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SMOOTH STRUCTURES ON FIBRE JET SPACES
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(Received October 1, 1985)

The concept of a fibre jet, introduced by Koldf [11], seems to be a useful tool for
several geometrical considerations. The fibre jet spaces are, roughly speaking, infinite
dimensional analogues of classical jet spaces, and it is reasonable to endow them with
a smooth structure. We introduce such a structure in the present paper. To
this purpose we use some recent results by Frolicher [4], [5], [6]. Since these results
are not generally known, we first give a short survey of them. Some ideas and concepts
are reformulated to a form suitable for our purposes. In the second section the smooth
structures on fibre jet spaces are defined. The basic properties are studied in the
subsequent two sections. The infinite dimensional analogues of frame bundles and
associated spaces are introduced in Section 5. (We remark that some similar objects
are studied by different methods in [3].) In the next section the fibre functors are
defined. This concept is a generalization of lifting functors, [2], [7], [12], [13], [14],
and prolongation functors, [7], [10]. Hence as a consequence of our considerations
some known results are obtained by new methods, but we also deduce some new
results. In the last section a classification of certain types of fibre functors is pre-
sented. — The author is grateful to Prof. I. Koldf for suggesting the problem and
for many useful discussions and valuable remarks.

1. THE CATEGORY & OF SMOOTH SPACES

1.1. Basic concepts, [5]. Let X be a set, S a set of maps f: X — R and T a set
of maps c: R — X. We define DS = {c:R—> X, foceC*R,R) for all feS},
D*T = {f:X > R, foce C*(R,R) for all ce T}. A smooth structure on a set X
is a pair (C, F) where C = X®, F = R¥ such that the “duality conditions” D4F = C,
D*C = F hold. A smooth space is a triple (X, C, F) where X is a set and (C, F) is
a smooth structure on X. The smooth spaces form a category & in which the
morphisms from (X, Cy, Fy) to (Y, Cy, Fy) are defined as those maps ¢: X — Y
that satisfy ¢4(Cx) = Cy or, equivalently, ¢*(Fy) = Fy. Having a fixed set X,
the structures on X are ordered: (C, F) is called finer then (C’, F ") if the identity
map of X is a morphism from (X, C, F) to (X, C, F'). For any set Cy < X® there
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is a finest structure (C, F) on X such that C, < C. It is called the structure generated
by C,and is obtained by setting F = D*C,, C = D,F. Similarly, for any set F, = RX
there is a coarsest structure (C, F) on X with F, = F constructed by C = D,F,,
F = D*C and called the structure generated by F,. The classical smooth structure
on a finite dimensional manifold can be defined by smooth functions, hence ac-
cording to Boman’s theorem, [1] (see also [5], [6]), the classical concept of smooth
maps between smooth manifolds coincides with this more general approach. The
elements of Cy are said to be curves in X, the elements of Fy are functions on X.
We shall often denote an object of & and its underlying set by the same symbol.

1.2. Projective and inductive structures, [4]. Let Ye Ob, X; € Ob¥, ¢; € Mor¥,
@;: Y- X;, iel. A structure on Y is called projective with respect to ¢; if the
following equivalence holds: For any ZeOb%, a map ¢: Z — Y is an & — mor-
phismiff ¢, oy is an ¥ — morphism for all i € I. We have, [4],

Proposition 1. Let Y be a set, X;€ ObY and let ¢;: Y —> X; be maps, i €. There
exists a unique structure on Y projective with respect to ¢, i €l.

This unique structure is generated by the set of functions {f: Y- R, f = g ¢,,
g e Fy, iel}, hence, by definition, Cy = {¢c:R—> Y, ¢,0ce Cx,, iel}.

The inductive structure is a dual concept (from the categorial point of view):
Let YeOb¥, X;€eO0b¥, ¢, e Mor%, ¢;: X —» Y, iel. A structure on Y is called
inductive with respect to ¢, if for any Z e Ob%, a map Y: Y— Z is an & — mor-
phism iff y o o, € Mor¥ for all i e 1.

Proposition 2, [4]. Let Y be a set, X;€ Ob% and let ¢;: X; — Y be maps, iel.
There exists a unique structure on Y inductive with respect to ¢;, i €l.

This structure is generated by the set of curves {¢: R~ Y, ¢ = ¢;.d, de Cy,,
iel},so that Fy = {f: Y R, f o ¢, € Fy,, i €I}. Having an inductive or projective
structure on Y, we have in this way explicitly described the morphisms with the domain
or codomain Y, respectively.

1.3. Some properties of %, [4], [5], [6]. The category & is complete and co-
complete. Limits and colimits are constructed in the category of sets and then they
are endowed with the projective or inductive structure with respect to the limit or
colimit cone, respectively. The category & is cartesian closed. The functor H: & X
x &P » & yielding the cartesian closedness may be chosen in such a way that the
underlying sets of exponential objects are exactly the sets of morphisms, so that
we shall write simply #(X, Y)instead of H(X, Y). The curves of the smooth structure
of #(X,Y)are Cyx y)={c: R>F(X,Y), & Rx X - Yis a morphism in &} where &
is defined by &, x) = c(t) (x). Hence a map y: Z - #(X, Y) is a morphism in &
iff y: Z x X - Y, §(z, x) = Y(z) (x) is an & — morphism.

1.4. Subobjects in &. i: X — Y is called a subobject of Y, if i is a monomorphism
in & and the structure on X is the projective structure with respect to i. The map i
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is also said to be an immersion of the subobject X into the object Y. Having a mor-
phism ¢: Z — Yin &, we define the inverse image of the subobject i: X — Y under
¢ by the following pullback

o YX)—>Z
o)
b'e Y

Obviously, i is a monomorphism. Having a map ¢: R — (p_l(X) satisfying ioce
€ Mor¥, we also have i c ¢ | X o c e Mor%. Hence ¢ | X o c € Mor¥ and it follows
from the definition of the pullback that ¢ also is an % — morphism, so that we have
proved that i: ¢ !(X) — Z is a subobject of Z. The intersection of subobjects
(defined by pullback) is a subobject, too. According to Proposition 1, there is a sub-
object structure on every subset X of any Ye Ob<. If X is a submanifold in the
classical sense, then the classical smooth structure on X coincides with that just
mentioned.

1.5. Quotient objects in . This is the dual concept to that of a subobject: i: X - Y
is a quotien. object of X if i is an epimorphism in & and the structure on Y is the
inductive structure with respect to i. All quotient objects can be constructed as
follows: Let X € Ob% and let ~ be an equivalence relation on X. We define the
inductive structure with respect to the canonical projection i: X — X l ~ on the
set X[ ~. Obviously, given a morphism ¢: X — Z satisfying the condition that
i(x) = i(y) implies ¢(x) = ¢(y) for all x, y e X, there exists a unique morphism
$:X | ~ —> Z such that goi = ¢.

1.6. The topology on the objects in &. Let (X, C, F) be an object in &. We define
the inductive topology on X with respect to C, [6]. That means, Y = X is an open
set iff ¢~%(Y) is an open set in R for all ce C. A subject i: Y — X is called open
if i(Y) is an open set in X.

Lemma 1. Let i,: Y, > X, a € I be open subobjects covering X (i.e. Uz (Y,) = X),
fiX > Zamap.If foi,e Mor¥ for all w€l, then f € Mor¥.

Proof. The smoothness of real functions is a local property. Hence Lemma 1
follows from the commutativity of the diagram

R x 7
A
|
/S

Y)Y,

c

zZ—2 >R

in sets (the square is a pullback).

Let fe MorY, f: X — Z and let i,: Y, > Z, « €I be open subobjects covering Z.
The subobjects f ~*(Y,) of X are also open since we have ¢ }(f “Y(Y,)) = (f - ¢) "1 (Y,)
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in sets.

ix

I .z
Ya)_f’:——) Ya

X
X
Obviously, the sets i,/ f 7!(Y,)) (see the pullback above) form an open covering
of X. On the other hand, according to Lemma 1, we have

Lemma 2. Let f: X — Z be a map and let i,: f~*(Y,) = X be open subobjects
covering X. If all f, are morphisms in &, then f € Mor%.

A finite intersection of open subobjects is an open subobject. The above con-
siderations may be expressed in the form of

Proposition 3. Let X, YeOb% and let f: X — Y be a map. Then f is an & —
morphism iff there exists a covering of X or Y by open subobjects i,: X, —» X,
ael or jyi: Yy — Y, Be J, respectively, such that the maps fg o iz in the following
diagram are morphisms in & for all ael, fe J.

x—I .y
i. /1 N NJs
L
X, f_l(YI!)“f_ﬁ_)Yﬂ

izp

X, m\f"(Yp)

Remark 1. The morphisms in & are continuous with respect to the above defined
topology. Consider 4, Be Ob%. A map ¢: A — B is continuous iff for every curve ¢
in A4 and every open set B' = B, (¢ o ¢)”* (B') is open in A.

2. SMOOTH STRUCTURES ON SPACES OF FIBRE JETS

From now on, Y— X or W— Z will denote a fibred manifold with a standard
fibre S or Q, respectively, dim X = m, dim Z = n. Any map F: Y —» Wis assumed
to be a morphism in the category & .# of fibred manifolds over a smooth map
f:X — Z. Let us recall the definition of a fibre r-jet, [11]. We say that two maps
F, G: Y — W belong to the same fibre r-jet at xe X if jiF = j;G for any ye Y,
(= the fiber over x). This will be expressed by jiF = j.G and we shall denote
by J"(Y, W) the set of all fibre r-jets of local fibred manifold morphisms of Yinto W.
We first define a smooth structure on J'(R™ x S, R" x Q). Then we show that
a bijection between J(R™ x S, R" x Q)and a certain subset of J*(Y, W) is determined
by every local trivializations @: R" x S —» Y, Y: R" x Q — W, and we take the
inductive structure with respect to all these bijections on J'(Y, W).

An Z M — morphism F:R™ x S—> R" x Q is determined by f:R™ — R",
F:R" x S - Q. Consider G, F: R" x S —» R" x Q of the form F = (f, F), G =

361



= (g, G), xe R"™. Take an element s€ S and a coordinate system (s?) or (z%) on
a neighbourhood of s or F(x, s), respectively. jF = j.G implies

olel fa olelGa
0x* | (e X" s

Jf =79,

where F? and G are the coordinate expressions of F and G. Conversely, having
these equalities for every s € S, we deduce jiF = j.G. Hence we have, [11],

x

Proposition 4. For every F, G: R™ x S — R" x Q the following conditions are
equivalent
(i) JxF = jxG;
(ii) jLF(—,s) = j.G(—,s) for every s€S;
(iii) jo(F o 75 o (idgm x a)) = jo(G o T, o (idgm X a)) for every joae TS, where
7,: R™ x S > R™ x S si the fibre translation (y,s)—(y + x,s).

We denote by const TS the set of all r-jets of constant maps from R™ into S.
Obviously const T,;S =~ S. We shall use the following notation. Given F:R™ x
x S - R" x Q, the following maps are determined:

(1) P R™ x TiS » Ti(R* x Q), (x,jha)> jo(Fot,o(idgm x a)),
(2) GrR" x TjS > TrQ, (x,jha)—jo Fotyo(idgm x a)),
(3) ¢p = @p|const T;S: R™ x S —» TpQ, (x,5)—j5(F(—,s)0t,).

By Proposition 4, jiF is determined by ¢g(x, —) and j,f. We shall show that
every such pair determines a fibre r-jet of a certain map F, that is, there exists a bijec-
tion J(R™ x S, R" x Q) = J(R™, R") x #(S, T;Q). In this way we can define
a smooth structure on J(R™ x S, R" x Q) by requiring this bijection to be an iso-

morphism in &. The first statement above is a consequence of the following pro-
position.

Proposition 5. Let ¢: S — J(M, N) be a smooth map. There exists a smooth
map ®:S x M — N satisfying ji,,P(s, —) = ¢(s) for every se S, where a
is the source projection.

Proof. Consider some sprays 6 and n on M and N. Given a map f: M — N,
a local map y,: TM — TN is defined on a neighbourhood of the zero section as
follows. Denoting by 7y, my the projections of TM, TN, we set Y/, = (my x exp,)”* o
o(f % f)o(my % expy). Since (m, exp) is a diffeomorphism on a neighbourhood
of the zero section, we have: jo(¥, | T, co0M) = jo(Wy | TopecoyM) iff jopi0f =
= jru0yg> for all f, g: M — N. Owing to this fact we can construct a map ¥ defined
on S as follows: If (s) = ji,,\fs then ¥(s) = jo(V ., | TrpyM) € I(TropsyM; TpopisyN)-
That is why for every s e S there exists a unique polynomial map of degree r ¥,:
TyopM = Ty N satisfying joi, = Y(s). Hence we have constructed a map
U (S =2~ M) @ (TM ™, M) = TN which will be shown to be smooth.

Take an element s, € S and choose bases (9/dx’) (x) and (8/0z7) (z) of the tangent

@
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spaces on neighbourhoods U and V of « . ¢(s) and B o ¢(s), respectively. Then the
normal coordinates on a neighbourhood of every point from U and V are determined
and we are also given an induced coordinate expression (@Z(s)) of the jet ¢(s) on
a certain neighbourhood of s, € S. The smoothness of the bases implies the
smoothness of ¢¥(s) and according to our construction of ¥ we have

@ (58 e 0lo)) = o9 & (B0l

Hence ¥ is smooth.

Let U, V be the domains of exp,, exp,. Given the Riemannian metrics on M, N,
let us choose smooth positive functions u:M - R, v:N > R, ¢:S x TM — R,
8:S x TN — R satisfying {v e TM, |v| < u(m\{v))} = U, {ve TN, |v| < v(ny(v))} =
< V, &(s, =) = 1 on a neighbourhood of the zero section, (s, v) = 0 for [v] >
> 1/2p(mp{v)), 6(s, —) = 1 on a neighbourhood of the zero section, |v] &(s, v) <
< v(7my(v)). (This can be easily done by means of a partition of unity.) Now we are
able to define a smooth map ®: S x M — N by

exp, o (6. 8. 9) o (ids x (my x expg)™1) (s, (o o @(s), X))
(s, x) = if xeexpy(ThpmM),

Boo(s) if x¢expy(T,M),

where . means the usual multiplication by a real function. Then (4) implies our
Proposition.

Corollary 1. The map
) JxF = (Jof, orix, =)
is a bijection J'R™ x S, R" x Q) = J(R™, R") x #(S, T;0Q).

Proof. Given j.fe J'(R™, R") and g€ &(S, T;Q), by Proposition 5 there exists
a map @:R" x S — Q satisfying jhd(—,s) = ¢(s) for all seS. We set F = &5
oT_y, F=(f,F). According to (3) we have ¢ = ¢, hence Corollary 1 follows
from Proposition 4.

Definition 1. The smooth structure on J'(R™ x S, R" x Q) is the transfer of the
smooth structure on J'(R™, R") x &(S, TQ) by (5).

Remark 2. A map g: X — J'(R™ x S,R™ x Q) is an & — morphism iff the in-
duced maps g;: X - J'(R", R"), g,: X x S = T,;Q are morphisms in #. In parti-
cular, if ¢ is a curve in J(R™ x S, R" x Q) then ¢,: R x S — T, Q is smooth and
by Proposition 5 there exists a morphism F: R x R™ x S — Q satisfying et s) =
= jiF(t, —, 5). Therefore we also have a morphism ¢,: R x TS — T,/Q defined
by Ez(t, jha) = j{,(F(t, -, ,.) a(idR... X a)). Conversely, having ¢, we define c,
by restriction. In this way J(R™ x S, R" X Q) can also be considered as a sub-
object of J(R™, R") x #(T,S, T;Q).

363



A useful consequence of Proposition 5 is

Proposition 6. 4 map c:R— J(R™" x S, R" x Q) is a curve iff there exist
& — morphisms F:R X R" x S - R" x Q, x: R —» R" satisfying

(i) F(t, —, =) e Mor FM for all teR,

(ii) jooF(t, —, —) = ¢(t) for all teR.

Proof. Given morphisms F and x satisfying (i) and (ii), the smoothness of ¢
is obvious. Conversely, let us have a curve ¢. This induces two morphisms ¢;: R —
- J(R™, R"), ¢;: R x S— T,Q) (see Remark 2). According to Proposition 5,
there exist morphisms f: R X R™ — R", ®: R x R™ x S — Q satisfying ji..,f(t, =) =
= ¢,(1), jo®(t, —,s) = cy(t,5). Setting x(t) = aoc(t), F(t,z,5) = (f(t,z),Po
° T_ (1 z,8)), we prove Proposition 6.

Consider fibred manifolds Y — X, W— Z. Given local trivializations &: R™ X
x S—>Y, Y:R"x Q- W, an injective map <&, ¥): J(R" x S, R" x Q) -
— J’(Y, W), .

(6) (B, W) (JiF) = ji/¥ o Fo®7Y)

is determined, ¢ being the underlying base map of &.

Definition 2. The object J'(Y, W) in & is the set J'(Y, W) endowed with the in-
ductive structure with respect to the set of maps {<®, ¥>: J(R™ x S, R" x Q) -
— J'(Y, W); &, ¥ are local trivializations of Y, W}.

A map f:J(Y, W) > P is a morphism in & iff any local trivializations @, ¥
of Y, W satisfy fo (P, ¥) € Mor &. Cearly, the structures defined on J(R™ x S,
R" x Q) in Definition 1 and Definition 2 coincide. There exist canonical projections
in &:

a J(Y,W)—> X, jiFr—x  (source projection),
B:J(Y,W)—> Z, j.Fw f(x) (target projection).

Definition 3. Consider a subcategory ¢ = #.#. The object J'¢(Y, W) is the
subset of all fibre r-jets of local ¥ — morphisms in J'(Y, W) endowed with the sub-
object structure. In the case ¥ = F.# we shall write only J’( Y, W).

Proposition 7. Consider a subcategory € = F M and local trivializations @, ¥
of Y, W.If &, ¢~ 1, W, ¥~! € Mor ¥ then the restriction of (6) {®, ¥>: J'6(R™ x S,
R" x Q) > J'6(Y, W) is an open subobject.

Proof. It follows from the properties of subobjects that it is sufficient to prove
our Proposition in the case ¥ = F ..

Consider such a map ¢ that (@, ¥) o c is a curve. The proof will be complete
after proving that in this situation ¢ also is a curve. Given a function f on J(R™ x S,
R" x Q) and a point t, € R, we have to show that f - ¢ is smooth in t,. Choose func-
tions ¢: R* — R, k = m, n, satisfying ¢, = 1 on a neighbourhood of 0, g = 0
outside the sphere K;(0,1). We may suppose aoc{ty) =0 = Boc(ty). We set
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fo = (émo®).(e,0B).f, where . denotes the multiplication of real functions, and
define a function f: J'(Y, W) — R by

JULF) = JooXP, WY L(jiF) if jiFel®, ¥) (J(R" x S, R" x Q)),
* 0 in the other cases .

The map fo<{®P, ¥)>oc is smooth and coincides with fo.c on a neighbourhood
of t, € R. That is why ¢ is a curve. The subobject is open because the image of {(®, ¥
is determined by the bundle projection, QED.

Definition 5. Consider a subcategory ¥ = & .. The object J;4(Y, W) or J'6 Y, W),
is the subset of all fibre r-jets in J*¢(Y, W) with the source or target in x or z, respec-
tively, endowed with the subobject structure of J(Y, W); JL%(Y, W), is the subobject
of all fibre r-jets in J"¢(Y, W) with the source in x and target in z. (In the case of
C = F . the symbol F .4 will be omitted.)

3. COMPOSITION OF FIBRE JETS

Consider fibred manifolds Y —» X, W— Z, V — P with standard fibres S, Q, M
and F,GeMor FM, F:Y—> W, G:W— V. One sets jj.,GojiF = ji(GoF),
which is obviously a correct definition.

Proposition 8. Given a subcategory € <= F M, the composition of fibre jets
determines a map from the fibred product (I'6(Y, W), B, Z) ® (J"6(W, V), a, Z)
into J'6(Y, V) which is a morphism in &. We denote this morphism by o.

Proof. One can easily see that given A4, B, C € Ob¥, subobjects i;: Ay — A4,
i,: By » B and morphisms f: 4 > C, g:B— C in &, then j: (Ao, foi;, C) @
@ (By, g o iy, C) > (4, f, C) ® (B, g, C) also is a subobject, where j is the morphism
uniquely determined from the diagram

(AO’f° ila C) @\(3079 ° iZ’ C)

‘ ~

B,
N iz
N

(A;f’C) (By g, C)'_'—')B

T I

iy S C

Owing to this fact, it is sufficient to prove Proposition 8 in the case ¥ = ..
First assume Y=R™ x S, W= R" x Q, V= R* x M and consider two curves
c:R— J(Y,W), d: R - J(W, V) satisfying B oc = aod (an arbitrary curve in the
fibred product from Proposition 8). In our case the proof will be complete after
showing that d o c: R — J'(Y, V) (defined pointwise) is also a curve. By Proposition
6 there exist morphisms F:R x R" x S>R"x Q, G:Rx R"x Q>R x M
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satisfying ¢(t) = Jyoe F(t, —, =), d(t) = jl40)G(t, —, —). By definition
(doc)(t) = d(t) o c(t) = Jrew(G(t, —, =) o F(t, =, =)) .
Set H = Go(idg x F). Now HeMor¥, H{t,—, —)eMor FM, (doc)(t) =
= JreayH(t, =, —), hence d o ¢ is a curve according to Proposition 6.
Given local trivializations @, ¥, X of fibred manifolds Y, W, V, there exists a unique

morphism (@, ¥, X)> from the following commutative diagram in & (the squares
are pullbacks, ¥ is the underlying base map of ¥).

J(R" x S,R" x Q) ® J(R" x Q, R* x M)—— J(R" x Q, R* x M)

R R 'S <":J‘/
T\

I(Y, W) @ J(W, V) — JW, V)

T

FY,w) ——"t sz

v ~

J(R™ x S, R" x Q) ! R

The map <@, ¥, X) is an immersion of a subobject as one can also see from the
diagram. This immersion is of the form

(J2F, J5G) > (peo (P o F o @71, Jyeran(t o Go ¥71),

hence the subobject is open. Now Proposition 8 follows from the above considera-
tions, Proposition 3 and the commutativity of the following diagram:

(J(R"x S, R"x Q), B, R") & (J'(R"x Q, R*x M), «, R") —>— J'(R™ x S,R*x M)
(D,V.X) l(o,x)

(Y W), B.2) © (J(W, V), 0, Z) — > > F(Y. V)

Remark 3. Given j,,G, jiF we also have @, p from (1) Then we can obtain
Pg.r in the following way:

Por R" x T;S —""> T)(R" x Q) = T;(R" x const T;Q) %
- TITI(R* x M)—2— T}(R* x M),

where p is the canonical projection. This can be proved by direct evaluation.

4. INVERTIBLE FIBRE JETS

A fibre jet A e J(Y, W), is called invertible if there exists a fibre jet B e JJ(W, Y),
satisfying Bo A = jjidy, A o B = jlidy.
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Definition 6. The object invJ'(Y, W) in & is the subset of all invertible jets in
J(Y, W) endowed with the subobject structure. Given a subcategory € = 7./,
the object invJ"8{Y, W) is the subset in J'(Y, W) of all those invertible fibre r-jets
which are together with their inverses fibre r-jets of ¢ — morphisms endowed
with the subobject structure. In a natural way we define ian;%(Y, W), ian’(g(Y, W),
and inv JI%(Y, W),.

Proposition 9. A fibre jet jiF € J'(Y, W) is invertible iff j.f is invertible and the
restriction F] Y.: Y, - Wy, is a diffeomorphism.

Proof. It is sufficient to prove Proposition 9 in the case Y= R" x S = W,
x = 0, f(0) = 0. Necessity is clear, we prove sufficiency. The restriction F | {0} x S:
{0} x S — {0} x S is a difffomorphism, so it is a regular map on a certain neigh-
bourhood of {0} x S. It follows from the inverse function theorem that (0, —):
TS — TS is a bijection (see (2)) and the inverse map to {0, —) is also smooth.
The map F can be expressed as F = H o G, where H = f x idg, G = idgm x F.
Since f~! exists on a neighbourhood U of 0, H™! also exists on U x S. Hence
we may assume, without loss of generality, that F is a morphism over identity.
In this case, given another morphism of fibred manifolds G: R" x S - R™ x S,
we have (see (2))

30, =)« 350, —): Jga o Jo(F o (idge x @)
H.’B(G ° (idR'" X (F o (idnm X a)))) = ]B(G o F o(idR,n X a)) .

Hence ¢4(0, —) o $x(0, —) = @6.r{0, —). Let us choose ¢g(0, —) as the restriction
of the inverse map of ¢4(0, —) to const T’S and let j;G be the fibre jet determined
by (j5idgm, ¢6(0, —)). We may assume that G is a map over the identity. Since
Jo(F o G o (idgm x a)) = @40, =) o (0, —) (jha) = jha for all constant maps
a: R" — S, by Proposition 4 we have jiF o jiG = j{idgmxs- In a similar way we can
find the right inverse joH to jiG. Since jiF = jiF o j3G o joH = joH, Proposition 9
is proved.

In particular, invJ"(Y, W) is a nonempty set iff the bases of Y and W are of the
same dimension and the standard fibres are diffeomorphic.

Remark 4. The set inv J'(Y, W) need not be open in J'(Y, W). Indeed, set ¥ =
=W=Rx(0,1), F:R x (0,1) > R x (0,1), F(x,y)=(x,(1 — x?)y). Given
a curve ¢'t): R > J'(Y, W) by ¢'t) = jiF, we have ¢” (invJ"(Y, W)) = {0}.

Proposition 10. For every subcategory € = F ., the map ~*:inv J'6(Y, W) —»
- invJ"¢(W, Y) is an & — morphism.

Proof. Since invJ"4(Y, W) is a subobject in 1an’(Y W), it is sufficient to prove
our Proposition in the case ¥ = & .#. Given local trivializations @, ¥ of fibred
manifolds Y, W, the restriction of {®, ¥) to ian’(R"' X S, R™ x Q) is an im-
mersion of an open subobject in invJ'(Y, W). Since ~!o<{®, ¥)> = (¥, ®)o 71,
it is sufficient to prove Proposition 10 in the case Y = R™ x S = W (see Proposition
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3 and Definition 2). Consider a curve ¢ in invJ(R™ x S, R™ x S). The curve ¢
can be expressed in the form ¢ = ¢, o ¢, in a similar way as the map F in the proof
of Proposition 9. Hence according to Proposition 6 we may assume the existence
of maps F, G: R x R" x S — R™ x S satisfying

F(t’ ) s) = idgw , j;ocz(t)F(t’ ) _) = 02(’) s G<t9 X, —) = idg ,

JaeeryG(t, —, —) = ¢4(1). In addition, G can be chosen in such a way that id, x G:
R x R" x S — R x R™ x Sisanisomorphism in &. Hence there exists (id x G)™*
of the form idg x G. That is why jj.. ,G't, —, —) = (¢,(1)) "' and ~' . ¢, is a curve
by Proposition 6. Owing to this fact, we may assume ¢ = ¢,, without loss of gener-
ality. The curve cdeterminesacurve d,: R — (TS, T.S), dy(t) = Gpe— _(2oc(t), —),
see Remark 2. By Proposition 9 and the inverse function theorem, the induced map
idg x di: R x T'S - R x T'S is an isomorphism in &. The inverse morphism is
of the form idg x d,: R x TS - R x TS and a curve d,: R - (S, T;S) is de-
fined by a restriction of d,. The curve d, together with the constant map e(t) =
= joidg. determines a curve d: R — J'(R™ x S, R™ x S). By the construction of d,
the equality d = ~1 . ¢ holds, QED.

5. H"¢Y AND ASSOCIATED SMOOTH SPACES

Definition 7. A subcategory ¥ = ./ is said to be rich if the following conditions
are fulfilled:

(iyif R" xS —>R"eOb¥, X,ZeObuM,, f:X—ZeMorsk, then X x S,
Z x SeOb¥ and f x idg € Mor%.

(ii) if (z: Y > X) e Ob®% and U < X is an open subset, then 7~ *(U) € Ob% and the
inclusion i: #~Y(U) » Y is a ¥-morphism. Moreover, if S is a standard fibre
of Y, then R™ x S e Ob% and there exist an open covering U;, i €I, of X and
%-isomorphisms ¥;: R™ x S — n~Y(U).

Definition 8. Consider a rich subcategory ¥ < & .#. We define H'¢Ye Ob< as
invJ{@(R™ x S,Y), S being the standard fibre of fibred manifold Y with an m-
dimensional base. We define L'4(S, m)e Ob% as invJ;@(R™ x S, R™ x S),.
As usual, the symbol € will be omitted in the case ¥ = F ..

Remark 5. If we choose another standard fibre S of Y, we obtain an m-isomorphic
object by virtue of Definition 7. More exactly, we could define H'¢Y as a class of
&-isomorphic objects invJ;@(R™ x S, Y) where S is an arbitrary standard fibre
of Y. Nor will be the later use of this concept quite precise from the categorial point
of view. For example, if we consider the category of principal bundles and their
morphisms, we should, more precisely, speak about a category ¥ with a forgetful
functor into #.4. Then conditions (i), (ii) of Definition 7 would be modified in an
obvious way.

We have two projections n: Y — X, B: H'4Y - X. Owing to the following

é
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proposition, H'¢Y may be viewed as a “principal fibre bundle” over X with the
structure group L'%(S, m).

Proposition 11. For every subcategory € = F .M, L'6\S, m) is a smooth group
and the right action of L'6S, m) on H'®Y is smooth. This action is invariant and
effecttve with respect to the projection . Moreover, if € is rich then H'€Y is locally
isomorphic to R™ x L’%(S, m) in &, i.e. there exists an open covering U, i€l
of X such that B~*(U,) is isomorphic to R™ x L"¢(S, m) in &. These isomorphisms
can be chosen in such a way that they commute with the action of L'¢(S, m).

Proof. The group operation and the action are defined by the composition of
fibre jets. Hence the smoothness of the group structure and of the action is a con-
sequence of Propositions 8 and 10. The invariance and effectivity with respect to
is clear. Let ¥; be a local trivialization by ¢ — morphisms of Y. The map 7: R™ X
x L'6(S, m) > H'4(R™ x S), defined by (x, ji®) > jot, o jo® is an isomorphism
in &. The restrictions of {idgmys, ¥;p to H@(R™ x S) are immersions of open
subobjects in H"¢'Y. The maps {idgmxs, ¥;) o T are the required isomorphisms, QED.

Definition 9. Consider H'@Y = invJ;4(R™ x S, Y) and an F-object P with
a smooth left action of the group L"¢(S, m). There is a canonical right action of
L'4(S,m) on H6Y x P. (AeH'¢Y, pe P, Be L'¢(S, m), (A,p)o B = (4B,
B~1, p).) This action determines an equivalence ~ as follows: (4, p;) ~ (42, ps)
iff there exists B e L'4(S, m) such that A, = A; o B, p, = B™! - p;. We define the
associated space H'¢Y(P) as (H'¢Y x P)|~. Hence a map with the domain H*¢Y(P)
is smooth iff the induced map from H'¢Y x P is smooth. The target projection
B: H€Y — X is also defined on H'¢Y(P) in a natural way, we will denote it also by .

Proposition 12. Consider a rich subcategory € = ./ and Y e Ob¥%. The object
H"6¢Y(P) is locally isomorphic to R™ x P in &.

Proof. There exists an % — isomorphism y, y:(R™ x L'¢(S,m) x P)| ~ >
— R™ x P, defined by i(x, 4, p) > (x, A o p), where i is the canonical projection
to the quotient object. There also exists an open covering U;, i € I of X and isomor-
phisms ¢;: R™ x L'¢(S, m) » p~%(U,). Hence we obtain open subobjects @; =
= @; x idp: R™ x L'¢(S, m) x P - H'¢Y x P. Since the maps @; commute with
the action of L'%(S, m) by Proposition 11, they determine morphisms ;: (R™ x
x L'@(S, m) x P)|~ — H"¢Y(P). Similarly to the proof of Proposition 7 one can
easily show that @; are immersions of open subobjects. Clearly, the image of @;
is B~}(U,). The required isomorphisms are @; "', QED.

Example 1. Let #%(G) denote the category of principal fibre bundles and
morphisms of principal fibre bundles with identity on G. Let P e Ob2%(G) have
an m-dimensional base. The morphisms of #2%(G) map fibres to fibres diffeo-
morphically, hence the set H'?%(G) P is formed by fibre r-jets of local isomorphisms
commuting with the action of G. It is clear that joF = jjG holds on H"?%(G) P iff
Jio,oF = J{0,)G- In this way we have constructed a bijective map between H'2%(G) P
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and the spaces WP defined by Koldf [9]. Given a curve jiF, in H'?%(G) P, there
exists a smooth map G(t, —, —) satisfying jiF, = joG(t, —, —), so that j{, . F,
also is a curve in W'P. Conversely, given a curve jg, . F, in W'P, then using local
coordinates we deduce from the smoothness of the action of G that also jiF, is
a curve in H'?%(G) P. Thus we have proved that H'?%(G) P and W'P are iso-
morphic.

Example 2. Denote by ¥4 the category of finite-dimensional smooth vector
bundles and smooth linear morphisms. Consider a vector bundle E — X with
a standard fibre V. The linear morphisms are locally of the form Fi(x, cie’) =
= ¢;F/(x, ¢'), hence precisely the jets of local isomorphisms are in H"#"#E. Since
JoF = JjoG iff jio .nF = j{o,.)G for i =1,...,k, we have a bijection between the

k

set HY"#E and a submanifold of X J(’O,ei)(R'" x V, E). Using local coordinates
i=1

one easily proves that this bijection is an isomorphism in &. Hence the smooth
structure on H"¥"#E in our sense coincides with the classical structure of a finite
dimensional manifold.

6. PROLONGATION AND FIBRE FUNCTORS

Definition 10. Let % be a subcategory of #.#. A fibre functor on € is a covariant
functor F: € — & ./ such that the following conditions are fulfilled:

(i) (the prolongation condition) BoF = B, where B: #./ — 4 is the base
functor;

(ii) (the localization condition) let 7: ¥ — X be a fibred manifold in %, U < X an
open set and i:n~}(U) — Y the inclusion. Then Fi: F(z~!(U)) —» FY is the
inclusion of #n~(U) into FY, where #n: FY — X is the image of n: Y - X

(iii) (the regularity condition) if f: Y x P — Wisa smooth map such that f(—, p) &;
€ Mor #.# for all pe P, then Ff: FY x P —» FW, defined by ff(-,p) =
= F(f(—, p)), pe P, is also smooth.

Remark 6. It follows directly from Definition 10 that a composition G o F of
two fibre functors F: € - 9 <« F M, G: D — F M also is a fibre functor.

Example 3. Considering principal bundles with m-dimensional bases and
morphisms over local diffeomorphisms only, we obtain a subcategory 2%, of 4.
There is a fibre functor Q!: #4,, - F.# which maps P € Ob#?4,, into the bundle
QP of the 1-st order elements of connections. This functor can be constructed as
follows: the bundle Q'P is defined as J'P/G, where G is the structure group of P.
Given another principal bundle P with a structure group G and morphism f: P — P
with a group homomorphism f;: G — G, the map Jf: J'P — J'P is f-equivariant
with respect to the induced actions of the groups G, G on J'P and J'P, see [12].
Hence this map factorises to a map Q'f: J'P/G —» J'P/G.

Remark 7. One can also construct fibre functors Q": #4,, - Z# .4 which map

&
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P € ObZ24,, to the bundle QP of the r-th order elements of connections in the sense
of Ehresmann, [8].

Remark 8. If we identify a manifold X € .# with the fibred manifold idy: X - X
and a morphism f: X — Y, f € Mor . with (f, f): (X - X) - (Y - Y), the category
A can be considered as a subcategory of & .. Then the concept of the fibre functor
is a generalization of lifting functors and prolongation functors in the sense of Kold¥,
see [2], [7], [10], [13], [14].

Let F.Y be the fibre of FY over xe X, M,,:= R™ x M, S(M, m):= Fy(M,,).
Consider a subcategory ¢ = F.#. The subobject FE(Y, W) of F(Y, W) is the
subset of all morphisms of ¢ endowed with the subobject structure. The subobject
of those ¢ — morphisms which map the fibre over x € X into the fibre over z e Z
will be denoted by & %(Y, W),. For any Y, We Ob% the fibre functor F on %
determines a map Fy y: $4(Y, W) x FY — FW,(f, y) — F f(y), which will be called
the generalized associated map of the functor F. By restriction of F,, , we get a map
At v my: L oC( My, N,)o x S(M, m) - SN, n). We have

(7) Fy {fs Fy (9, 9)) = F(fo9) (¥) = Fy ,(fo9,¥).

Remark 9. The generalized associated map can be constructed to any functor
on a category ¥ = ./ satisfying (i) and (ii) of Definition 10. It follows directly
from the definition of the smooth structure on V%(Y, W) that the smoothness of
the generalized associated maps for all Y, We Ob¥ is equivalent to the condition
(iii) of Definition 10. We also obtain directly from the regularity condition that,
given a fibre functor F on %, the image of M,, € Ob% is isomorphic to R” x S{(M, m),
if all fibre translations 7, are ¥ — morphisms. (We set R™ x S(M, m)3(x, y) >
- F 7,(y) € F,M,,.) Moreover, it follows from (iii) that the group homomorphism

Aogmy: R™ — Diff (FM,,, FM,,), defined by x> Fr,, is smooth.

These facts can be verified also without the assumption of regularity if the domain
of the functor F is large enough, as the following proposition shows. Note that we
use only the condition (i) of Definition 8.

Proposition 13. Given a rich subcategory ¢ < F.#, M,, € Ob¥% and a functor
F: % - Z M satisfying (i) and (ii) of Definition 10, FM,, is isomorphic to R™ x
x S(M, m) in FM and the fibre translations determine a smooth group homo-
morphism Ay my: R" — Diff (FM,,, FM,,) defined by x + Fr,.

Proof. The category ¥ is rich, hence we can define a functor G: A#,, > F .M
in the following way: GX = F(X x M), Gf = F(f x id,). Since G is a lifting
functor, we know [2] that GR™ is isomorphic to R™ x G,R™ = R™ x S(M, m) and
the map

2:R™ x GR" > GR™, I(x,y) = Gt[y)=Fr(y) issmooth, QED.

Remark 10. The identification ¢: R™ x S(M, m) - FM,,, (x, y)+> F 7,(y) from
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the proposition and remark above keeps the fibre translations, that is, under this
identification we have

(8) FM,, = R" x S(M, m), Frt(z,5)=(x+ z5).

Consider a functor F on @ satisfying (i) and (ii) of Definition 10 and (8). Given
a morphism f: M,, » N, in € over f,: R" - R", we have

9) Ff(x,5) = FTro 0 F(T- oy o f 0 Ty) o FT_ (X, 5) =
= (fO(x)’ A(M,m:x’\'.n)(t—/o(:c) of 0T 5)).

Proposition 14. If a functor F: F M — F M satisfies the conditions (i) and (ii)
of Definition 10, then the regularity condition (iii) is also satisfied. (That means
that the regularity condition of a fibre functor on & M is a consequence of the
prolongation condition and the localization condition.)

Proof. Since the smoothness has a local character, we may assume Y =
= M,, P =R’ The map Ff is smooth iff the map R”> p> F(f(—, p)) is an
& — morphism. Seti: R" x M — R” x R™ x M,(x,s) -~ (0, x, s), 7, R” x R™ x
x M - R? x R" x M, (z,x,s)™>(p + z, x, s). We have f(—, p) = fon,oi, so
that Ff(—, p) = Ffo Fn, o Fi. Hence the proof will be complete after proving the
following

Lemma 3. The map p > Fn, is an & — morphism.

Proof. The lemma is a consequence of well known results about lifting functors
[2]. We define a functor G: 4, ,—> FM as follows: GX = F(X x M), Gf =
= F(f x idy). It is clear that G is a lifting functor, hence p > Fn, is smooth.

Corollary 2. The regularity condition of prolongation functors, [7], [10], is
a consequence of the prolongation condition and of the localization condition.

Proof. Given a functor F: # < FM — F M (see Remark 8) satisfying (i) and
(ii) of Definition 10, we can construct a functor G: FM4 - F# in such a way
that the restriction of G to ./ is F: Given n: Y » X e Ob# M, fe MorF M over
fo € Moru#, we put GY = FX, Gf = Ff,. Obviously G satisfies (i) and (ii) of Defini-
tion 10, hence the regularity condition for F follows from Proposition 14.

Note that the proof is correct also for some categories other than &, for
example our proposition also holds for functors on 24(G).

Definition 11. A fibre functor on % is said to be of order r if for any ¥ — morphisms
f,9: Y W, jif = j.g implies Ff|F.Y = Fg | F.Y.

Remark 11. Consider a subcategory ¥ < & .. Given a positive integer r, an
equivalence ~, on $%(Y, W) x FY is defined as follows: (f, y) ~,(g, 2) iff y = z,
J5wnS = J¥uyg- There is a quotient object j': FE(Y, W) x FY - (¥%(Y, W) x
x F Y)[ ~,in &. Given an r-th order fibre functor F on %, the generalized associated
map can be factorized by the equivalence ~,, hence we obtain the induced maps

¥
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Fyw: («5”5(}’, W) x FY)|~, — FW. By Remark 9 and by the properties of quotient
objects, these maps are smooth. By Remark 10, given a functor F which satisfies
the assumptions of Proposition 13, F is of order r iff the maps A s m;n,» can be
factorized by ~,.

Remark 12. There is a bijection x between (#%(Y, W) x FY)|~, and (J"€(Y, W),
«, X) ® (FY, #x,X) defined by y(j. /s V) =J(f,y). Hence we also have the
induced maps Fy :(J'6(Y, W), o, X) @ (FY, #n, X) > FW, defined by Fy, =
= FY,W o X.

Definition 12. Given a fibre functor F of order r on %, the maps Fy y: (J*6(Y, W),
@, X) @ (FY, #n,X) > FW defined in Remark 12 will be called the associated
maps of the r-th order fibre functor F.

Definition 13. The subcategory € = & .# is called r-admissible if for all Y, We Ob%
and for every curve ¢ in J'6(Y, W) there locally exists a curve d in #%(Y, W) such
that c(t) = ji...,d(t) holds.

Proposition 15. Given an r-th order fibre functor F on an r-admissible category
€ < F M, the associated maps of the functor F are smooth.

Proof. Since % is r-admissible, the bijection y defined in Remark 12 is an & —
isomorphism. Actually, by Proposition 6 and Definition 13, curves are prolonged
to curves by y. Since the map (f, y) = (j%,, /> ¥) is smooth (see Proposition 6),
the map y~! is smooth as well. Proposition 15 follows from Remark 11.

Remark 13. By Proposition 6, the whole category & ./ is r-admissible for all
r € N, hence the associated maps of an r-th order fibre functor on & # are smooth.
Since the subcategories # < FM, M, = FM (see Remark 8) are obviously
r-admissible for all r € IV, we cbtain as a consequence of the above considerations
the well known results that the associated maps of r-th order lifting functors and
prolongation functors are smooth, see [2], [7]. There are also other categories which
are r-admissible for all r e N. For example, the categories 2%(G), 24,(G), V'8,
V B, VB(V), ¥ B,(V). This can be proved by methods similar to those in Example
1 and Example 2. :

7. A DESCRIPTION OF FIBRE FUNCTORS

Let #.4'S, m) denote the category where the objects are fibred manifolds with
a standard fibre S and an m-dimensional base, and the morphisms are such morphisms
from & ., the restriction of which to the individual fibres are diffeomorphisms.
We shall write Z.4(S, m) = € in the sequel. The following construction is a gener-
alization of the description of all lifting functors [2], [7], [14], (the classical result
corresponds to the case when the standard fibre is a one-element set).

First consider an r-th order fibre functor F on €, the associated map of which is
smooth. This associated map of F defines a smooth action ¢ of L'%(S, m) on
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M := Fy(R™ x S) by ¢[ji®, y) = F &(y). Conversely, given a manifold M with
a smooth left action of L"4(S, m), we can define an r-th order fibre functor F on &
as follows. Given Y, We Ob%, f: Y—> We Mor%, we set HGf: HEY - HEW,
H'CY3 jy® > jo(f o @) e H'EW. Now we set FY = H'GY(M), Ff = (H"6f,idy):
H'EY(M) » HEW(M).

Proposition 16. There is a natural bijective correspondence between the set of
all left smooth actions of L'6(S, m) on smooth manifolds and the set of all r-th
order fibre functors on €, the associated map of which is smooth. More exactly,
if @ is an action of L"6(S, m) on Fo(R™ x S) induced by a fibre functor F and G
is the fibre functor obtained from this action by the above construction then F
and G are naturally equivalent.

Proof. We only have to find such isomorphisms ¥y for all Ye Ob% that the
diagram commutes for all Y, We Ob¥, f: Y > We Mor%.

FY < H'¢Y(M)
‘Ff l(H"gf, idar)
FW < H¢W(M)

Consider an object Ye Ob%. Given A = jio e H'6Y, we have a map FA: M —
- Fy0)Y, FA(y) = Fo(y). Moreover, since A~ ' = ji@, we have F(¢ - ¢) | M = id,,
F(¢ o @) | Fy)Y = idp, ,,y. Hence FA is a bijection. Since FA(y) = FA(FB.
o FB™Y(y)) = F(A4 o B) (FB™!(y)), there is a map y: H'€¢Y(M) > FY, (4, y)—
> FA(y). Suppose FA;(y;) = FA,(y,). Then B(A;) = B(4,), so that there exists
a Be L'¢(S, m), Ay = A, o B. We have F(A4, . B)(y,) = FA,(FB(y)) = FA,(y,),
hence y, = B™'. y,. That is why the map Yy: FY - H¢Y(M), FA(y)— (4, y)
is well defined and ¥y = ¥y !, so that Yy is a bijection. It can be easily seen that yry
is an & — isomorphism. The commutativity of the diagram is obvious, QED.

Remark 14. The above construction and Proposition 16 also apply to some
categories other than & ./#,(S, m). For example, they are also correct for 24,,(G)
and 7°4,(V) (vector bundles with a standard fibre ¥, an m-dimensional base and
morphisms are over ., — morphisms and are diffeomorphic on individual fibres).
Since these two categories are admissible, the smoothness of the associated maps
in this case follows from Proposition 15.

Remark 15. A description of all r-th order fibre functors on & ./ is also possible.
This can be done in a similar way as for the prolongation functors, see [7] and the
description above. We must choose one representative M of every class [M] of
diffeomorphic manifolds. Then we can define a category £”, the objects of which
are the pairs m, [M], me N, Mor%"(m, M; n,N) = J{(R™ x M, R" x N),, and
the composition is given by the composition of fibre jets. An action of the category £"
on a system of manifolds S(M, m) for all m e N and all representatives M means
a system of smooth maps Awpsmn.m: Jo(Mm N,)o X S(M, m) - S(N, n) satisfying
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At mn i As Ap pist my(Bs 5)) = Ap pin.m(A o B, s). There is a bijective correspon-
dence between the fibre functors on & and the systems of manifolds with an action
of 7, if we identify naturally isomorphic functors.
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