group G is said to be lexicographically irreducible if
L G) = {I}.

Let y = (G, ¢,, I'er C,) € Ly(G). It is obvious that the following conditions are
equivalent:

(i) ¢/y) is the least element of L(G).
(ii) If t e Tand C, #+ {0}, then C, is lexicographically irreducible.

There exists a linearly ordered group H having no lexicographic product decom-
position such that all nonzero factors of this decomposition are lexicographically
irreducible (see Malcev [5]; cf. also Fuchs [2], p. 28).

Thus in view of the equivalence of the conditions (i) and (ii) we infer that the lattice
L(G) need not have the least element. In particular, L{G) need not be a complete
lattice.

2. LOWER SECTIONS

Let o and f be as in Section 1. Let A, be a subset of A such that, whenever 4, € 4,
AeAand 2 > Ay, then 1€ A;. Then G(4,) is said to be a lower section of G with
respect to o. Properties of lower sections will be investigated in the present Section.

Let 4 be a fixed element in A. Put

I(2) ={Ajed: iy <1},
I(A) = {A eA: Ay <A},
D(2) = G(I(A))’ D,(2) = G(I 1(1))-
For ye M let D(u) and D,(n) have analogous meanings (with respect to the lexico-
graphic decomposition p).
Let X = G and Ae A. We denote by X(4,) the natural projection of X into A4,

(under the lexicographic product decomposition «). Hence if X is a subgroup of G,
then X(A4;) is a subgroup of 4;.

Now the linearly ordered group C,, (cf. Thm. 1.1; A and u are fixed elements of A
or M, respectively) can be constructed as follows. We have

Cau = (D1(2) 0 G(w)) (42) -
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Analogously we have
Cur = (D4(1) 0 G(2)) (B,) -
Let us suppose that 4, + {0} and B, = {0} for each A € A and each pe M.
From [3] (Sections 41 and 45) we infer:

2.1. Lemma. The following conditions are equivalent:

(i) =B
(ii) For each A€ A there is u € M such that

D(p) < D(A) = Dy(2) = Dy(p) -

2.1.1. Remark. It is easy to verify that if 1 and p are as in 2.1 (ii), then u is
uniquely determined by A. If A, 4, € 4 and A, < A,, then for the corresponding
elements u; and p, we have u; < p, (under the assumption that o < fis valid).

The following assertion is obvious.

2.2. Lemma. Let A€ A and pe M. Suppose that D(1) = D(p) = Dy(2) is valid.
Then D() cannot be expressed as a lower section with respect to .

2.3. Lemma. Let o < B. Let H be a lower section of G with respect to . Then H
is a lower section of G with respect to o.

Proof. For each 4, in A4 we denote by u, the corresponding element in M (cf.
2.1). There exists M; = M such that H = G(M,). Denote

Ay ={AedipeM}.

If A, e Ay, A, € A and A, > Ay, then in view of 2.1.1 we have 1, € 4;.
Let A, € A,. According to 2.1,

Dy(41) € Di(my)
and clearly D,(u;) = G(M,) = H. Hence D,(4,) < H for each A, € A,. Moreover,
we have
G(A1) = UlleAl D1(11) >
thus G(4,) = H.

Let h e H. Suppose that h does not belong to G(4,). Hence there is 4, € A such
that 1, ¢ 4,, h(2,) &= 0 and h(4;) = 0 for each A3 € A with 23 < 1,. Consider the
element p, in M corresponding to 4,. In view of 2.1 the element yu, cannot belong
to M, and hence h does not belong to H, which is a contradiction. Therefore H =
= G(A,). Thus H is a lower section in G with respect to a.

Let A be a fixed element of A. The convex subgroup D(A) of G is comparable
with all convex subgroups D{y) of G, where p runs over the set M. Denote

M, ={ueM: Dip) < D(A)}, M, = {ueM: D(u) 2 D(A)},
Hl = UueM; D(,Ll), H2 = nueMz D(l’l)
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(In the case M; = 0 or M, = 0 we set H; = {0} or H, = G, respectively.) Clearly
H, = D(1) € H,.

2.4. Lemma. Suppose that M, + 0 and that M has no least element. Then
H, = H,.

Proof. Let 0 < he H,. There exists ue M such that h(x) > 0 and h{y') = 0
for each ' € M with p' < p. We have h ¢ D(p). If pe M,, then h ¢ H,, which is
a contradiction. Therefore u belongs to M,. Since M, has no least element, there
is u; € My with gy < p. Then h e D(y,), hence h € H,. Therefore H, = H,.

2.5. Lemma. Assume that each lower section of B is a lower section of «. Then
M, + 0.

Proof. By way of contradiction, suppose that M; = (. We always have
Nyere D(1) = {0}. In view of the assumption, D(4) = D{x) is valid for each pe M,
thus D(1) = {0}. Since D(2) = D;(2) (because of A, + {0}), there exists pe M
with D(2) = D(u) = D,(4). According to 2.2 we arrive at a contradiction.

2.6. Lemma. Assume that each lower section of B is a lower section of o. Then M,
has a least element.

Proof. According to 2.5, M, + 0. By way of contradiction, assume that M, has
no least element. Then in view of 2.4, H, = D{}) = H,. Because 4, + {0}, we infer
that D{1) = D,(4).

Hence there exists u, € M, such that

D(4) < D(u,) = Dy(7).

The relation D(Z) = D(u;) cannot be valid, because in such a case we would have
U, € My and hence pu, would be the least element in M. Therefore in view of 2.2
we arrive at a contradiction.

2.7. Lemma. Assume that each lower section of B is a lower section of «. Sup-
pose that pe M and D(u) = D(2). Then Dy(1) = D,(p).

Proof. By way of contradiction, suppose that the relation D(1) < D,(x) does
not hold. Because D,(4) and D,(u) are comparable, we have D(u) = D,(4). But
in this case Dy(u)fails to be a lower section in «; since D,(u) is a lower section in ,
we arrive at a contradiction.

2.8. Lemma. Assume that each lower section of B is a lower section of o. Let p,
be the least element of M,. Suppose that D(u;) + D(1) = D,(p,). Then

D(yl) c D(/l) = Dy(4) = Dy(uy) -

Proof. We only have to verify that the relation D,(1) < Dy(p,) is valid. If
M, = 0, then Dy(p;) = G. Let M, + 0.

a) First, suppose that M, has no greatest element. Then D,(u,) = D(u,) for each
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M2 € M, and thus
Di(11) € Nyerr, D) = H, .
Let 0 < he H,. There exists u; € M such that h(u3) > 0 and k() = 0 for each
neM with p < py. If sy < py, then py e M,, hence there is u, € M, with py < u,
and so h ¢ D(u,), thus h does not belong to H,, which is a contradiction. Hence
M3 Z My, implying that & € D,(p,). Thus we have H, = D,(u,). Because of D(A) < H,
we infer that D(1) = D(u;). In view of the assumption, D(1) # D(u,), hence
D(%) = Dy(py). If Dy(1t;) = Dy(2), then D(u,) fails to be a lower section in «;
because Dy(u,) is a lower section in B, we have a contradiction. Therefore D (1) <
< Dy(my).
b) Now suppose that M, has a greatest element u,. Then

D:(lh) = D(Nz) =H,.
Again, D(2) < H,. If D(4) © D,(u,), then D,(u,) is not a lower section in «,

which is a contradiction. Therefore D;(4) < Dy(n;). (In this part of the proof the
assumption D(2) + D,(p,) is not needed.)

2.9. Lemma. Assume that each lower section of B is a lower section of o. Let u,
be the least element of M,. Suppose that D(u;) = D(A). Then D(2) #+ D(u,).

Proof. The case M, = 0 is trivial; let M, % 0. First, suppose that M, has
a greatest element u,. We apply part b) of the proof of 2.8 and we obtain D(1) =
< Dy(2) = Dy(py); hence the relation D{A) = D,(u,) cannot hold.

Now suppose that M, has no greatest element. In the same way as in part a)of
the proof of 2.8 we can verify that H, = D,(y,). By way of contradiction, suppose
that D(4) = Dy(u,). Because D(1) = D,(4), there exists u, € M, such that DA) =
< D(up) = Dy(4). Then D(u,) fails to be a lower section in «, which is a contra-
diction.

From 2.6—2.9 and 2.1 we obtain:

2.10. Lemma. Assume that each lower section of B is a lower section of o. Then
a < p.

Lemmas 2.9 and 2.10 yield:

2.11. Theorem. The following conditions are equivalent:
(i) a < B
(11) Each lower section of B is a lower section of o.

If ¢(o) = ¢(P), then in view of 2.11, « and f have the same lower sections; these
will be called also lower sections of ¢(a).

2.12. Corollary. Let o, B € Ly(G). The following conditions are equivalent:

(i) e(2) = (B).

(ii) Each lower section of c(B) is a lower section of ¢(a).
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3. COMPLETENESS OF L(G)

Let « andf be as above. Let R, be a congruence relation on the linearly ordered
set A and let p(R,) be the partition of A corresponding to R,. The set p(R,) is linearly
ordered in the natural way (for distinct elements A, A, € p(R,) we put A, < 4,
if 1; < A, for each A, € A, and each 1, € 4,).

For A, € p(R,) we put A, = I,.4, A;. Let @, be the mapping of G into
T4, p(r,y A4, such that, whenever g € G and

@(g) = {oos G - Dsea s
then @g,(9) = ..., 94,> ---Da,ep(ry)> Where
g, = o5 G Dsea, -
Then we obtain a lexicographic product decomposition
Y= (G§ Orp> L ayeptry) AA,) .

Clearly 7 is a refinement of a.
The following assertion is obvious.

3.1. Lemma. Suppose that o and B are isomorphic lexicographic product
decompositions of G; let u be the corresponding isomorphism of A onto M. Let y
be as above. Then p induces a partition p{R,) on M and (under analogous notation
as above) we have a lexicographic product decomposition

8 = (G5 ¥ry> Taryepcray Bor,) -

The lexicographic product decompositions y and 6 of G are isomorphic.

3.2. Lemma. Let a and f be lexicographic product decompositions of G such
that c(a) < ¢B). Then there exists a lexicographic product decomposition B,
of G such that
(i) By and B are isomorphic,

(ii) o < By.

Proof. Denote a;, = f(B, @). Next, let o, be the lexicographic product decom-
position of G consisting of nonzero factors of a,. In view of 1.1, «, is a refinement
of B and «, is isomorphic to « (because of f(a, ) = a). Now it suffices to apply
Lemma 3.1 for constructing f;.

Let o and o; (iel) be lexicographic product decompositions of G such that
() < ¢(o;) is valid for each i e I. In view of 3.2, for each i €I there exists a lexico-
graphic product decomposition «;, of G such that o;, is isomorphic to «; and & < ;0.
In particular, ¢(e;) = c{o0).

Since a is a refinement of «;, there exists a congruence relation R; on A such that
we have

%io = Vi

560



where
7i = (G; or,» L 4 repriy Ay,)
(under the notation as above).
Put R = V4 R; and
Yo = (G§ Pr> FA;Ep(R) AA,) .
3.3. Lemma. (i) For each i € I the relation c¢(y;0) < ¢(,) is valid. (ii) If 6 € Ly(G)
such that ¢(8) = c(y) for each i €1, then ¢(8) Z ¢(y,).
Proof. The assertion (i) is obvious. The assertion (ii) follows from 2.12.

3.4. Corollary. ¢(7o) = Ve ¢(y:) in the lattice L(G).
Hence we have

3.5. Theorem. Let o€ Lo(G). Then the interval [c¢{x),I] of the lattice L{G) is
a complete lattice.

Under the notation as above let R® = A, R;. Put

0o = (G; ©ro> I 4,ep(r0) AAl) .

By applying 2.12 again we obtain:

3.6. Lemma. For each iel we have ¢(yy0) = ¢0y). (ii) If 6 € Ly(G) such that
(8) £ o(vi0) for each i €1, then &(8) < ¢(do).

Hence ¢(8o) = A ().

In view of the construction of y,, from 2.12 and 3.4 we infer:

3.7. Proposition. Let o; (i€l) and y be lexicographic product decompositions
of G. Then the following conditions are equivalent:
(i) c()’) = Vier C(“i)§
(ii) for each lower section d in G we have:

d is a lower section in y <> d is a lower section in each «; (i eI).

Similarly, in view of the construction of d,, 2.12 and 3.6 yield:

3.8. Proposition. Let o; (i€l) and 6 be lexicographic product decompositions
of G. Then the following conditions are equivalent:
(i) 3(5) = Aer C{“i);
(ii) for each lower section d in G we have

d is a lower section in & <> there is i € I such that d is a lower section in o;.

4. COMPLETE DISTRIBUTIVITY; COMPLEMENTS

Let I be a nonempty set and for each i €1 let J; be a nonempty set. Let @ be the
system of all functions ¢:I — U J; such that (p(i)eJi for each iel. Let o
be lexicographic product decompositions of G (i €1, j € J)).

i
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4.1. Theorem. For each c(a)€ L(G), the interval [¢x),I] of L{(G) is completely
distributive.

Proof. Suppose that ¢o;;) € [¢(a), [] for all il and j e J;. In view of 3.5 and
[1], Chap. V, § 5 we have to verify that the relation

is valid Nier VjeJ, 0(“.’,‘) = Voeo Aier C(“i,w(i))

Denote u = V¢e¢ Nier C(“i,(p(n) 30 = Aier Vjel,- C:’xii :
Since u < v, we have to verify that v < u is valid.

Let d be a lower section in u. From 3.7 we infer that for each ¢ € @, d is a lower
section in Ajes c:oc,-,q,(,»,). Hence in view of 3.8, for each ¢ € @ there exists iel
(depending on @) such that d is a lower section of ¢{0t; ,;))-

By way of contradiction, assume that d fails to be a lower section in v. Hence in
view of 3.8, for each i€, d fails to be a lower section in Vg, ¢(%;;). Therefore
according to 3.7, for each ie[ there exists j = ¢i)e J; such that d fails to be
a lower section in ¢{a; ,;)), Which is a contradiction.

4.2. Corollary. The lattice L(G) is distributive. If L(G) has a least element,
then L{G) is complete and completely distributive.

In the remaining part of this Section (except in 4.4) we assume that there is
oo € Lo(G) such that ¢(a,) is the least element of L{G). Let

o = (G§ 0o et A?) .

We also suppose that A7 + {0} for each te T.

Let o € Lo(G) and let us deal with the question under what conditions ¢{x) possesses
a complement in L{G). The distributivity of L'G) implies that if the complement of
¢() exists, then it is uniquely determined.

Without loss of generality we can assume that a, is a refinement of o (cf. Lemma
3.2). Hence there is a partition R, of T such that for each /€ A there is a clas T,
of this partition having the property that 4, is isomorphic to Iy, A7. (The situation
is analogous to that described in Section 3.) Also, R, is linearly ordered in the
natural way (again, cf. Sec. 3).

4.3. Lemma. Assume that the set T is finite. Then c(u) possesses a complement
in L{G).

Proof. We denote by #(R,) the class in R, containing the element ¢ of T. For
t;,t, € T we put t;Rt, if some of the following conditions is valid:
(i) 7,(R,) covers or is covered by #,(R,) in p(R,) and either t,(R,) # t; or t,(R,) * t,;
(ii) ty = t,.
Then R is a congruence relation on T; R A R, and R v R, are the least and the
greatest congruence on T, respectively. There exists f e Lo(G) such that R; = R;
we have (cf. 3.7 and 3.8)

e(B) A () = c{ag), ¢(B) v e(a)=1.
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The following assertion is obvious.

4.4. Lemma. The following conditions are equivalent:
(i) The set L'G) is finite.
(ii) The set L(G) has a least element a, such that (under the notation as above)
the set T is finite.

4.5. Corollary. Let L'G) be finite, card L(G) + 1. Then L{(G) is a Boolean
algebra.

4.6. Lemma. Let T be infinite. Then there exists o € Ly(G) such that c(c) has no
complement in L'G).

Proof. Because T is infinite there exists 7, € T such that some of the following
conditions is fulfilled:
(i) t, fails to be a least element of T and no element of T is covered by t,.
(ii) t, fails to be a greatest element of T and no elemenet of T covers t,. v

Assume that (i) holds. (In the case when (ii) is valid we proceed analogously.)
There exists a subset T, of T such that T, is well-ordered (under the induced linear
order), to ¢ Ty and sup Ty = t, holds in T.

For t and ¢' in T we put tRt" if either t = ¢’ or there exist elements ¢; and ¢, in T,
such that ¢, is covered by t, in Ty and

L St<t,, 4, St <1,

is valid. Then R is a congruence relation on T. Let o € Ly(G) such that R, = R.
If B € Ly(G) such that ¢(B) is a complement of ¢{«) in L(G), then R, is a complement
of R in the lattice of all congruence relations of the linearly ordered set T. But it is
easy to verify that R has no complement. Hence ¢{) has no complement in L(G).

From 4.4, 4.5 and 4.6 we obtain:

4.7. Theorem. Let card L(G) > 1. Then the following conditions are equivalent:
(i) LYG) is finite.
(ii) LLG) is a Boolean algebra.
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