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NEWS AND NOTICES

SIXTY YEARS OF PROFESSOR MIROSLAV FIEDLER

JIRf SEDLACEK, ANTONIN VRBA, Praha

Professor RNDr. Miroslav Fiedler, DrSc., corresponding member of the Czecho-
slovak Academy of Sciences, an outstanding Czech mathematician, reaches sixty
years of age this year. This anniversary offers an opportunity to reflect upon his
research work and his activities in education and organization of science.

Miroslav Fiedler was born on 7 April, 1926 in Prague. Already when attending
the secondary school he showed his talent by winning the mathematical problem-
solving competition of the journal Rozhledy matematicko-piirodovédecké.
After the leaving examination in 1945 he studied mathematics and physics at
Charles University in Prague, graduating in 1950. In thesis [1] he generalized
some results of his teacher Professor B. BydZovsky from classical algebraic
geometry.

After receiving his degree of RNDr. (rerum naturalium doctor) M. Fiedler
became research student at the Central Mathematical Institute, which was later
incorporated in the Czechoslovak Academy of Sciences. With the Mathematical
Institute of the Czechoslovak Academy of Sciences he has remained till now. His
supervisor in the Institute was Academician Eduard Cech. M. Fiedler prepared his
thesis on the geometry of simplexes [5], [6], [7], being one of the first who were
granted the newly introduced degree of CSc. (candidate of sciences). As a research
worker he continued to work in geometry, but soon extended his interests to the
matrix theory, numerical methods, theory of graphs and applications of mathematics
in economy. In 1963 he defended his thesis for the degree of DrSc. (doctor
of sciences), in 1965 he was appointed full professor of mathematics at the
Faculty of Mathematics and Physics of Charles University, and in 1981 he was
elected corresponding member of the Czechoslovak Academy of Sciences. In the
Institute he soon became head of a department and in 1984, after the Institute was
divided into two sections, he was assigned head of one of them.

Already since the early sixties M. Fiedler is gradually gaining international repu-
tation especially by his results in the theory of matrices. He has frequently obtained
invitations to conferences and lectures. The first of his longer stays abroad was as
visiting professor at California Institute of Technology in 1964, followed by several
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others. The general recognition of his scientific eminence found its expression also
in his long-lasting membership in Editorial Boards of the journals Numerische
Mathematik, Linear Algebraand its Applications, and Linear and Multilinear Algebra.

Although research has always been the main concern of Professor Fiedler, he has

never ceased teaching mathematics. His advanced lectures and seminars at Uni-
versities in Prague, Bratislava and Kosice have been a considerable help in the
professional education of numerous graduated and research students. M. Fiedler
is Chief Editor of the Czechoslovak Mathematical Journal and member of Editorial
Boards of several other journals, chairman of the National Mathematical Council,
vice-chairman of the Scientific Board for Mathematics of the Academy and the mem-
ber of the Presidium of the Union of Czechoslovak Mathematicians and Physicists,
to mention only the most important of his offices.

In spite of these energy- and time-consuming activities, Professor Fiedler has
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found enough time to be one of the leading personalities of the Mathematical
Olympiad competitions in Czechoslovakia. Also his cooperation with the Ministry
of Education in preparing and reviewing secondary school curricula and textbooks
is generally appreciated. Here his interest is focused on talented pupils and classes
with special mathematical training.

In the conclusion of the present biographical notes, let us mention just the most
important distinctions and rewards granted to Professor Fiedler for his merits in
research and education. In 1962 it was the silver medal of the Union of Czecho-
slovak Mathematicians and Physicists together with the first prize in the scientific
competition; in 1968, the prize of the Czechoslovak Academy of Sciences for popu-
larization of science (together with Academician Josef Novadk and Professor Jan
Vysin); in 1978 the National Prize for a collection of papers on matrix theory (jointly
with Professor Vlasiimil Ptak). In 1978 he obtained the medal of the Faculty of
Mathematics and Physics of Charles University and in 1981, on the occasion of
his 55th birthday, Bernard Bolzano silver medal of the Academy for his merits in
mathematical sciences. Last but not least, he was elected honorary member of the
Union of Czechoslovak Mathematicians and Physicists in 1984.

As we have already mentioned above, M. Fiedler first concentrated on geometry.
His first papers [1], [3], [4] dealt with the algebraic geometry of curves and hy-
persurfaces in the n-dimensional space. Then he pursued a detailed study of
n-dimensional simplexes [5]—[7], [11], [14]. Let us recall that a simplex is formed
by n + 1 linearly independent points in the n-dimensional space, thus being a gen-
eralization of a triangle and a tetrahedron. This field turned out to be very fruitful
and M. Fiedler returned to it later several times [24], [25], [38], [81], [97]. In
addition to their metrical properties he also characterized their combinatorial
ones, which was then a novelty. For example, let us associate an n-dimensional
simplex with a graph with n + 1 vertices which correspond to the faces of the simplex
and let us connect by an edge exactly those vertices whose corresponding faces
form an acute angle. Fiedler proved that the resulting graph is connected and, con-
versely, for any connected graph with n + 1 vertices there exists a simplex with the
above property. (Moreover, for each non-connected pair of vertices we can prescribe
whether the corresponding angle should be right or obtuse.) Hence we can see that
among all the angles formed by the faces of the simplex at least n are acute. Such
simplexes which have exactly n acute angles and all the others right ones Fiedler
called rectangular, characterizing them in a simple way: n + 1 vertices of a rectan-
gular simplex can be completed to 2" vertices of an n-dimensional rectangular box
in such a way that the edges of the simplex opposite to the right angle are mutually
perpendicular edges of the box. Conversely, if we take n mutually perpendicular
edges of an arbitrary n-dimensional box such that they form a tree then they are
opposite edges to right angles in some simplex. Moreover, the centre of the hyper-
sphere described to this simplex has barycentric coordinates 1 — 1s;, where s;
are the degrees of vertices in the above mentioned tree. Fiedler succeeded in describing
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the location of the centre of the hypersphere described to a simplex even in the general
case by means of the configuration of the angles between faces. Especially deep
were his new results on the relations of orthocentral simplexes (with all heights
intersecting at one point) and equiaxial hyperquadrics and Hankel matrices (to
which he has returned again lately).

The analytical techniques used by Fiedler to investigate simplexes requi-
red fine work with positive definite matrices. This led him to a more detailed
study of the latter. Thus in [19] he estimated from below the trace of the matrix
(A — B)(B™' — A7") in terms of the norms of the matrices 4, B, A — B. This
estimate has an important consequence: a positive definite matrix is uniquely determined
if some of its elements are given together with the elements of the inverse matrix
at the other places. In [23] and [37] the relations between the diagonal elements
a;;, a;; of two mutually inverse positive definite matrices were established. It was
shown that they satisfy the relations

a; >0, 0;>0, ao;21, \/(aii“ii -1= Z(\/(ajjaij) - 1)
i

and conversely, if 2n numbers a;;, «;; satisfy these inequalities, then they are diagonal
elements of two mutually inverse positive definite matrices. There is also an inter-
esting geometric interpretation to this theorem: namely, it yields necessary and suf-
ficient conditions for the lengths of 2n vectors in order that they may form a biortho-
gonal basis of the n-dimensional space, further, for the angles between the mutually
corresponding vectors of the biorthogonal basis and also for the lengths of
heights of a spherical simplex. Fiedler [28] found similar necessary and sufficient
conditions also for the diagonal elements of an M-matrix (the notion will be recalled
below) and its inverse.

Since the half of the fifties, as a consequence of the starting exploitation of com-
puters, the interest of mathematicians in numerical methods began to grow. M.
Fiedler was one of those who directed their interest to this field. His first contribution
was to the numerical methods of solution of algebraic equations with one unknown
by the classical Bernoulli-Whittaker and Griffe methods [8], [9], [12], [30]. Both
methods have a common weak point, namely the case when all roots of the equation
have almost the same absolute value. And this is exactly the case dealt with in [9].
Here Fiedler used for the first time the perturbation method, which later simplified
the techniques of proofs in a number of papers, making it possible to avoid limit
processes. Particular attention was paid to the analysis of Gréffe method, which
Fiedler improved substantially, increasing its efficiency and guaranteeing convergence
even in the situations that had been obscure till then. He also modified it for the
computation of the eigenvalue of a matrix with the maximum absolute value. At this
point we already come to the numerical methods of linear algebra. Fiedler’s interest
first concentrated on the problems of convergence of iterative methods. It is here
that he started his intensive cooperation with V. Ptak, who is the co-author of many

¢

498



important Fiedler’s papers from the matrix theory.*) In [10] the classical Gauss-
Seidel iterative method of solution of the system of linear equations (I — A) x = b,
ie.
Xp+1 = Axn + b7
is modified to the iteration process
(I = B)x,4;1 =(A - B)x, + b

and its rate of convergence with regard to the choice of the matrix B is discussed.
Both authors recall with pleasure later discussions with R. S. Varga and his colabo-
rators who, as appeared, were engaged in similar problems. The iterative method
suggested in [18] for the evaluation of the spectrum of a symmetric matrix is based
on the construction of unitary matrices U, U,, ... such that the sequence of matrices
U, AU converges quadratically to a diagonal matrix. Iteration processes converging
to an eigenvalue of an ‘“almost decomposable” matrix

Ay A
A= 11 1z> )
(Au Az

i.e. a matrix where some of the partial matrices A,,, A,, has small norm [34], [36],
[41], are based on the idea that under certain conditions the spectrum of the matrix A
will be near to the union of spectra of the matrices 4,,, 4,,. The case particularly
important for numerical computation is that with 4, of the size 1 x 1. Another
problem from the numerical methods of linear algebra is the reduction of the size
of the matrix to be inverted. The methods established in [31], [33] have important
applications, especially in solving the Dirichlet problem by the method of nets and
inverting ill-conditioned Leontiev matrices. Let us conclude the account of Fiedler’s
contributions to numerical methods by pointing out the fact that also his investiga-
tions the matrix theory were frequently inspired by problems of numerical character,
and that their results in most cases are of importance for numerical practice.

Before proceeding to the analysis of the crucial part of Fiedler’s research, let us
mention some of his immediately applicable results. In [17] he studied the so called
deformation equations, i.e. systems of linear algebraic equations which appear in
solving frame constructions, and are also connected with the solution of electric
circuits. His contribution to applications of mathematics in economy is of special
importance. In [16], [22], [39] and [40] he substantially developed the methods
of optimization of transport nets.

The theory of matrices is the field which is in the centre of Fiedler’s professional
interest. The papers most frequently quoted are [26], [43], [45], [47], [50], which
actually represent a monograph devoted to the so called M-matrices., i.e. matrices
with nonpositive nondiagonal elements and positive principal minors. This class

*) In the present survey we cannot, for practical reasons, distinguish Fiedler’s own papers
from those written jointly with other authors. We refer the reader, for precise information, to
the list of publications at the end of the present text.
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of matrices occurs in various connections — practical, numerical as well as theoretical
(stability, electric circuits, convergence of iterative processes, majorization of other
classes of matrices, localization of spectra, etc.). The properties and applications
of M-matrices were studied from various view-points by A. Ostrowski, Ky Fan
D. M. Kotel’anskij, R. S. Varga and others. The series of papers mentioned above
represents a synthesis of the known facts, completes them by new results and ap-
plications and provides a unified and clear exposition of the theory. Here we find
tens of necessary and sufficient conditions characterizing the M-matrices and matrices
of related classes. An essential property of the M-matrices is that the real parts of
all their eigenvalues are positive and that their inverses have nonnegative elements.
Many of their properties are similar to those of positive definite matrices — Fiedler
clarified this similarity and studied also their relations to matrices with dominating
diagonal. The latter are again connected with the majorizing role the M-matrices
play in certain classes of matrices. This is shown, for example, by the classical
Kotel’anskij’s theorem which is here improved  and proved in a natural way: if
U = (u;;) is a complex matrix and V = (v;;) an M-matrix, where |u;| = v;;, |uy] <
< |vy/, then |det U| = det V. Let us recall that this theory is applied in the problems
of convergence of relaxation methods and in generalized processes of the Gauss-
Seidel type.

The theory of M-matrices developed in the above mentioned papers was later
applied by M. Fiedler to the localization of the spectra of general matrices. This
is the fundamental problem of the spectral matrix theory, consisting in deter-
mining the possibly smallest complex domain containing all eigenvalues of a given
matrix. This problem is closely connected with the criteria of regularity of a matrix 4,
if we apply such a criterion to the matrix AI — 4. So, for example, the classical
Hadamard’s theorem on regularity of a matrix with a dominating diagonal yields
the classical GerSgorin circles. The majorizing properties of M-matrices were
essential especially for [21], [27]. Let us consider a linear operator 4 on a finite
dimensional space decomposed into the direct sum of r subspaces X; + X, + ...
... + X,. In each of these subspaces let us choose a vector norm g;. Denote

pij = sup {g{(P;AP;x); g, (P{(x)) =1} for i=*j,

Dii Suxp {94{P:APx); g(P(x)) = 1},

where P; denotes the projection to the subspace X ;. It can be proved that the matrix 4
is regular provided the matrix

D115 —P12s -5 ~Pir
—D21» P225 -++s —Dar
—Dr1> —Pr2> ) Prr
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is an M-matrix. This regularity criterion then yields the following localization of

the spectrum: Given real numbers ¢y, c,, ..., ¢, such that
Ctr —Pi2> --+» T Dir
—DP215 €25 -ovs T P2
Pr1s Pr2> s Cr

is an M-matrix, let us denote by R; the set of all complex numbers z satisfying

inf {g,(P{A4 — zI) Pix); g/{P/x)) = 1} < ¢;.

Then the spectrum of the matrix A4 is contained in R; U R, U ... U R,. By various
choices of the decomposition of the space and the particular norms g; we then obtain
not only the classical theorems on localization of spectra, as for example the well
known Gersgorin circles or Cassini ovals, but also much finer estimates. Also the
paper [20] was of pioneering character. In the estimates of position of the spectrum
known till its publication only the values of the elements of the matrix occurred.
The paper [20] provided much more general estimates, involving only the norm of
the offdiagonal part of the matrix, its results being valid for a wide class of norms
including those most frequently used. If the results are formulated for block matrices
the different role of diagonal and offdiagonal blocks stands out clearly.

For the localization spectra of symmetric and hermitian matrices on the real axis
Fiedler developed an elementary method that yielded strong results. Namely, he
noticed that if real or hermitian matrices 4 and B have eigenvalues oy, ..., «, and
Bis - Bm» respectively, u; and v, are the unit eigenvectors corresponding to oy
and f, respectively, and the matrix

(@5
o B

has eigenvalues y,, y,, then the matrix

A ouv”
ovu” B

has the eigenvalues oy, ..., %y, B2, .. Bus 71,72 Thus he obtained [67] a simple
technique of estimating the eigenvalues of symmetric matrices and constructing
special matrices with given spectra. In this way he also easily deduced Horn’s con-
ditions which are necessary and sufficient for the numbers 4, = ... 2 4,, a; = ...
... 2 a, to be eigenvalues and diagonal elements of a n x n symmetric matrix

Sh(=1..,n-1), Ya=Y4.
i=1 i=1

i=1

Mm

IIA

a;
i=1

]

The analogous but much more difficult problem for nonnegative matrices is solved
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by an analogous method in [62]. Here necessary conditions are established, viz.

n n
A zay, Zli=za,~,
i=1 i=1
s—1

Yhi+AhzYa+a-+a, (1Ss<kZn)
i=1 i=1

and it is shown that Horn’s conditions supplemented by the condition 4, < a,_,
(k = 2,...,n — 1) are sufficient in this case. This paper represents also a substantial
contribution to the — not yet completely solved — problem of characterization of
eigenvalues of nonnegative matrices.

Another original method used for studying spectra of nonnegative matrices is
the one based on estimating the magnitude of perturbation caused in the spectrum
of an irreducible matrix. (U O)

w Vv

consisting of the eigenvalues of the matrices U, V; by a change of the zero matrix O.
Here the crucial role is played by the so called measure of irreducibility of the matrix
A, i.e. the quantity

min Y ag,

M+g ieM

k¢M

which is the least of the sums of elements of a nondiagonal corner block of the matrix.
Let us recall that the wellknown Perron-Frobenius theorem asserts that the spectral
radius of an irreducible nonnegative matrix is its simple positive eigenvalue (the
so called Perron eigenvalue). While [57] provides the strict approximation of the
distance of Perron eigenvalue from the others in terms of the measure of irreducibility,
in [55], [69] and [72] this measure serves to the localization of spectra of doubly
stochastic matrices, i.e. nonnegative matrices with unit row and column sums.These
estimates were further improved by combining the above method with the technique
of the so called compound matrices [61], [88]. By a compound matrix of the k-th
degree corresponding to a given matrix of a size n X n we mean a matrix of the

size <Z) X (Z) consisting of all subdeterminants of the k-th order of the matrix A4.

The measure of irreducibility and the spectrum of the matrix A4 are related in a simple
way to the measure of irreducibility and the spectrum of the compound matrix, and,
applying the estimates of the spectrum to the compound matrix, we obtain finer
estimates for the original matrix A.

Another related fundamental problem, to whose solution Fiedler contributed
in [95], is the study of geometric properties of the numerical range of a matrix 4,
i.e. the set W(4) = {(4x, x); (x, x) = 1} in the Gaussian plane. It is known that
W(A) is a compact and convex set containing the spectrum of the matrix A. The dual
object to the set of all supporting lines of the set W(A) is an algebraic curve C(A4),
whose convex hull is the set W(A4) and whose real foci are the eigenvalues of the
matrix 4. Fiedler found the point equation of the curve C(4) and determined its
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curvature at the boundary points of the set W(A). Further, he proved that the nume-
rical range of a nonnegative matrix lies in the circle |z| < r, where r is Perron eigen-
value of the matrix 3(4 + A") and, moreover, r is a corner point of the set W(A).

Recently, Fiedler has devoted himself to Hankel matrices and related classes of
matrices. Hankel matrices have the same elements in diagonals perpendicular to
the main diagonal and appear in the problems of interpolation of rational functions,
in reciprocal difference quotients and also in some geometrical situations. It has
turned out that this apparently ancient theory is far from being closed. By improving
classical methods Fiedler succeeded in finding mutual correspondence between
Hankel, Toeplitz (which have the same elements on diagonals parallel to the main
diagonal), Bézout (which are, roughly speaking, inverses of Hankel matrices),
Loewner (with elements (c; — d,)/(y; — z;) with ¢, d, y,z given vectors) and
Vandermonde (with elements x{, x a given vector) matrices, in exhibiting the analogies
between the properties of these classes of matrices and, on the basis of these results,
in essentially extending the classical results [103]—[110], [114].

Another special class of matrices in which M. Fiedler is interested are the tri-
diagonal matrices. They are useful in numerical mathematics: many methods of
computing eigenvalues and eigenvectors of matrices reduce the problem from
a general matrix to a tridiagonal one. The original Fiedler’s method [89], [92] is
based on reducing the order of a tridiagonal matrix: if we know one simple eigen-
value and the corresponding eigenvector, we are able to construct a tridiagonal
matrix of order n — 1, whose eigenvalues coincide with the remaining eigenvalues
of the original matrix, and from whose eigenvectors the eigenvectors of the original ma-
trix can be computed. Another advantage of the method consists in the fact that in the
case of a tridiagonal M-matrix and a positive eigenvalue it yields again a tridiagonal
M-matrix. The tridiagonal matrices are of interest also from the purely theoretical
view-point [49], [90]. For instance, irreducible symmetric tridiagonal matrices and
matrices resulting from them by simultaneous permutations of rows and columns
are exactly those symmetric matrices whose rank can be, by changing their diagonal
elements, reduced at most by one.

From a more general view-point we can regard classes of matrices as points in
a space. As a rule, important classes are then represented as polyhedra or cones, the
geometrical and topological properties of these sets being connected with the algebraic
and operator properties of the matrices of the class in question. M. Fiedler worked
also in this field, his main interest being directed to the class of all linear operators
which map a given polyhedral cone into another [63],[75],[82],[83]. He showed
that such a class generates also a polyhedral cone, and investigated its properties.
In particular, he described matrix properties of operators which correspond to the
extreme rays. Generally, the diagonals of a polyhedral cone are related to the linear
dependence of its extreme rays. Cones having exactly two diagonals are generated
by n + 1 extreme rays, between which there is a unique linear dependence; they are
called the minimal cones. When studying cones of all operators which map a minima
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cone into a minimal cone Fiedler found that their extremal operators can have an
arbitrary rank h except h = 2. Properties of classes of operators positive with respect
to a given cone, which are a generalization of positive definite matrices and M-matrices,
were studied in [58], [63], [64], [100].

It was already in his early paper [13] that Fiedler described relations between the
signs of elements of a symmetric matrix and those of the coordinates of the eigen-
vectors corresponding to its largest and smallest eigenvalues, and also the relations
between the signs of elements of a positive definite matrix and of its inverse. He
resumed several times the research in the location of positive, negative and zero
elements in matrices satisfying certain conditions, in [73], [94], [99], [113]. The
disclosure of the relations between the signs of coordinates of an eigenvector of an
acyclic matrix and the position of the corresponding eigenvalue among the other
eigenvalues, in particular its multiplicity, had interesting consequences in the graph
theory. Fiedler’s solution of the problem of characterization of the sign pattern of
matrices inverse to the nonnegative ones got considerable response. He showed that
the set of all possible sign patterns of matrices inverse to the fully indecomposable
nonnegative matrices coincides with the set of all possible sign structures of fully
indecomposable matrices with vanishing row- and column sums. If each sign structure
S = (z;;) of the size n x n is assigned the directed graph G(S) with vertices a,, ..., a,,
by, ..., b, in which an edge (a;, b;) occurs iff z;; > 0 and an edge (b;, a;) occurs
iff z;; < 0, then the above mentioned set is formed exactly by such structures S
which are assigned a strongly connected graph G'S).

Here we should mention Fiedler’s work in the boundary field of the matrix theory
and the graph theory. Indeed, some properties of matrices depend only on the location
of zero and nonzero elements and thus can be studied by purely combinatorial
methods. On the other hand, the study of combinatorial properties of graphs can
sometimes be reduced to the study of algebraic properties of their incidence matrices.
We have already mentioned that Fiedler used these methods dealing with simplexes.
Another opportunity of applying them appeared in the numerical methods of linear
algebra, in particular, the optimization of the choice of pivots in elimination methods
[35], [76], [77], [84]. The language of the graph theory essentially simplifies the
approach to the elimination process since it is independent of the order in which the
pivots are selected, as well as of the particular values of the nonzero elements. This
led Fiedler to creating the graph-theoretical analogue of Schur’s complement of
a matrix. This approach is suitable especially for numerical problems with large
sparse matrices. Indeed, it makes it possible to choose the strategy of pivoting so
that it causes no unnecessary increase of the number of nonzero elements and that
the so called contour of the matrix, i.e. its part in which the nonzero elements occur,
is as small as possible. In terms of graphs Fiedler also formulated the algorithmin [31],
which reduces the inversion of a large matrix to that of its blocks of smaller size.

A nice example of combinatorial aspects of linear algebra is the classical Kirchhoff’s
theorem which determines the number of skeletons of a graph by means of the prin-
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cipal minors of the (n — 1)-st order of its Laplace matrix. In [15] Fiedler gave an
original proof of this result, generalizing it to directed labelled graphs and minors of
the other orders. Further deep relations between the algebraic properties of the
Laplace matrix L/G) and the combinatorial properties of the nondirected graph G
are established in [59], [68], [70], [74]. The matrix just mentioned has the off
diagonal elements a; equal to —1 or 0 according to whether the graph G has the
edge (i, k) or not, and the diagonal elements a;; equal to the number of edges in-
cidental with the i-th vertex. Evidently, the matrix L(G) is symmetric, positive
semidefinite and singular. Hence its eigenvalues are nonnegative, the least being
equal to zero. Fiedler noticed the interesting behaviour of the least but one eigenvalue
A(G) of the matrix L/G), which increases with the increasing connectivity of the
graph G, and thus can be considered a measure of its connectivity. Even the elements
of the eigenvector corresponding to the eigenvalue A(G) have certain combinatorial
properties.

The survey of Fiedler’s work shows his effort to grasp the common general prin-
ciples of linear algebra, combinatorics and geometry. In [80], these branches are
joined by the theory of electric circuits. The following four objects are studied:

(A) the set of all finite nondirected graphs on n vertices with edges labelled by
positive numbers; :

(B) the set of all real symmetric n x n-matrices of rank n — 1 with nonpositive
off-diagonal elements and zero row sums;

(C) the set of all connected electric circuits with n nodes consisting of resistors;

(D) the set of all classes of mutually congruent (n — 1)-dimensional simplexes
with no obtuse angles.

It is shown that these four models together with their numerical characteristics
are mutually isomorphic.

In oor survey we have concentrated mainly on more comprehensive sets of thema-
tically related Fiedler’s works. From numerous lesser papers which do not belong
to any of the reviewed domains, let us recall at least several easily formulated results,
distinguished also by their aesthetical qualities:

If r is the degree of the minimal polynomial of a square matrix 4 then there
exists a principal submatrix of 4 of order r and of rank at least r — 1 [93].

The smallest eigenvalue of the matrix (a;;b;;), where A = (a;;), B = (b;;) are
positive definite Hermitian matrices, is not less than the smallest eigenvalue of the
matrix ABT [102].

If two Hermitian matrices A, B have eigenvalues o¢; = ...«, and f; = ... = 8,,
respectively, then '

min [](a; + Bp,) < det(4 + B) < max [](«; + Bp,) >
P i=1 P i=1

where the maximum and minimum are taken over all permutations P of the indices
1,...,n [54].
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If A is an M-matrix of order n then tr (474™') < n, where the equality occurs
iff there is a positive diagonal matrix D such that DAD ™! is symmetric [111].

Fiedler’s works excel not only by the strength of his results, which as a rule are
definitive and cannot be further improved, but also by their brilliant style and clear
organization of the material. The characteristic feature of his methods is an ingenious
combination of relatively elementary principles and the adequacy of the tools
adopted. His results have become part of monographs, being frequently quoted
by authors throughout the world, and have considerably enriched our mathematical
knowledge.
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