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In the last decade many papers have appeared which study the oscillatory properties
of solutions of the differential equation with deviating argument and with quasi-
derivatives. Such an equation is of the form

(1) L, y(t) + f(t, y[9(1)]) = 0
where n > 1 is assumed, the expressions

@) Lox) = —— (), Liy() = ——[Lyy®], i=1,2.m,

Po(?) 20
are called the quasiderivatives of order 0 and of order i, respectively, of the function y
at the point t€[a, ), and py, py, ..., p, are given positive continuous functions
in the interval [a, o). The equation (1) can be considered as a perturbed disconjugate
linear differential equation where in general the nonlinear part involves deviation
of the argument.

In connection with using quasiderivatives instead of derivatives many methods
known in the theory of ordinary differential equations have been extended to the
case of (1), such as Kiguradze lemmas ([6], [7], [1], [12], [3], [11]), Taylor’s for-
mula ([1], [4]), Hardy-Littlewood lemma ([8]) and fundamental lemma ([10]).

In [5] P. Marusiak directed his attention to the system

(3) y;(t) _fi(ta ,Vi+1(t)’ yi+l(hi+ 1(0)) =0, i=12,..,n—-1
{a0) + £t (1), y1(ha(2)))} sgn py(hy(2) £ 0.

Using the relations (2) one can prove that the equation (1) is a special case of (3)
and thus the results obtained for the system (3) represent a further step in generalizing
those obtained for the ordinary differential equation. In view of this, the question
arises what is the most general form of a differential system for which a reasonable
theory can be developed, e.g., for which the Kiguradze lemmas are true.

In this paper a differential system is investigated which in a certain sense generalizes
(3) (the system consists only of equations) and two Kiguradze lemmas are generalized
for it. Further sufficient conditions are established for the mentioned system to have
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the property A and the property B, respectively. The meaning of these properties
will be given later on.
Consider the system

()

J’;(t) = fi(t’ J’i+1(t)’ Vit 1(hi+l(t)), ca 20, (1)), i=1,..,n—1,
yut) = £uts (1), yi(hy(2), v2(2), ya(ha(D)), - os w0, yu(ha(2))) 5

where n > 1.
Sometimes we will require the following conditions to be satisfied:

(4)
(%)

(6)

()

(®)

©)
(10)
(11)

h;e C([a, ), [a, ©)), limh(f)=o00, (i=12,..,n);
t— o0

fi € C([a, ©) x R*""D R),

vi+1fi(t7 Uip 15 Vi1 w05 Uy, Un) =20 for u;4 0,41 >0

(f; has the positive sign property), i = 1,...,n — 1;

foe C([a, ©) x R*, R)

v filt, Uy, vyy ey, 0,) <0 for uwy >0

(f, has the negative sign property);
fue C([a, ) x R*, R)

v flt, uy, vgy ooy Uy 0,) 20 for ugv, >0

(f, has the positive sign property);

for any interval [t,, o) with #; = a and for any 2a-tuple of continuous
functions ay, by, as, b,, ..., a,, b, in [;, 00) such that

a;1(t) bisy(t) >0 in [t;, 0)
the identity
Sty aies(2), biy(2), ..., a(1), (1)) =0

cannot hold in [y, ), i =1,...,n — 1,

and

for any interval [t;, ) with ¢; = a and for any 2n-tuple of continuous
functions ay, by, az, b, ..., a,, b, in [t,, o) such that

ay(t) by(t) > 0 in [t;, )
the identity
fults ay(2), by(2), ..., a,(1), b,(t) = 0

cannot hold in [#;, ©);

the functions f{(f, Ui+ 1, Vis 1> > Uy, 1,), i = 1, ..., n — 1, are nondecreasing
in all variables ©;4 1, Vi1, ---» Uy, U, fOr each fixed t e [a, oo);

the function f,,(t, Ugy Vpy vnes Uy, v,,) is nonincreasing in all variables uy, vy, ---

., Uy, v, for each fixed 7 € [a, o0);

the function f,(t, #y, vy, ..., U, ¥,) is nondecreasing in all variables uy, v1, -- -
<.y Uy, v, for each fixed t € [a, o).
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Remark 1. Under assumptions (4), (5) and (6) or (7) the function y{r) = 0 is
a solution of the system (S) in [a, o).

Denote by W the set of all solutions y(t) = (¥1(t), ---> yu(t)) of the system (S)
which exist on some ray [T}, o) < [a, co) and satisfy the condition

sup{Zl|y,~(t)|: ty £t <o} >0 forany ¢ €[T, ).

Similarly as in [5, p. 73] we shall use the following definitions.

Definition 1. A solution y e W is called oscillatory (weakly oscillatory) if each
component (at least one component, respectively) has arbitrarily large zeros.

A solution y e W is called nonoscillatory (weakly nonoscillatory) if each com-
ponent (at least one component, respectively) is eventually of a constant sign.

Definition 2. We shall say that the system (S) has the property A if every solution
y € Wis oscillatory for n even, while for n odd it is either oscillatory or y; (i = 1, 2,...
. n) tend monotonically to zero as t — co.

Further, in accordance with [l, p- 94] we introduce the following definition.

Definition 3. We shall say that the system (S) has the property B if for n even every
solution y € Wis either oscillatory or y; (i = 1,2, ..., n) tend monotonically to zero
as t - oo, or |y;| (i = 1,2, ..., n) tend monotonically to oo as ¢ — oo, while for n
odd every solution y e W is either oscillatory or ly,-] (i=1,2,...,n) tend mono-
tonically to oo as t — oo.

In both definitions the monotonicity of the components y; is understood in a neigh-
bourhood of oo and not necessarily on the whole interval of definition of y.

Now we shall give a condition under which each weakly nonoscillatory solution
is nonoscillatory and each weakly oscillatory solution is oscillatory. Then each solu-
tion y € Wis either oscillatory or nonoscillatory.

Lemma 1. Suppose that (4), (5), (6) or (7), and (8) are satisfied. Let y = (yy, ..., y,) €
€ W and let there exist a k,1 £ k < n and a ty, = a such that

v() £0 in [ty 0).

Then there exists a T = t, such that each component y; of the solution y is in [T, o)
different from 0, monotone and there exists finite or infinite lim y(t) = L;.

t— o0

Proof. By (4), there exists a t; = t, such that y,(f) + 0, y,(h(t)) + 0 and
yi(t) yi{ (1)) > 0 in [¢;, ). Two cases may occur.

i) 1 < k < n. With the help of (5), the system (S) implies that either y;_,(f) = 0
in 4, ) or y;_,(f) < 0 in [t;, ). At the same time, if y,_(f) = 0 were true on
an interval [1,, ) < [t,, ), then y,_, = 0 would hold, which contradicts assump-
tion (8) for i + 1 = k. Hence y,_, is monotone in [#;, ) and y,_,(#) = 0 does not
hold on any interval [t,, ) < [t;, o). Therefore there is a t3 > ¢, such that
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Yi-1(t) # 0'in [t3, 0), y,_, is monotone in that interval and there exists lim y,_,(f) =
t— 0

= L,_,. By finite induction we prove analogous statements for y,_,,..., y,. The
statements for y,, ..., y,., will follow from the case ii).

ii) k = 1. From the n-th equation of (S) we get that y,(f) = 0 in [¢;, ) or
y.(t) £ 0in [t, ) and similarly as in the previous case y,(t) + 0 can be proved
in an interval [t,, ) < [t;, o). Hence the statement of the lemma is valid for the
n-th component of y and now we consider the case i) for k = n and obtain that the
statement is true for all components of y.

Remark 2. From the proof of the lemma it is clear that the lemma is valid also
for a system of the form

yit) = £t yo(8), yi(hi(2)), v2'1), 2(ha(D)), - ¥ul2), vu(hal2))) »
i=1,2,..,n,
when properly modifying conditions (5), (8). (f; are functions of 2n + 1 variables).
Here it suffices to assume that each function f; has either the positive or the negative
sign property (fi, ..., f,—1 need not have the same sign property).

The relation between the limits L;, i = 1,2,...,n, of components of a non-
oscillatory solution y € Wis determined by Lemma 2.

Lemma 2. Suppose that conditions (4), (5), (6) or (7), (8), (9) as well as condition

(12) there is an & > O such that for i = 1,...,n — 1 and each ¢;4+{ > 0,

t
“rnJ fi(sa Cit1>Civ+1, —& —8& ..., —&, —8) ds’
a

t—= 0

:w’

and for each ¢;y, <0,

t
lim J fils,Civts Civ1s 6,88, 8)ds = —00
t— a
are satisfied. Then the following statement is true:

If y=(y1,.... ya) € W is a nonoscillatory solution of (S), y{t) + 0 in [T, o)

and L; = lim y/{t), i = 1,..., n, then:
i) If 1 gt k < n, —o < L, < oo implies that Ly, = ... = L, = 0;
(@) If1<k<nO0<L, <0 (0>L, 2 —o0) implies that
Liy=..=L =0 (L_,=..=L =—0);
iii) If 1 < k = n, p(t) > 0, y_4(t) > 0 (y(t) < 0, yy=4(t) < 0) in [T, ) imply
{k(t) >) 0, yi—i(t) > 0, ..., y,(6) > 0, (yi(t) < 0, yu—1(t) <O, ..., y4(t) < 0) in
T, o).

Proof. i) Suppose that —co < L, < o, 1 < k < n. If L, > 0 were true, then on
the basis of the (n — 1)-st equation of (S), as well as of assumptions (4), (9), (12)
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there are a ¢,, 0 < ¢, < Lw and aT,_, > Tsuch that

t

yo () = Yo-a(Tocs) + j Furf535) n1(9)) ds 2

Tn-1

t
> Su1(sscpe)ds > 00 as > 0

Th-1

which gives L,_, = oo. Repeating this consideration with the (n — 2)-nd equation
of the system (S), we get that

Yooall) = yoos(Tys) + j a5 et Yol a(5) 78] () ds 2

t
= fn—z(s’ Cn—15Cn—1> —& —E)dS
Th-2

where T,_, is a sufficiently great number. The last inequality together with (12)

imply that L,_, = co. In a similar way we obtain that L,_, = ... = L; = oo which
contradicts the assumption —oo < L, < co. Therefore L, = 0. Similarly L, < 0
leads to the relation L, ; = —oo as well as to the equalities L,_, = ... = L, =
= —oo. Therefore L, = 0.

In the same way we can prove that L,_; = ... = L,,; = 0 and the statement i)
is proved.

ii) If 0 < L, £ oo for a k, 1 < k £ n, then arguing in a similar way as in the
preceding case we get that L,_; = oo and repeating this process we obtain that
L,_,=..=L;= o0. Similarly 0 > L, = — oo leads to the equalities L,_; = ...
...=Ly = —o0.

iii) If y(f) > 0, y,_4(f) > 0 in [T, ), then by (5) for i + 1 = k, y,_(t) = 0
and hence 0 < L,_; < oo, This implies that L,_, = ... = L, = oo, and in view
of the fact that all y/) % 0 in [T, ), y,_,t) > 0, ..., y,(f) > 0 in the same in-
terval. Similarly we proceed in the case y,() < 0, y,_(f) < 0in [T; o).

Now we prove a generalization of the first Kiguradze lemma.

Lemma 3. Suppose that conditions (4), (5), (6), (8), (9), (12) are satisfied. Let,
Sfurther, y = (yq, ... V.) € W be a nonoscillatory solution of (S) in [to, ), a < to,
with L; = lim y(f), i = 1,2, ...,n. Then there exist an integer le{1,2,...,n}

t— o0

with n + | even gnd a T = t, such that .

(13) y{) y1(t) >0 on [T, 0) for i=1,..,1,

and if 1 < n,

(14) (_1)l+iy,-(t) yi(1)>0 on [T,0) for i=1+1,...,n.
If we denote & ~ sgn y4(t) on [T, o), then

(15) 0=<JL, < ®

¢
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and if | < n then

(16) L,=..=L, =0,
while for | > 1

(17) 0<dL,_; S

and for 1 > 2

(18) oL, =...=06L,_, = .

Proof. Since y is nonoscillatory and in view of condition (4) there is an interval
[T, o) such that p(1) %0, y(h(t)) + 0 and y{t) y(h(t)) >0, i=1,...,n, on
that interval. We shall consider the case y;(f) > 0 in [T, c0). Similar arguments
hold if y,(f) < 0 for t = T. As y,(f) > 0, the n-th equation of (S), by (6), gives
that y,(f) < 0 and y, is nonincreasing in [T, o). If y,(f) < 0 were true on the
interval mentioned, then L, < 0 would hold and, by Lemma 2, L, , = ... =L, =
= —oo which contradicts the positiveness of y,(f) in [T, o). Hence y,(f) > 0
implies y,(t) > 0 in this interval and 0 £ L, < oo.

With the help of the (n — 1)-st equation of (S) we obtain that y,_,(¢) is a non-
decreasing function in [7; o). If it is positive in that interval, by Lemma 2 all com-
ponents y(t) > 0, y,(t) > 0, ..., ,(t) > 0 and we can put [ = n. At the same time
0 < L,.{ < oo which implies that L,_, = ... = Ly = oo.

If y,_4(f) <0 in [T, o), then y,, y,-; are of opposite signs on that interval.
Suppose that y,(t) >0, y,_4(t) <0, y,_2t) >0, y,_3{t) <0,..., yi.st) > 0,
Vi+1(f) < 0 are all consecutive pairs consisting of members with opposite signs in
[T, o). By Lemma 2, in the sequence y,, Y,—1> Ya—25 ---» Y2, ¥1 cannot be two con-
secutive terms which are negative in [T, ), because then y, should be negative, too.
Hence y/(t) > 0 and as y,_,(f) < 0 cannot occur, y,_,(t) > 0 and thus, y,t) > 0,
yi-1() > 0,...,y,(f) > 0 in [T, o0). Thus (13) as well as (14) are true whereby
n+ 1is even. As y,4(t) <0, y,11(hi+4(t)) <0 in [T, c0), by the I-th equation
of (S) yj(f) < 0 and hence, 0 < L, < co. This is also true in the case | = n as was
shown above. Hence (15) is valid. By Lemma 2 this implies (16) while the inequality
y;_4(t) = 0 yields (17) and, by Lemma 2, (18) is true.

If instead of condition (6) we consider condition (7), then we get a generalization
of the second Kiguradze lemma.

Lemma 4. Suppose that conditions (4), (5), (7), (8), (9), (12) are satisfied. Let,
further, y = (yy, ..., y,) € W be a nonoscillatory solution of (S) in [to, ), t, = a,
with L; = lim y(t), i = 1,2,...,n. Then there exist an integer le{1,2,...,n}

t—> o

withn + lodd or | = nand a T = t, such that

(13) YO y(f) >0 on [T,0) for i=1,..,1
and, if 1 < n,
(14) (=D ydt) () >0 on [T, 0) for i=1+1,...,n.
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If we denote 6 = sgn y,(t) on [T, o), then

for l=n

(19) 0<dL,£0, 0L,=...=06L, =,
while for 1 < n

(15) 0<dL, < o0,

(16) L,,=..=L,=0

and if 1 > 1, then

(17) 0<dL,_; £ o0,

whereby for 1 > 2

(18) 0Ly = ...=0L;_, = 0.

Proof. The proof is similar to that of Lemma 3. Using the same notation as in
that proof, in view of condition (7) y,(f) > 0 in [T, co) implies that y,(¢) = 0 and y,
is nondecreasing in that interval. If y,(¢) > 0 in [T, o0), then with help of Lemma 2
we come to (19) and hence I = n. In the case y,(f) < 0in [T, o0), Lemma 2 implies
that y,_,(f) > 0 and by analogous considerations as in the proof of Lemma 3 we
obtain the assertion that there is an integer Ie{1,2,...,n} with n + 1 odd such
that (13) and (14) are valid. Again (15) must be fulfilled and this implies (16) while
(17), (18) can be proved in the same way as in the proof of Lemma 3.

Remark 3. From inequalities (13), (14) it is clear that the number I in both
Lemmas 3 and 4 is uniquely determined. This justifies the following definition.

Definition 4. Let y = (y,,...,»,)€ W be a nonoscillatory solution of (S) in
[, 0). We shall say that the solution y has the property P, with e {1,2,..., n}
if a) each component y; of that solution has lim y(f) = L;; b) there exists a T 2 ¢,

t— 0

such that y has the property (13) and if I < n the property (14); c) if we denote
8 = sgn y,(¢) on [T, o), then for L;, i = 1, 2,..., n, the relation (15) and for [ < n
(16), while for I > 1(17) and for I > 2 (18) hold.

Further, we shall say that the solution y has the property P,., if a) each com-
ponent y; of that solution has lim y,(t) = L;; b) there exists a T = ¢, such that y

t—> o

has the property (13) for i = 1,2,..., n; ¢) if we denote & = sgn y,(¢) on [T, ),
then for L;, i = 1,2, ..., n, the relations (19) hold.

In terms of properties P;, Lemmas 3 and 4 can be expressed in the following
compact form.

Theorem 1. Suppose that conditions (4), (5), (6), (8), (9), (12) (conditions (4), (5),
(7), (8), (9), (12)) are satisfied. Then for each nonoscillatory solution y € W of the
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system (S) there exists an le {1, 2,..,n+ 1} such that n + 1 is even (n + 1 is
odd) and y has the property P,.

Remark 4. Theorem 1 in a certain sense generalizes Theorem 1 in [12, p. 121]
(Lemma 4 and Lemma 6 from that paper are not extended to the case of (S)).

When all nonoscillatory solutions y € W of the system (S) have a property P,,
then it is easy to find a sufficient condition for that system to have the property A
or the property B.

Lemma 5. i) If conditions (4), (5), (6), (8), (9), (12) are satisfied, and each non-
oscillatory solution y = (y,,...,y,)e W of (S) has the property P, whereby
lim y,(t) = L, = O, then the system (S) has the property A.

t—= oo
ii) If conditions (4), (5), (7), (8), (9), (12) are satisfied and each nonoscillatory
solution y = (yy, ..., y,) € W of (S) with L, =limy(t), i = 1,2,....,n, and § =
t— o0

= sgn yl(t) in a sufficiently small neighbourhood of o, has either the property
P, or P, whereby for the solution y with P, L, = 0 is true while for the solution y
with P, 6L, , = oo is valid, then the system (S) has the property B.

Proof. Only the statement ii) will be proved. The proof of the first statement
would proceed in a similar way. Theorem 1 gives that each nonoscillatory solution y
has the property P, with n + [ odd. If n is even, then for P, all components y; of y
tend monotonically to 0, while for P, ]y,-| tend monotonically to co as t — co.
If n is odd, then each nonoscillatory solution y € W of (S) has the property P, ., and
again Iy,] tend monotonically to oo as t — co. The proof is complete.

Theorem 2. Suppose that all conditions of Lemma 3 as well as condition (10)
and condition

(20) there is an & > O such that for each ¢, > 0

t
Iimjf,,fs, CiyCiy —& —& .y —&, —&)ds = —o00
a

=0

and for each ¢; < 0

t
lime,,(s, €1, Cpy €85 .y &, 6)ds = 00
a

t— 00
are satisfied. Then the system (S) has the property A.

Proof. Let y = (yy,..., y,) € W be a nonoscillatory solution of (S). Without
loss of generality we may suppose that y,(7) > Oinan interval [T, o). By Theorem 1,
y has a property P, with Ie{1,2,...,n + 1} and n + I is even.

Let [ > 2. Then y(t) > 0, y,(f) > 0 as well as y,(hy(t)) > 0, y,(h,(1)) > 0 in
an interval [Ty, o), T; 2 T. In view of the condition (5), the first equation of (S)
gives that yi(f) = 0in [Ty, o) and hence, there is a ¢; > 0 such that y,(f) =2 ¢, > 0
in [T}, oo). Similarly, by the property P,, there exist constants c,, ..., ¢,_q, ¢; such
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that the components y; of the solution y satisfy the inequalities
(21) O0<e¢; Sy(t)<Ly £ 0,

O<ciy<yiq(f)<Li_y £,
0L <y{t)<e¢g <o,

—&e = yi(t) <Ly =0,

0 =1Ly, <yuat) <e,

in an interval [T, ) < [T}, ), L; = llmy(t) i=12,..,n and ¢>0 is

involved in condition (20). From the n-th equatlon of (S) we have, with help of (10)
and (21),
(22) yrll(t) = fn(t’ yl(t)9 yl(hl(t))a yZ(t)a yl(hZ(t))’ e yn(t)’ yn(hn(t))) §

é fn(ta C1,C1 —8& —& ..., —§&, _8)

in an interval [T, o), T3 = T,. Integrating the last inequality from Tj to t, we
obtain

t
0 < y,(1) £ y(Ts) + J fls,eq,eq, —&, —¢, ..., —¢, —g)ds

which contradicts (20). Hence I = 1. If L, > 0 were true, instead of (22) we should
have
ity S flt, Ly, Ly, —¢, —¢, ..., —&, —¢)

and again we come to a contradiction. Now, by Lemma 5, Theorem 2 follows

Re mark 5. Theorem 2 represents a certain generalization of Theorem 1 in
5, p- 76].

Theorem 3. Suppose that all conditions of Lemma 4 as well as condition (11)
and condition

(23) there is an € > 0 such that for each ¢, > 0

t
limJ fus, e, 1 —&, —&, ..., —&, —g)ds = ©

=0

and for each ¢; < 0

t
lim J fuls,ep,cq,8,8,..,6,8)ds = —o0
a

t—
are satisfied. Then the system (S) has the property B.
Proof. Suppose that y = (yy, ..., y,,) € Wis a nonoscillatory solution. By Theorem
1, y has a property P, with 1€ {1,2,...,n + 1} and n + [ is odd. We shall consider
the case y,(t) > 0 in an interval [T, o). The opposite case would be handled in
a similar way. Assume that [ > 2. Since in this case the inequalities (21) for y,(z), ...
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..» y,(?) are true in an interval [T}, o), the condition (11) implies that

yi(t) = £t y4(0), p1(h1(0)); -5 2(2), V(1)) Z
> fit,er, €15 =€ —E, ..., —E, —§)
and hence

t
vo(t) 2 y(T3) +J fuls, ey eqy —& —&, ..y —&, —€)ds
T3

for all t > Ty, Ty sufficiently great. By (23), lim y,(f) = co which means that y has
the property P, ;. e

If I =1 and L, > 0, then we obtain the same result. This means that this case
cannot occur. Hence, if | = 1, L; = 0 must be true. Again by Lemma 5 the statement
of the theorem follows.

Now we find another sufficient condition for the property A. Instead of (20) we
shall need some other conditions. First we give an estimate for a solution y of the
system (S) with a property P,.

Lemma 6. Suppose that all conditions of Lemma 3 as well as condition (10) are
satisfied. Let there exist a solution y = (yy, ..., y,) € W of the system (S) in [to, ©),
to = a,witha propertyP,,1e{1,2,...,n + 1},andif | = 1, let L, = lim y,(t) * 0.

t— o0
Then for each ¢, > 0 (¢, < 0) such that the inequalities 0 < ¢, < y,(t) (0 > ¢, >
> y[1)) for 1>1, or 0 < Ly < yp{t) <¢; (0> L, > y,(t) > ¢;) for I =1, are
true in a neighbourhood of oo and for ¢ > 0 which is involved in condition (12),
there exist a T = t, and a system of functions

(24) ul,n’ ul,n—h LREE) ul,27 ul,l

given in [T, o) by (28), (31) and (34), respectively (given in [T, ) by (28'), (31')
and (34'), respectively) such that

(25) sgnu, {t) =sgnylt) in [T,o), i=12,..,n,
and
(26) [yi0)| > Jut)] >0, te[T,0), i=12,..,n.

Proof. By Lemma 3, n + [ is even and hence we have to consider three cases.
i) I = n. Denoting L; = lim y,(t) and assuming that y,(f) > 0 in a neighbourhood

t—> o0

of o, we obtain the following inequalities for the components of y in an interval
[T, o0):
(27) 0<cy <yt <Lys oo,

0< Cp—1 < yn-—l(t) < Ln—-l s o,
0= L, < yt) < s

with some positive constants ¢y, €z -+ +> €n-

459



Integrating from T to ¢ in that interval and using the monotonicity properties
of f; given by conditions (9), (10) as well as (27) we get that

ylt) = L, = —fmfn(s, Y1(8)s y1(Bi(5)), -+ s 2uL5)s yal(a(s))) ds =

0
—J. fuls, ey ¢4y —€, —8, ..., —g, —€)ds = u,,(f) >0
t

in [T, o).
Further,
Yoort) = yaor(T) + j (s 1), (s)) ds =
> f For(, ), t((5)) A = ty_1(2) > O
in [T, ).

Thus, by finite induction we construct the functions

(28) u, (1) = —J fu(s, e, 1, —€, —8, ..., —¢, —g)ds,
t

(i) = J’ 15 1), s (s () et n(S). () ds, € [T, o0).
' k=n-1,n-2,...,1.
The system (28) satisfies the inequalities
(29) yo(t) > u, () >0,
v)>u ()>0, k=n—-1,n-2,..,1

and hence it has both the properties (25) and (26).

In the case that y,(f) < 0 for sufficiently great ¢, the system (28) should be modified
into the form

(28" u, (1) = f fulsser,eq, 68, .., 8, 8) ds,

U ilt) = f Sl tn g+ 1(5) Ui 1(Pier 1(5)) s Upn(S), thn (P (s))ds, te[T, o),
k=n-1n-2,..,1
and it would satisfy inequalities converse to (29).

ii) 1 < 1 < n. First we construct the system (24) in the case that y,(f) > O.
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Instead of (27) we now have the system
(30) 0<c¢ <y()<L <0,

0<cy <y4(t)<L_; £,
0= L, < yft) <ey,
—&<yi(t) <Ly =0,
Liia=0<y.,()<se,

with some positive constants ¢y, ..., ¢,_y, ¢, and ¢ given in (12). (30) is valid in an
interval [T, o). Using integration from T to ¢t > T as well as the inequalities (30),
conditions (9) and (10) we get that the system

(* 00

(31) u )= —\| fis, ey, ¢y, —& —¢, ..., —¢, —g)ds,
u:w
ul,n-l(t) =—| fu- 1(3: ul,n(s)’ ul,n(hn(s))) ds,
Jit
“z,n—zf.t) = - fn—Z(S’ ul‘n—l(s)v Upn— I(hn— 1(5)) > & 3) ds,
Jit ’
ul,n—3(t) =—| fu-sls, Ul,n~2(5)7 ul,n—Z(hn—Z(s)) ,
Ji
—é&, —¢&, ul,n(s)’ ul,ll(h”(s))) ds ’
“t,,,—4(t) = - fn—4(s9 ul,n—S{s)’ ul,n—3(\hn—3(s)) s
Jit

&g, &, ul,n—-l(s)’ ul,n— l(hn— l(s))’ &, 8) dS ’

ul,l(’) = "j ft(s) Ui+ 1(5), Upi+ 1(h1+ 1(3)), &, &, “1,1+3(S): “t,t+3(hz+3(s)),

t
€6 ...,6¢)ds,

u,,,_l(t) = f fl—-l(s’ u,‘,(s), u,,,(h,(s)), —¢&, —§ “1,t+2(s), “1,z+z(hz+2(5)) s
t —8, =&, ..y Up,(5), up((s))) ds
“1,1—2(’) = J’ fl—Z(s’ “1,1—1(5), ul,l—l(hl—l(s))7 uz,z(s)a

ul,l(hl(s))’ —&, —&, u1,1+z(5), ul,l+2(hl+2(s)) ceey ui,n(s)7 ul,n(hn(s))) ds,

up(t) = f f1(s, uy,2(5), u1,2(ha(s))s u,3(8)s u1,3(h3(5)) -y ur,i(5), uri(i(s)) ,
—&, —& Uy 142(8) Upra2(Bisa(9))s oo Uy (5), uyu(ha(s))) ds
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satisfies the inequalities

(32) Y1) > () > 0,
Ya-1(t) < upu_y(t) <0,
vit) > uy (1) >0,
Yiea(t) > uy,_y(1) > 0,
yi(t) > u;4(8) > 0

and hence (25) and (26) are valid in [T, o).

If y(t) < O for all sufficiently great ¢, then for determining u,,(t), u,,_ (1), ...
.o g 5(1), instead of (31) we should have the relations (31’) which differ from (31)
by opposite signs at &. In this case all inequalities in (32) turn into opposite ones.

iii) I = 1. In this case we suppose that L, =+ 0. Then for y,(f) > 0 in a neigh-
bourhood of oo we obtain the system of inequalities
(33) 0< Ly <yt) <ey,

—e<y,(f)<L,=0,

0=L; <yt) <e,

0=L,<yft)<e
with a positive constant ¢; and & from (12). The system (33) is valid in an interval
[T, oo). Using the same argument as above we come to the system of functions

(34) ul.n(t) = - ﬂmfn(sa L, L, —¢, —¢,..., —¢, —8) ds,

Ji

wrpead) = =[50 ) o ((5)) 5,
Jit

ul,n—Z(t) = - Mofn—Z(sa ul,n—l(s)’ ul,n—-l(hn—l(s))a &g, 8) dS s
Ji

Uy -3(t) = — mfn—s(s’ Uy noa(s), Uy uea(hy_5(s)),
Ji

—&, —&, Uy ,n(s)’ Uy »"(.h"(s))) ds ’

ug(f) = _wal(s’ Uy ,2(8), Uy 2(ha(5)), & ¢,

uy 4(s), uy a(ha(s)), & ¢, ..., &, €) ds
which satisfies in [T, o) the inequalities
(35) Va(t) > uy () >0,
yn—l(t) < ul,n—l(t) < 0’

y1(t) > uy 4(1) > 0.
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Hence (25) and (26) are satisfied. If y,(f) < O for all sufficiently great ¢, then L, < 0
and we define the functions u, ,(), uy ,_4(?), ..., uy 4(f) by the system (34’) which
differs from (34) by opposite signs at ¢. This system satisfies (35) with opposite signs.
Lemma 6 is proved.

With help of this lemma we can prove the following theorem.

Theorem 4. Suppose that all conditions of Lemma 3, the condition (10) as well
as the conditions

(36) For each ¢, > 0 and for ¢ > 0 from the condition (12) the systems (24) given
by (28), (31) and (34), respectively, and for each ¢, < O the systems (24)
given by (28'), (31') and (34'), respectively, for le{1,2,..,n + 1}, n +1
even, are well defined.

(37) For the systems (24) given by (28), (31), (34) for an arbitrary ¢, > 0 (given
by (28'), (31'), (34') for an arbitrary ¢, < 0) the relations

lim J;f,,(s, u,,,l(s), u,,,l(hl(s)), “n.z(s), un,Z(hZ(S)) RER

1=

cees Uy (8), ty (B(5))) ds = —b0

n,n\

and for 1 <1 < n, n + 1 even,

lim j;f"(s, uy 1(s), uy,1(hy(s)) 5., up i(s),

1= o0

“1,1(h1(5)), —de, —0Je, u,,,+2(s), u1,1+2(h1+2(s)) >
=08, =0, ..., up,(s), g ,(h,(s)) ds = —doo

and if n is odd,

t
limJ' Tulss uy 1(5), uy 4(hy(s)), —Se, —de, uy 5(s),
T

1= 0
uy 3(hs(s)), —de, — e, ..., uy ,(s), uy ,(h,(s))ds = — o0,
where & = sgn ¢,, hold.

Then the system (S) has the property A.

Proof. By Lemma 5, all assumptions of which are satisfied, it suffices to show
that there is no solution y = (y, ..., ,) € W of (S) with the property P,, I > 1,
n + I even, and with P, whereby L, = lim y,() + 0. Suppose that such a solution

t— o
exists in an interval [#o, 00). We shall consider only the case 1 < I < nwith yi(t) >0
in [t,, ). In the other cases we should proceed similarly.

Let ¢y > 0,...,¢;_; > 0, ¢ > 0 be such that (30) is satisfied. Then, by condition
(36), the system u,,, u;,_1, ..., u;,, determined by (31) in an interval [T, oo) satisfies
the inequalities (32) in that interval. The n-th equation of the system (S), by virtue
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of (32) and (6), gives that

(38) yu(t) = y(T) + j' Fls, yi(s), ya(hy(s)), ...y yul(s), »u(hi(s))) ds <

IIA

v(T) + f Su(s, upq(s), uy 1 (hy(s)), ..., ups),

up(hi(s)), =& =&, up142(5), g paa(hrea(s))s -
ooy —E&, —E, ul,n(s)7 ul.'l(’1ﬂ(s))) dS .
The condition (37) now implies that lim y,(f) = —oo which contradicts (30). The
proof is complete. e

Theorems 2, 3 and 4 will be applied to the second order linear differential equation
(39) Y(£) = p(f) ¥(1)
where p e C([a, ®), R), :

(40) p(f) £ 0 in [a, o) and p(t) = 0 does not hold on any subinterval [f,, o)
of the interval [a, o).

If we put (39) into the form of the system
(41) yi(1) = ya1)
va(t) = p(t) :(7)
we see that the conditions (4), (5), (6), (8), (9), (10) and (12) are satisfied. The con-
dition (20) as well as the condition (23) is equivalent to
(42) f |pls)| ds = oo .
If
(43) J' 1p(s)] ds < o0,

then the condition (36) is fulfilled, since the system u; 5, 43,1, determined by (28),
uzai) = (—c1) f p(s) ds
t .
uz,1(1) = (—¢y) [J (u — T) p(u)du + (¢t — T)J p(u) du]
T t

is well defined in [a, 00). At the same time the condition (37) means that

lim (—c,) U;ms) {j (u = )t du+ (s =) [t auf ds] — sgn(—c,) o

T
and hence, (37) is equivalent to

@ im0 {[ = - (M ddas o,

t=0 JT T
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As

J; p(s) {J'sr(u — T) p(u)du + (s — T)J‘00 p(u) du} ds < J' pls) (s - T)J?c p(u)duds,

s T
the condition (44) implies that

(45) lim J" |p(s)| (s — T)ds = 0.

t— o0
Thus (44) is stronger than (45). Theorems 2 and 4 imply the following corollary.

Corollary 1. Suppose that the condition (40) is satisfied. Then either the condition
(42) or (43), (44) are sufficient for all solutions of the equation (39) to be oscillatory.

Remark 6. By [9, pp. 343, 351], the condition (42) has been derived by W. B. Fite.
Conditions (43), (44) are closed to that given by M. Zlimal which reads
7 s*7¢|p(s)| ds = oo.

Similarly when we replace (40) by the condition

(46) p(t) 2 0 in [a, ) and p(t) = 0 does not hold on any subinterval [¢,, ) of
the interval [a, o),

we see that the conditions (4), (5), (7), (8), (9), (11), (12) are satisfied. Further, by (46)
we obtain for each solution y of (39) that (y'(¢) y(¢))’ = y'*(t) + p(t) y*() in [a, )
and hence the function y'(f) y() is nondecreasing and not constant on any interval
[#1, o) with ¢; > a. Thus no solution of (39) is oscillatory. Theorem 3 gives a known
result (see Corollary 3.1 in [2, p. 29]).

Corollary 2. Suppose that the conditions (46), (42) are satisfied. Then each solu-
tion y of (39) either tends monotonically to O together with its first derivative or
[¥], || tend monotonically to co.
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