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ENDOMORPHISMS OF PARTIAL MONOUNARY ALGEBRAS

DANICA JAKUBIKOVA-STUDENOVSKA, KoSice

(Received November 5, 1984)

This paper deals with systems of partial monounary algebras which have the
same underlying set and the same set of endomorphisms. It is proved that the result
of [1] concerning (complete) mounounary algebras ([1], Thm. 5.1) can be generalized
to partial monounary algebras. The main result of the present paper is Thm. 4.11.
As a corollary we obtain a Ramsey-type theorem for systems of partial monounary
algebras (Thm. 4.12).

Homomorphisms and endomorphisms of (complete) monounary algebras were
investigated in [1], [4]—[7]; for the case of partial monounary algebras, cf. [3], [2].

1. PRELIMINARIES

Let 4 # 0 be a set, F = F(A) the system of all partial mappings of 4 into 4,
and let F, = Fy(A) be the system of all mappings of the set A into A. If f e F, then
(A, f) is said to be a partial monounary algebra. For f e F we shall denote by D,
the set of all x € A such that f(x) does not exist. If fe F,, then D, = 0 and (4, f)
is called a (complete) monounary algebra.

Let N be the set of all positive integers. Suppose that (4, f) is a partial monounary
algebra. For each x € A we put f°(x) = x. Let ne N. If f™(x) is defined for each
meN U {0}, m < n, and if f""!(x) ¢ D/, then we put f"(x) = f(f"~*(x)). Further,
denote f~"(x) = {y e A: f"(y) = x} for each neN. For x,ye€ A we shall write
x =y, if there exist m,neN U {0} such that f"(x) = f™(y). The relation =,
is an equivalence relation on 4 and the elements of the set P, = A/= are called
connected components of the partial monounary algebra (4, f). If 4/=, has one
element, then we shall say that (4, f) is connected. The connected component
containing the element x € A will be denoted by K /().

A mapping H: A —» A is called an endomorphism of the partial monounary
algebra (4, f) (cf. [3]), if the following relation is valid:

(Ve d - D)) (H(x)e A — D, & H((3) = S(H(x))
The system of all endomorphisms of (4, f) will be denoted by the symbol End (4, f).
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A partial monounary algebra (4, f) is said to be of type t or m, if there is x € 4
such that f(y) = x for each ye A4, or f(x) = x and 4 — {x} = D/, respectively.
Let (4, f) be a partial monounary algebra. Put

Eq(f) = {geF(A):End(4,f) = End(4,9)},
Eq(f) = {g e F(A): End (4, f) = End (4, g)} .

The set Eq,(f) for the case of the (complete) monounary algebra (A4, f) was in-
vestigated in [1] and it was shown that the following assertions hold (Lemma4,
Thm. 5.1):
(A1) If (A, f) is a (complete) monounary algebra and g € Eqq(f), then P, = P,.
(A2) If (4, f) is a (complete) monounary algebra, then

card Eqo(f) < ¢

(independently of the cardinality of the set A) and this estimate is the best possible.
In the paper [2] the set Eq(f) was studied and it was proved that
(B1) if (A, f) is a partial monounary algebra which is neither of type t nor of
type m, then P, = P, for each g € Eq(f).
In the present paper the following theorem will be established (using (A2) and (B1)):
(B2) If (A, f) is a partial monounary algebra, then

card Eq(f) < ¢
(independently of the cardinality of the set A) and this estimate is the best possible.
The notion of degree s,/x) for x € A was introduced in [3]. We remark that s,
is a mapping of A4 into the union of the set {c0,, c0,} with the class of all ordinals

and & < 00; < 0, for each ordinal « (for the thorough definition of s, cf. [3]).
For a partial monounary algebra (4, f) we denote

A} ={xeA:(3ze D;)(Ine N u {0}) (f"(x) = 2)},
Al = A — Af.
Let x, ye A5, neN.
(a) We put x urf y, if x =-y.
(b) We put x ur] y, if either f"~*(x) % "~ Y(y), f"(x) = f*(»), or K,(x) + K{(y)
and {/""Y(x), /"~ %»)} < D,.
If there is i€ N U {0} such that x ur! y, then we shall write also x ur/ y. Itis
obvious that the relations ur! for i € N U {0} are equivalence relations on A%.

1.1. Lemma. If x ur] y and xur] y, x, ye 4%, i,je N U {0}, then i = j.

Proof. First, let K(x) + K/(y). It follows from the definition that {f*~*(x),
f7Yy)} = D, and {f7~Y(x), f/"*(y)} = Dy, thus 1 = j. Now assume that K{x) =
= K/{(y). If x = y, the assertion is obvious. If x % y, then f'"!(x) # f'~!(y) and
fi(x) = fi(y), and analogously for j, which yields that i = j.

1.2. Lemma. The relation ur’ is an equivalence relation on Aj.
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Proof. The fact that ur/ is reflexive and symmetric is obvious. Now let x ur’ y,
yur’ z. There are i,je€ N U {0} such that x ur{ y, y ur/ z. We shall assume that
x, y, z are distinct elements (in the opposite case we evidently have x ur/ z). If
K (x) # K/{(y) # K{2), then the definition implies that i = j and hence x ur’ y.
Therefore it suffices to investigate two cases: (i) K (x) = Ky) * K(z), (i) K (x) =
= K,(y) = K/(z). Assume that (i) is valid. Then f(x) = fi(y), {f/(y),f(2)} =
< Dy, thus fi(x)e D;. Hence {f/(x),f%(z)} = D, and xurfz, ie. xur’z. Now
suppose that (ii) holds and let i < j. Then f*Y(x) + f*~'(»),f{(x) = f'(»), /71 (») *
+ f17Yz), fl(y)=f4z). If i<j, then fI7Yx)=fI"Yy) % f7Y(2), fi(x) =
= fi(y) = fi(z), i.e. xur{ z. If i = j, then there is 0 < k < i such that f*"!(x) =
+ f*7Y(2), f4x) = f4(z), i.e. x ur{ z. Hence ur’ is transitive.

Instead of writing x ur’ y we shall write also y € x ur/, and analogously for ur/.

It is obvious that if xef™¥z), ze D;, ke N U {0}, then x ur/ = f74D/).

If M < A, put :
Mur! = {ye Af: 3xe M) (xur’ y)},

and similarly for M urf.

Through the whole paper we suppose that A is a nonempty set, f is a fixed element
of F(A) and g is an arbitrary element of the set Eq(f).

Moreover, in Sections 2 and 3 we assume that (4, f) is a partial monounary algebra
which is neither of type © nor of type 7. We shall use the assertion (B1) without
quotation.

2. RELATION urf

The following propositions (T1) and (T2) which will be often used in the sequel
are immediate consequences of 3.3 and 4.8 [3].

(T1) Let (A, k) be a partial monounary algebra, x € D,, y € A — K;(x). Then
si(x) < sy(y) if and only if there exists He End (A, h) such that ihe following
conditions are fulfilled:

(i) H(x) = y,

(i) H(h™"(x)) € h™"(y) for each neN,

(iii) H(t) = t for each te A — U,enui0y h™"(x).

(T2) Let (A, h) be a partial monounary algebra, x,ye€ A, x + h(x) = h(y).
Then s,(x) < s,(») if and only if there exists H € End (4, h) such that (i), (ii) and
(iii) from (T1) are valid.

2.1. Lemma. Let x, y € Af.

(i) If xur’y, then there are ze K/(x) U K{y) and HeEnd(4,f) such that
H(x) = H(y) = H(z) = z and H(t) = t for each teUsen [~ (2)-

(i) If n € N U {0}, y € K/(x) 0 x ur!, then there are z € K(x) and H € End (4, f)

such that H(x) = H(y) = H(z) = z, H(t) =t for each t € Uien f(z) and
H(f"(x)) = f"(x)-
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Proof. We shall prove both the assertions by induction. Let n € N U {0} be such
that x ur/ y is valid. If n = 0, i.e. x = y, then we can put z = x, H = id,. Let
n = 1. Then x + y and either {x, y} = D, or f(x) = f(y) (where x * f(x), y +
+ f(), since {x, y} = A4f). Without loss of generality we can consider the case
sp(x) < s/(y). From (T1) or (T2) it follows that there is H € End (4, f) such that

(1) H(x) = H(y) = y, H(f) =t for each teUinf *(»), and if x¢ D, then
HU(9) = 1(3).

Hence we can put z = y; obviously z € K (x) U K (), and the assertion for n = 1
is valid.

Now let n > 1 and suppose that for each m < n and for each x’, y’ € 44 such that
x" urf, y' the assertion holds. Denote x' = f(x), »' = f(). Then x’ ur]_, y’, thus

(2) there are z’ € K (x") U K (') and H' € End (4, f) such that H'(x") = H'(y') =
= H'(z') = 2/, H'(t) = t for each t € Uyey f ~(2), and if y" e K(x') (i.e. f"72(x') ¢
¢ D;), then H(f" 1(x)) = f"~1(x').

Put H'(x) = x,, H'(y) = y;. This implies

(3) f(xy) = f(H'(x)) = H(f(x)) = H'(x) = 2" = H(Y) = H(f(¥)) =

= f(H'(y)) = f(»1),
therefore either x, ur} y; or x; urf y;. By using the relations proved above (and
taking x,, y, instead of x, y) we obtain

(4) there are ze{x,,y,} and H;eEnd(A4,f) such that H(x,) = Hy(y,) =
= H\(2) = z, Hy(t) = t for each t € Uren S ~¥(2), and if x; ¢ D, then H,(f(x,)) =
= f(xy).

From (3) it follows that

(5) ze{xy, ¥4} = f7H2),
and then (2) implies

(6) H(z) = =.

Denote H = H' o H,. According to (6) and (4) we get
(7) H(z) = H,(H'(2)) = Hy(2) = z,
H(x) = Hy(H'(x)) = Hy(x;) = 2,
H(y) = H,(H'(y)) = Hi(y,) = 2.
Now let t€ Uy f¥(2)- Then teUjen,j>1.f ~J(2") with respect to (5), and hence
according to (4) and (2) we infer that H,(f) = t and H "(f) < t; therefore

(8) H() = H(H'0) = H,(0) = .

Further, let y € K{(x), thus f"~*(x) ¢ D;. Then %) =f""Y(x) ¢ D; and (2)
yields
(9) B(f"(x) = H(f"1(x) = f71(x) = /"(%).

According to (3) and (5) we obtain
f"(z) = f"(xl) = f”()’1) >
hence

(10) f*(x) = H(/"(x)) = ["(H'(x)) = [(x1) = 1"(2)-
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Therefore (10) and (8) yield

(11) H(f"(x)) = H{f"(z)) = f"(H2)) = f"(z) = f"(x),
completing the proof.

For x € A denote

Vi(x) = {ve 4: (3z e K(x) U K {(v)) (3H € End (4, f))
(H(x) = H(v) = H(z) = z)} .
Let us notice that if g € Eq(f), then Vj(x) = ¥,(x) for each x € 4.
2.2. Corollary. If x, y € AL, y e x ur’, then y e V/(x).

2.3. Lemma. Let x € A5, y € K/(x). Then y € x ur! if and only if ye V,(x).

Proof. 2.2 implies that x ur” = V/(x). Now let y € V(x). Since y € K (x), there
are z € K (x) and H € End (4, f) such that H(x) = H(y) = H(z) = z. Assume that
y ¢ x ur’. Then there exists m € N such that either x ur/ f™(y) or y ur’ f"(x). Since
the situation is symmetric with respect to y and x, it suffices to investigate the case
when x ur/ f™(y). Now let ne N u {0} be such that x ur] f"(y). Denote w =

= "(x) = (/"(3)). Then
f"(z) = f"(H(x)) = H(f"(x)) = H(w) = H(f"""(y)) =
= f"""™(H(y)) = f"*"(z)»
which is a contradiction.

2.4. Corollary. If x € A} N A%, then x ur’ n K (x) = x ur’ n K(x).

2.5. Lemma. Let x,ye A, — D,, x ur! y. Then g(x) ur’ g(y).

Proof. Since xur’ y, by 2.1 there are z e K/ (x) U K/(y) and H eEnd (4,f)
such that H(x) = H(y) = H(z) = z. Without loss of generality we can assume that
z € K/(x). We have H € End (4, g), thus

(1) H(g(x)) = g(H(x)) = () = g(H(y)) = H(g(y))

Further, g(z) € K/(x), hence there is m e N u {0} such that either

(2.1) g(x) ur! f™(g(z)) for some ne N u {0},
or

(2.2) g(z) urf fm(g(x)) for some neN v {0}.

Then either

(3.1) f"(9(2)) = f(9(H(x) = H(/"(9(x))) = HS(/"(9(2)))) =

= f"""(g(H(2))) = f**™(9(2)),
or

(32) (6(2) = f(9(H() = H(/(o(z)) = H("(/60) =
= f"*"(g(H(x))) = f"""(9(2)),
which in both cases implies m = 0. Therefore
(4) g9(x) ur’ g(z).
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If, moreover, z € K(y) = K/(x), then analogously to (4) we obtain
(4) g(y) ur’ g(2),
and hence (4) and (4') imply that g(x) ur’ g().
Now let y ¢ K (x). There exist k, j e N U {0} such that
(5) f(9(2) € Dy, f(9(y)) € Dy.
Further, there exists i € N U {0} such that either
(6.1) g(z) ur’ f(g(y)),
or
(6.2) g(y) ur’ £¥(g(z)).
In the first case we obtain i + k = j and
(7.1) H(f(g(y)) = £ (g(H(»))) = £*¥(9(2)),
thus f7**~1(g(z)) ¢ D,, which (with respect to (5)) implies
(81) k>i+k—1,
1>,
i=0,
i.e.
(9.1) g(z) ur’ g(y).
In the second case i + j = k is valid and then
(7.2) H(f(9(v)) = f(9(H(»))) = f*"(g(2))-
Since z € Vy(x) n K/(x), 2. 3 yields
(8.2) zur' x,
which implies
(9.2) zur' y, ie. zur] y for some leN.
Then {f}(2), f{(»)} < D, and we have
(102) H(7') = 1(HO) = 1),
Since f/(g(y)) € D, by (5), the relation f(g(y)) = f'(y) holds and according to (7.2)
we get

X (11.2) f*~{g(z)) = H(f¥(g(»)) = H(f'(»)) = f'(2),
f9(2) = f*"(g(2)) € D; .
{F(9{2), f(9(»))} = Dy,

Then (5) implies

thus
(12.2) g(z) ur’ g(y).
Therefore, in both cases the following relation is valid (by (9.1) and (12.2)):
(13) g(z) ur’ g(y).
From (4) and (13) we obtain
(14) g(x) ur’ g(y).
2.6. Lemma. There is no x € A5 — D, such that the relation g(x)ur’ x holds.

Proof. Assume that there is x € 45 — D, with g(x)ur/x. According to 2.1
there are zeK,(x) and HeEnd(4,f) such that H(x) = H(g(x)) = H(z) = z,
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from which we obtain
z = H(g(x)) = g(H(x)) = ¢(2) .
Then 2.0 [2] implies that f(z) = 2, a contradiction with the fact that x € A%.

2.7. Lemma. Let x, y € A5 0 A% — D,, g(x) ur’ g(y). Then x ur’ y.

Proof. First assume that y e K (x). Since K(x) = K,/x), there exist m,ne N u
U {0} such that g"(x) = g"(y). We can suppose that m < n. By 2.5 the following
relation is valid:

(1) g*(x) ur’ g*y), ..., g"(x) ur’ g"(y).

Further, according to 2.4, (1) implies

(2) g"(x) ur® g"(y)-

We get

(3) ") ur® g™(y),
hence m = n and x ur? y. By using 2.4 again, we obtain that x ur’ y.

Now assume that y ¢ K (x). Then there are i, j € N U {0} such that

(4) {f1(x), /1)) = Dy
we can suppose that i < j. Further, let k e N U {0} be such that

(5) U900, o) < D
Denote v = f/~¥(y). Since

(6) fi(v) =7 (y) =f1y)
holds, (4) and (6) yield that {f(x), f{v)} < Dy, thus

(7) vur’ x.

Then 2.5 implies

(8) g(v) ur’ g(x)
and according to the assumption of the lemma we obtain

(9) 9(v) ur” g(y).

Since v and y belong to the same component, we obtain from the first part of the
proof and from (9) that

(10) vur’ y.

This and (7) imply that y ur/ x.

2.8.1. Corollary. Let x,y € A5 n A% — D,, g(x) = g(y). Then x ur’ y.

2.8.2. Corollary. Let x,ye A} n A% — D,. Then x ur’y if and only if
g(x) ur’ g(y).
Proof. The assertion follows from 2.5 and 2.7.

3. AUXILIARY RESULTS
For i e N let us introduce the following notations:
Ul = {xe A} n A} — D,: g[x)ur’ fi(x)},
I ={xeAfn A% — D;: g{x)e [ (x)ur'},
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Ul =Uin U
= Uien sz
It follows from 2.6 that K {x) = (U’ U I/ U D,) n K/{x) for each x € A n Aj.

3.1. Lemma. If i € N, x € U/, then g(x) = fi(x).

Proof. Let the assumption of the lemma be satisfied. Denote f{(x) = z, g(x) = y
and suppose that z & y. Obviously z ur/ y; let ne N be such that z ur! y holds.
Put f*~}z) = x/, f*~(y) = y'. It is obvious that x’ # y’ and then x’ # f(x') =
= f()') # ' (since all elements considered belong to the same component K(x) =
< Af). First, assume that s.(x') < s/{()’). Then (T2) implies that there is H €
€ End (4, f) such that

(1) H(x') = H(y') = ', H(y) = y, Hx) = uef~ 7" 1(y").

Thus H € End (4, g) and we get

(2) 9.x) = y = H{y) = H(g(x)) = g(H(x)) = g(u).

If g'x) = x or g(u) = u, then 2.0 [2] implies that f(x) = x of f(u) = u, which is
a contradiction, since K (x) = Af. If s,/x) = s,(u), then there is H, € End (4, g)
such that

(3) Hl(“) = Hl(x) =X, Hl()’) =),
according to (T2). Hence we obtain

xl :fn—1+i(x) fn 1+1(H (u)) — fn 1+t(u)) y) —
= H(f"70) = THH) =/ 0) =
a contradiction. If s,(x) < s,(u), then (T2) implies that there exists H, € End (4, 9)
such that

(4) Hy(x) = Hy(u) = u, H; (1) = {t} for each te yur’nK,y).

We have ye A n A9, thus yur!n K,(y) = yur’ n K,{y) by 2.4, and therefore

(5) H7'(t) = {t} for each te yur’ n K, y).

Then
z = Hy(z) = Hy(f{(x)) = f{(Hy(x)) = f{(u) e/ 7""(¥),
which is a contradiction.

Hence the relation s/{(x") > s,()’) is valid. According to (T2) there exists H; €
€ End (4, f) such that Hy(y") = H,(x') = x', H3(x) = x, H5(y) + y. Then we have
y = 9(x) = g{Hy(x)) = Hy(g(x)) = Hy(y) + v,

a contradiction. Therefore z = y.
3.2.0. Notation. Let z€ Dy, xeK,/z), ne NU {0}. If f™(z) + O and f "7 Y(z) =
= (), then we shall write
xeMy(z).
Further, we put
MS = UreD, M'(;(t) ’
My = Unenoioy Mg .
3.2.1. Lemma. Let ne N U {0}, x, x’ € My n D,. Then x ur’ x'.
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Proof. The assertion is obvious if x = x". Suppose that x + x". Then x’ ¢ K /(x)
and there are z, z’ € D, with x € K(z), x' € K/{(2’). Since x, x' € M}, we have

(1) si(z) = n = s,(2").
According to (T1) there exists H € End (4, f) such that

(2) H(t)ef74(2") for each tef~Mz), ke{0,1,...,n}. It follows from 2.4 that
xur; n K (x) = {x} and x’'ur, 0 K/x') = {x'}. Take an arbitrary ke {0, ..., n}
with f7%(z) # {x}. Let t e f "%(z). Then t ¢ D,, thus H(t) ¢ D,, since H € End (4, 9)-
Therefore H(t) ¢ x" ur/. This and (2) yield

() 1) + ().
The above conditions concerning k imply that x ur/ x’

3.2. Lemma. Let x, x" € (45 — M,) 0 D,. Then x ur’ x’

Proof. In the case x = x’ the assertion is obvious. Let x # x'. Then x’ ¢ K(x)
and there are z, z’ € Dy, m, ne N u {0} with

(1) 1) = 7, f1() = 5.
We can assume that s/(z) < s/(z'). Accordmg to (T1) there exists H € End (4, f)
such that

(2) H(t) e f~"(2') for each t e f (z), ke N U {0}.
Let k + m be an arbitrary number from N U {0}, t € f "%(z). Lemma 2.4 yields

(3) xur’ N Ky(x) = {x}, x"ur’ n KAx") = {x'}.
Then we have t ¢ D,, H(t) ¢ D, (since H € End (4, g)) and according to (2) and (3)
we get

(4) k * n.
From the assumption x ¢ M, we obtain that f ~/(z) # 0 for each i e N. Therefore
the number k can run over the set N U {0} — {m}, thus (4) yields that m = n,
ie. xur/ x'

3.3. Lemma. Let i € N, x € I/,. Then there is x" € x ur’ n K {x) such that g(x") €
efi(x").

Proof. Let us denote g(x) = u, f{(u) = y. Then xur/ y and by 2.1 there are
x" € K/(x) and H € End (4, f) such that H(x) = H(y) = H(x') = x". We have

x' = H(y) = H(f'(u)) = f(H(u)),
thus H(u) = t for some t e f~(x’). Hence
t = H(u) = H(g(x)) = g(H(x)) = ¢(x).

Let us introduce the following notation. For x, u € A4 N A% such that u € x ur’ n
A K,(x) put

M(x,u) = {ze K/(x): (3H, G,, G, e End (4, f)) (H(x) = H(u) =
= H(z) = z & G,(x) = G,(z) = z & G,(u) = u & G,(u) =
= Gy(2) = z & G,(x) = x)},
Ty(x) = {veK(x) n x ur’: M/(x,v) = {v}}.
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3.4. Lemma. If x, u € 4 n A%, u e x ur’ 0 K (x), then Mpax, u) + 0, M(x,u) =
= M,(x,u) and T(x) = T,(x).

Proof. Let the assumption of the lemma be satisfied. It follows from 2.1 and 2.4
that there are z e K (x) and H e End (4, f) such that H(x) = H(u) = H(z) = z.
If ze f{(D,), xef~9(D,) for some i, j € N U {0}, then

Fi(H(x)) = H(fI(x)) = H(f'(2)) = fi(H(2)) = [(z) = [(x),
thus H(x)ur/ x; analogously H{u)ur’u. Then there exist m,ne N u {0} with
xurf z, zur/ u. Put

Gy(1) = {t if teUkenoroy /("1 (w),

H(t) otherwise,

|t if teUrenoioy S THT(X))
Ga(t) = {H(t) other’\(vlivse{(.”

We have Gy, G, € End (4, f) and
Gy(x) = Gy(z) =z, Gy(u)=u,
G,(u) = Gy(z) =z, Gy(x)=x.

Thus M (x, u) + 0. The relations M(x, u) = M,(x,u) and T(x) = T(x) follow
from 2.4 and from the fact that End (4, f) = End (4, ¢).

3.5. Lemma. Let i € N, x € I.. If g(x) € f () for u * x, then u € T((x).

Proof. Denote g(x) = y. Then f(y) = u, u e x ur/ 0 K/(x). We want to prove
that M,(x,u) = {u}. Let ne N be such that x ur] u. Further, assume that there
exists z e M (x, u) — {x, u}. Hence there are H, G,, G, € End (4, f) such that

(1) H(x) = H(u) = H(z) = z,

(2) Gy(x) = Gy(2) = 2z, G4(u) = u,

(3) Gy(u) = G,(2) = z, Gy(x) = x.
Since H(z) = z, we have H(t) ur/ t for each t € K /(z). Namely, if t € K(z), f/(t) € D,
fi(z) e D, for some i,j e N U {0}, then

FIH(@) = H((1) = H(f(2)) = f(H(2)) = f(2) = £(0) »

thus H(f) ur/ t. Consequently,

(4) u urf, z for some meN.
Further, (2) implies

1'(2) = f1(G4(x)) = Gu(f"(x)) = Go(f"(w)) = f*(Gs()) = f"(u) ,

which yields the relation m < n. Put

Ho(f) = Gy(f) if tef H(f(u), ieNU{0}, jeN, j<m,
(1) = t otherwise .

Obviously, H, € End (4, f). Analogously to (4) we obtain
(4) x urf z for some ke N,
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and (3) yields

f"(z) = f'(x),
thus k < n. Then we put

B {Gl(t) if tef {(fi(x), ieNu{0}, jeN, j<k,
H(t) = :
t otherwise .
We have H, € End (4, f) and
(5) H 1()’) =D
(6) Hy'(y) = 0.
Hence

(7) 40x) = ¥ = H,(3) = Hy(6() = o(H,() = 9(2)

Since uexur’ nKyx) = xur!nK,(x) (by 2.4) and x¢D,, then u¢ D, and
according to (7) we get

(8) ¥ = 9(z) = g(Hy(u)) = Hy(g(u)),
which is a contradiction with (6).

Therefore M (x,u) < {x,u}. Suppose that xe€M_g{x,u). Then there is Ge
€ End (4, f) such that G(x) = G(u) = x, which implies

y = 9(x) = 9(G(x)) = G(9(x) = 60),

x = G(u) = G(f(y)) = f(G)) =f'() = u,
a contradiction. Since M /(x, u) & 0 with respect to 3.4 and since we have already
proved that M (x, u) < {u}, the relation M /(x, u) = {u} holds.

3.6. Lemma. Let ie N, x € I,. If g(x) € f~¥(u) for some u * x, then g(u) = g(x).

Proof. It follows from 3.5 that u € T,(x), i.e. that M (x, u) = {u}. Then there
is HeEnd(4,f) such that H(x) = H(u) = u and then there exists ne N with
x ur! u. Put

Gir) = {H(z) if tef*(f""x)), keNu{0},
(1) = :
t otherwise .
We have GeEnd(4,f) and G(g(x)) = g(x), since g(x) ¢ Usenooyf (/" !(x))-
Hence 9(x) = G(9(x)) = 9(G()) = 9(H(x)) = g(w).

3.7. Lemma. Let ie N, x e L. If f~(x) & 0, then g(x) e f~¥(x).

Proof. Suppose that the assertion fails to hold, i.e. that y = g(x) e f~(u), u + x.
According to 3.6, g(u) = g(x). First, let s,(u) < s,(x). Then (T2) implies that there
is H € End (4, g) such that H(u) = H(x) = x, from which we obtain

u = fi(y) = fi(g(x) = fi(9(H(x))) = f(H(g(x))) =
= f(H(y)) = H(f»)) = H{) = x,
a contradiction. Hence s,(x) < s,(u). According to (T2) there exists G ¢ End (4,9)
such that G(x) = G(u) = u, G™Y(y') = {¥'} for each y'eyur’nK,x). Since
G e End (4, f), we obtain
(1) 6~ (%) = /-u).
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Assume that tefi(x) # 0 and put ' = G(¢). Then y' e y ur’ n K/ (x) = yur’n
N K ,(x) (with respect to 2.4). Further,

(2) 7'y =2 1},
which is a contradiction.

3.8. Lemma. Let ie N, xe I, y = g(x) e f ¥(x). Then y is the unique element
belonging to f~(x) such that H(x) = x implies H(y) = y for each H € End (4, f)-

Proof. Let the assumption of the lemma be satisfied. Further, let H € End (4, f)
be such that H(x) = x. Then H € End (4, g), which implies

H(y) = H(g(x)) = g(H(x)) = g{x) = y.

Suppose that y & " € f~{(x). Thrn y’ ur] y for some ne N, n < i, thus 2.1 yields
that there are z € K (x) and G € End (4, f) such that

G(y) = 6(y) = G(z) = =, G(f'B) = /")
Thus G(f(y)) = f¥(v), since n < i, i.e. G(x) = x, and from this we obtain that
G(y) = y. Then
G(y) =6y =y +,

and therefore y’ does not possess the property considered.

3.8.1. Remark. The element y from Lemma 3.8 will be denoted by the symbol
yi(x, i).

3.9. Lemma. Let i€ N, x € L, f ~(x) = 0. There exists the least m € N such that
FTE™(f™(x)) * 0. Then f~"™(f™x)) contains a unique element v such that H(x) = x
implies H(v) = v for each H € End (A, ), and we have g(x) = v.

Proof. Since x € I, f ~¥(x) = 0, it is obvious that a positive integer m (and also
the least positive integer m) with the required property f~'"™(f™(x)) + @ exists.
Denote

(1) L= L(x,i) = {vef™"""(f"(x)): (VH € End (4, f))

(H(x) = = H(o) = 0)}.
Further, let g(x) = y, f{(y) = u. We have f~""(f"(x)) + 0; let y, e f = ~"(f™(x))
and put u; = fi(y;), ¥{ = g(u,). Then

(2) y ur! Yis

(3) wur’ ug ur’ x.

Since f~i(u) * 0, f~/(u,) * 0, according to 3.6, 3.7, 3.8 and 3.8.1 we obtain
(4) v = g(u) = y§(u, i) e f~(u),
Yy = g(ul) = J’({(“ls i) ef—i(“1)~
Let ne N be such that x ur] u. From the fact that m is the least positive integer
such that f~'7"(f™(x)) * 0 it follows that n = m. Put
Ht) - {f“"‘""z(y’l) if tef™(f(x)), 0k, <m, 0<k,<i+m,
t otherwise . -
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Then H e End (4, f), thus H € End (4, g), and since n = m, we have H(y) = y.
Further, we have
(5) ¥i = g(u,) = g(H(x)) = H(g'x)) = H(y) = y.
Then y e f~'""(f™(x)) and obviously y € L. According to (4) and (5) the following
identities are valid:
(6) u =f(y) = f1(¥}) = us.
Since y, ef (uy) = f(u) and yef!(u), there exists ke N, k < i, such that
y ur{ yy. It follows from 2.1 that there are z € K/(y) and G € End (4, f) such that
(7) 60) = 6r) = G(2) = 7, G(F0) = 10,

Put
, G(t) if tef {fy), jeNu{0},
G(t) = .
t otherwise .
Then G’ e End (4, f) and
(8) G'(y) = G'(yy) = G(2) = z, G'(x) = x.
If we assume that y, € L, then (8) implies

(9) yl =2z,
and since y € L, according to (8) we get
(10) y = z.

Thus y = y, and the proof is complete.

3.9.1. Remark. The element v from Lemma 3.9 will be denoted by the symbol
f .
vd(x, Q).

4. THE ESTIMATE OF THE CARDINALITY OF THE SET Eq(/f)

We start by introducing the following notations.

Let (B, hy) and (B, h,) be partial monounary algebras such that

(i) B={x;2ieN}UUn,i>1 B, where x;, ieN, are distinct elements, B,
ieN,i> 1, are disjoint sets and x; ¢ B; for i,je N, j > 1;

(ii) hy(b;s1) = x;4 for each b;e B; U {x;}, i€ N, and hy(x;) = x5;

(iii) hy(b;yq) = x; for each by, ; € Biyy U {X;41}, i€ N, and x; € Dy,

The algebra (B, h,) or (B, h,) is said to be of type ¢ or g, respectively. If (B, h,)
or (B, h,) is of type o or o, respectively, and there are x; (for each i € N) and B,
(foreach i e N, i > 1) fulfilling (i), (ii) or (i), (iii), then we write (B, h,) € 0, (B, h;) €@,
or more explicitly,

(1) (B, hy) = o(xy, X, ..., B3, B3, ...),

(2) (B, hy) = o(x1, X2, ..., B, B3, ...).

If (1) and (2) are valid, then we shall write
(B, hy) = (B, hy)*, (B, hy) = (B, hy).
Further, we need the following two results (cf. 3.2 and 4.7 [2]):

4.1. Lemma. (i) Let f = id,. If g = f, then A = D,.
(i) Let A= D, If g * f, then g = id,,.
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4.2. Lemma. Suppose that (A, f) is a partial monounary algebra which is neither
of type © nor of type n, A % D, f & id,. Further, let x€ A and let g | Ky(x) *
* f| Ky(x).

(i) If x € A{ n A4, then (K,(x), f| K/{x)) ¢ 0.

(ii) If x e A A%, then (K(x), f|K/(x)) e o and (K/(x), g | K/(x)) = (K/{x),

fIKAx)).

(iii) If x € A} ~ A%, then (K(x), f | K,(x)) ¢ 0.

4.3. Corollary. (i) Let f = id,. Then card Eq(f) = 2.

(ii) Let A = D;. Then card Eq(f) = 2.

Proof. The assertion follows from 4.1 and from the fact that the element g % f
considered in 4.1 obviously belongs to Eq(f).

In the following Lemmas 4.4—4.9.1 we shall assume that (4, f) is a partial
monounary algebra which is neither of type t nor of type =, and for which 4 + D,
and f = id, hold. Let us denote

My = {x e A{:(K/(x), f| K;(x)) ¢ o},

M, = A{ - My,

My = {xe f: (K, (). £ | Kx)) e ),

M, = A5 — M,

M, =M, - M,

(M, was introduced in 3.2.0).

Il

4.4. Lemma. If M, + 0, then card Eq(f | M,) < c.

Proof. Since (K(x), f | K/(x)) ¢ o for each x € M, according to 4.2 (ii) we have
x¢ A9, ie. xe A. Hence f and g considered on the set M, are complete unary
operations. Then

(1) card Eq(f | M,) = card Eq,(f | M,),
and (A2) yields

(2) card Eqq(f | M,) < c.

Thus we obtain the assertion of the lemma from (1) and (2).

4.5. Lemma. If M, + 0, then card Eq(f| M,) < 2.

Proof. Let xe M,. Then

(1) (KA(x), f| KA(x)) = o{xy, x5, ..., By, B3, ...) for some Xy, X,,..., By, Bs, ....
According to 4.2 (i), (ii) either

(2.1) ¢ | K,(x) = f| K,(x)
or

(22) (Ky(x), g | KAx)) = (KA(x), f| KAx))* = o1, X2, ..., By, Bs, -..)
holds. Thus there are only two possibilities for the operation g considered on K (x).
We shall prove that under each of them, the operation g on K(x) for x" € M, is
uniquely determined, and the proof will be complete.

Let x’ € M,. We shall denote by (1), (2.1'),(2.2") the conditions analogous to (1),
(2.1) and (2.2) (for the element x’ instead of x). Then we obtain that (1') is valid
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and either (2.1') or (2.2') is valid. Further, there exists H € End (4, f) such that
H(x,) = x}, H(x,) = x5, H(x3) = x}. First assume that (2.1) holds. Then
(31) g(x}) = g(H(x,)) = H(g(x,)) = H(f(x,)) = H{x,) = x; = f(x}),
thus (2.2') fails to hold, i.e. (2.1") is valid. Now let (2.2) hold. Then
(32) g(x5) = g(H(x2)) = H(g(x,)) = H(x;) = x} + f(x2),
and therefore (2.2') is satisfied.

4.6. Lemma. If M; = 0, then card Eq(f | M) < 2.

Proof. Let x e M. Then

(1) (KAx), f| K{x)) = o(xy, x5, ..., B, B3, ...) for some x,,x,,..., By, B, ....
Hence x € Af according to 4.2 (iii), thus x € 4] N A%, and from 4.2 (ii) (with f and ¢
interchanged) and from the definition of ¢ and ¢ we obtain that either

(2.1) | K(x) = /] K/x),
or A

(22) (K(x), ¢ | K/ () = (K,(x). /| K X)) = 0(x1, % ... By, By ...
Analogously as in the proof of 4.5 we shall show that if x" € M3, then for each of
these two possibilities for g on K (x), the operation g on K (x') is uniquely deter-
mined.

Let x' € M. Then (1') is valid and either (2.1') or (2.2") (1), (2.1'), (2.2') are
analogous to (1), (2.1) and (2.2), for x’ instead of x). Further, there exists
H e End (4, f) such that H(x,) = xj, H(x,) = x5, H(x3) = x}. First assume that
(2.1) is valid. Then

(3.1) f(x3) = ¥, = H(x)) = H(f(x2)) = Hglx)) = g(H(x,) = g(x3)
and hence (2.1') holds. Now let (2.2) be valid. We obtain

(32) x; = H(xs) = H(g(x,)) = o(H(x,)) = g())
thus (2.2') holds.

4.7. Lemma. Let x € M,. Then x € AL n A% and one of the following conditions
is satisfied:

(4.7.1) xe D,,

(4.7.2) there is i€ N such that g(x) = fix),

(4.7.3) there is i € N such that x € I}, and then

a) if f7i(x) + 0, then g(x) = y(x, i),
b) if f7i(x) = 0, then g(x) = v}(x, i).

Proof. Since (K/(x), f| K/(x)) ¢ ¢ for x € M,, according to 4.2 (ii) (with f and g
interchanged) we obtain x e A N A%. Further, xe D,u U/ U I/. Assume that
x ¢ D,. Then 2.6 implies that there is i € N such that x € U u L. It follows from 3.1
that if x € U{, then g(x) = f(x). Now let x e I. If f "¥(x) # 0, then g(x) e f™(x)
according to 3.7 and g(x) = y{(x, i) with respect to 3.8 and 3.8.1. If f~{(x) = 0,
we infer from 3.9 and 3.9.1 that g(x) = v{(x, i).

4.7.1. Remark. Lemma 4.7 implies the following result: If xe M, U{ for
ieNorif xe Myn I for i € N, then g(x) is uniquely determined by the number i.

&
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4.8. Lemma. Let ne N U {0}, x, x" e M, U My, x ur/ x'.

(i) If xe D,, then x' e D,.

(ii) If x ¢ D,, then x' ¢ D, and g(x') is uniquely determined by g(x).

Proof. According to 4.7, M, < A} n A%, thus ur’ and ur? are defined on M,.

(i) Let xe D,, z’ e K{x') N D,. 3.2 or 3.2.1 imply that x ur/ z’, thus

(1) x" ez’ ur’ n K/(2').
Further, we have

(2) Zur' nK,(z') = {2}
and (with respect to 2.4)

(3) 2 ur,n K, 2") = 2" ur’ n K/(2').
Hence (1), (2) and (3) yield that x" = z’, thus x" € D,.

(ii) Let x ¢ D,. Then x’ ¢ D, with respect to (i) (if we interchange x and x'), and
2.5 yields

(4) g(x') ur’ g(x).
Thus if i € N, x € U/, then x" € U/, and hence by 4.7 and 4.7.1 we obtain that g(x')
is uniquely determined. Similarly, if i e N, x € L}, then x’ € L}, and 4.7 and 4.7.1
imply that g(x’) is uniquely determined.

4.9. Lemma. If M}, + 0, then card Eq(f | M},) < c.

Proof. From 4.7 we obtain that M, < A} n A%. Then there exist N, = N and
distinct elements x; € M, for j € N, such that

(1) for each x’ e M} there is j € N, with x" ur’ x;,

(2) x ¢ x;ur’ for k,jeNy, k +j.
Let j e N,. Consider the number of possibilities for g(x;). Since by 4.7 and 4.7.1
either x; € D, or g(x;) is uniquely determined by a number i € N in the cases when
x;€ Ul or x;eLf, the number of possibilities for g(x,) is at most N,. Further,
card N; < Ny, and then (1) and 4.8 imply that the number of possibilities for g | M),
is at most X%, i.e.,

card Eq(f|M}) < ¢.

4.9.1. Lemma. If ne N u {0} and M} # 0, then card Eq(f| M}) < c.
The proof is analogous to that of 4.9.

In the following lemma we suppose only that (4, f) is a partial monounary algebra.

4.10. Lemma (3.2 [2]). If (A4, f) is of type T or of type m, then card Eq(f) = 2.

Now we shall prove the main result of this paper; we shall repeat all assumptions.
4.11. Theorem. Let (4, f) be a partial monounary ﬁlgebra. Then
card Eq(f) < ¢
(independently of the cardinality of the set A), and this estimate is the best possible.

Proof. First suppose that (4, f) satisfies some of the assumptions of the assertions
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4.3 (i), 4.3 (ii), 4.10. Then we obtain
card Eq(f) = 2,

according to 4.3 (i), 4.3 (ii) and 4.10.
Now let none of these assumptions be satisfied. Then 4.4, 4.5, 4.6, 4.9 and 4.9.1
imply (since A = M; U My U M3 U M} U U,enoio) M)

card Eq(f) < c.2.2.c. M =c.

The fact that the estimate is the best possible follows from (A2).

Let us suppose that A is an infinite set. Let us consider the graph G(4) whose
set of vertices coincides with F(4) and whose set E of edges is defined as follows:
for fy, f, € F(A) we put (fy, f>) € E if and only if f, ¢ Eq(f,). For f € F(A) let K(f)
be the component of the graph (F(A), E) which contains f.

From Thm. 4.11 we obtain as a corollary the following Ramsey-type result:

4.12. Theorem. Let A be an infinite set. The graph (F(A), E) has the following
property: if f € F(A), then card K(f) = card F(A).

Let us remark that in 4.12 the symbol F(A) can be replaced by Fy(A) (cf. (A2)
in Section 1).
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