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1. INTRODUCTION

The concept of domination of sequences of vectors was given by Banach [3].
The study in this direction was carried out by several authors; for instance, one may
refer to [1, 4, 11, 12, 15, 16]. Singer [12, 13] defined domination, strict domination,
equivalence and strict equivalence of sequences of vectors in Banach spaces so that,
if a sequence of vectors dominates another sequence of vectors and vice versa, the
two sequences are called equivalent. Further, if a sequence of vectors strictly domi-
nates another sequence of vectors and vice versa, the two sequences are called strictly
equivalent. Very recently, Singer [14] generalised the concept of domination for
sequences of subspaces of Banach spaces. He defined that if a sequence of subspaces
of a Banach space dominates a sequence of subspaces of another Banach space and
vice versa, the two sequences are called equivalent. Further, if a sequence of sub-
spaces of a Banach space strictly dominates a sequence of subspaces of another
Banach space and vice versa, the two sequences are not strictly equivalent. An
example worked out by Singer [14] shows that strict equivalence of sequences of
subspaces is not a direct generalisation of sequences of vectors. Motivated by this
fact the authors in [8] obtained a number of results on equivalence and strict equi-
valence of sequences of subspaces in Banach spaces. In the present paper we continue
the study of equivalence and strict equivalence of sequences of subspaces in duals
of Banach spaces.

2. PRELIMINARIES

Throughout we shall assume that E and F are two Banach spaces. In general,
we use { } to denote sets, [ ] to denote the closed linear spans of the sets indicated,
and () to denote sequences.

Definition 2.1. A sequence (M) of subspaces of E is said to dominate a sequence

*) The research work of this author was partially supported by University Grants Commission
(India).
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(N,) of subspaces of F if for each i, there exists a one-to-one linear transformation T,
0

from M; onto N; such that each sequence (x;) in E, x;€ M;, Y x; converges in E
i=1

implies Y Ty{x;) converges in F.
i=1

Definition 2.2. A sequence (M) of subspaces of E is said to dominate strictly a se-
quence (N;) of subspaces of F if there exists a continuous linear transformation

T from [lj M;] into [GN,.] such that T(M;) = N; (i = 1,2,...) and T restricted
on M; isl;;le-to-one. o

Definition 2.3.[14]. Sequences (M) of subspaces of E and (N;) of subspaces of F
are said to be strictly equivalent if there exists a linear homeomorphism T from
[GlMi] onto [~G1Ni] such that T(M,) = N; (i = 1,2, ...).

Now, we state some results in the form of lemmas which we will use in our work.
For definitions of Schauder decomposition and unconditional Schauder decomposi-
tion one is referred to [7].

Lemma 2.4 [2]. Let (M, P,) be a Schauder decomposition of E. Then (M, P))
is an unconditional Schauder decomposition of E if and only if for every increasing

sequence (m;) of positive integers, the subspaces [U M,]and [ U M;] are
Jjew~(mi)
complementary to each other, i.e. E = [U M,] @[ U M

Jjew~(mj)

Lemma 2.5 [14]. Let (M,) be a sequence of nontrivial closed subspaces of E
such that [ U M;] = E. Then the following statements are equivalent:
i=1

(i) (M) is an unconditional Schauder decomposition of E;
(ii) Every permutation (M ;) of (M;) is a Schauder decomposition of E.

Lemma 2.6 [14]. Let (M;, P,) be a Schauder decomposmon of E. Then (PF(E*))

is a Schauder decomposition of [U P¥(E*)] and f = ZP*(f) fe[U P¥(E¥)]
in the norm topology of E*.

Lemma 2.7 [14]. Let (M, P;) be a Schauder decomposition of E,V = [ U P}(E*)]
i=1
and v = sup “ZP]]

1=n<w i=1

Then

(a) r(V) 2 1)v > 0, i.e. the unit ball of [U P{(E*)] is o-(E*, E)-dense in the
(1/v)-ball of E*;

b) the canonical mapping u of E into V* is a linear homeomorphism satisfying

Ixllv = I = Hxl]v, xeE,
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where

Ixly = Ju] = sup |f(x)], xeE.
Jev.lisist

Lemma 2.8 [14]. If (M,) is a Schauder decomposition of E and (m;) is an in-
creasing sequence of positive integers, then (M,,) is a Schauder decomposition

0
Of [ U Mm;]‘
i=1
Proposition 2.9. Let (M, P,) be an unconditional Schauder decomposition of E.
0
Then (Pf(E*)) is an unconditional Schauder decomposition of [U PHE®)].

Conversely, if (PY(E*)) is an unconditional Schauder decomposition of [ U PY(E¥)],
then (M, P,) is an unconditional Schauder decomposition of E.

Proof. If (M) is an unconditional Schauder decomposition of E, then by Lemma
2.5, every permutation (M) is a Schauder decomposition of E. Therefore, by

Lemma 2.6, every permutation (P}, (E*))is a Schauder decomposition of [ U Pp“)(E*)]
and hence by Lemma 2.5, (Pf(E*)) is an unconditional Schauder decompos1tion
of [U PHE¥)].

Co=nlversely, let (P¥(E*¥)) be an unconditional Schauder decomposition of
[G P¥(E*)]. If u is the canonical mapping of E into V*, we have

u(M)) < (PHV) (V).

Then the associated sequence of continuous projections (u(M;)) = [U PY(E*)]*
to the Schauder decomposmon (PF(E*)) of [ U PY(E*)]is an uncondmonal Schauder
decomposition of [ U1 P¥{E*)]*. Therefore, by Lemma 2.7, the canonical mapping u

is a linear homeomorphism. Hence (M) is an unconditional Schauder decomposition
of E.

3. STRICT EQUIVALENCE OF SEQUENCES OF SUBSPACES

Theorem 3.1. If a sequence (M) of closed subspaces of E is a Schauder decomposi-
tion of [OC) M;] and dominates a sequence (N) of subspaces of F, then (M) strictly
dominatle=sl(Ni).

Proof. Since (M;) is a Schauder decomposition of [G M;] and dominates the

© i=1

sequence (N;) of subspaces of F, the series ), y;, y; € N, for each i, converges in F

i=1
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so that
T(x)= Yy, x=Yxme[UM].
i=1 i=1 i=

The mapping T: [ U M,;] - [UN;] defined above is a linear transformation
i=1 1=1

satisfying T(M,) = N;, i = 1,2,.... Further,

Tx) =1limT/fx), x€E,

where
T,(x) = Z yvi (x= Z X; € [k_j M),
n=1,2,.... Each T, being continuous, by Banach-Steinhaus theorem, T is con-
tinuous as well. This completes the proof.
Theorem 3.2. If a sequence (M) of closed subspaces of E is a Schauder decom-
position of [U M;] and a sequence (N;) of closed subspaces of F is a Schauder

decomposztwn af [ U N;] such that (M,) is equivalent to (N;), then (M) is strictly
equivalent to{N;). '=

Proof. Since the Schauder decomposmon (M;) of [U M;] is equlvalent to the

i=1 o

Schauder decomposition (N;) of [U N;], for each x =) x;e[ U M, x;e M,
i= loo i=

(i=1,2,...), there exists a lmear homeomorphlsm T of [UM,] onto [U Ni]

such that - i=1

T(x) =i§1yi, y;eN; (i=1,2,..).
This gives T(M;) = N, (i = 1,2, ...). Hence (M) is strictly equivalent to (N).
Theorem 3.3. Let (M, P;) be an unconditional Schauder decomposition of E,
M;,)) a subsequence of (M;), E, = [U M; ] and ¢;, = P;|g, (j = 1,2,...). Then
(¢* Ey)) is a Schauder decomposmon of [U o7 (E3)]. Moreover, (¢7(Eg)) is
strictly equivalent to the Schauder decomposztton (P} (E%)) of [U P,I\E*)]
Proof. By Lemma 2.6 and Lemma 2.8, (¢}(Eg)) and (Pj( E*)) are Schauder
decompositions of [U ¢7(Eg)] and [U P*(E*)] respectively. Since (M, P;) is an
unconditional Schauder decomposmon of E by Proposmon 2.9, (Pf(E*)) is an
unconditional Schauder decomposition of [ U ¢7(Eg)] and [ U P}(E*)], respectively.
Since (M;, P;) is an unconditional Schauder decomposxtlon of E, by Proposition

2.9, (P}(E*)) is an unconditional Schauder decomposition of [ {J P}(E*)] and
i=1
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by Lemma 2.4, the mapping
(1) uf) = z Pi(f). fe[U PHEY],
is a unique continuous projection of [UP*(E*)] onto [UPZ(E*)] Further,

@7, is the restriction of P}, [U o7 (E5)] = [U P}(E*)]; the convergence of a series
in the first space implies the convergence of the series in the second space. Also
relation (1) shows that the © convergence of a series in [U P¥(E*)] implies the con-
vergence of a series in [U 7(E*)], hence in [U ¢*(EO)] and conversely. Thus

the sequence (P}(E*)) of subspaces of the conJugafe space is equivalent to the
sequence ((]5 J(E*) of subspaces of the conjugate space. By Theorem 3.2 the two
sequences are strictly equivalent.

Theorem 3.4. Let (M, P;) and (N;, Q;) be Schauder decompositions of E and F,
respectively. Then (M, P;) dominates (N;, Q) if and only if (QF(F*)) dominates
(PY(E¥).

Proof. If (M;) dominates (N;), by Theorem 3.1 (M,) dominates (N;) strictly.
Therefore there exists a continuous linear transformation T: E — F such that
T(M;) = N, (i = 1,2, ...). Now for the adjoint mapping T*: F* — E* and for each
h;e Q(F*), y;e N; and x; € M, we have

(T*(hy)) x; = h{T(x;)) = h; y,) = di; = fi'x)),
where T(x;)e T(M;), i,j =1,2,.... Since [U M;] = E, we have T*(h;) = f;
(i =1,2,...). This implies that T*(Q*(F*)) = P*(E*) Hence (Qf(F*)) dominates
(P7(E*)) strictly and thus (QF(F*)) dominates (P}(E*)).
Conversely, let (Q¥(F*)) dominate (Pj( E*)) If ug is the canonical mapping of F

into [U QF(F*)]*, it is obvious that u;'N;) = (0! I[UQ.*(F*)]) [U Q¥(F*)]* and

by [14, Prop051t10n 15.7], the latter subspace is linearly homeomorphlc to (QF(F*))*.
Then the associated sequence of continuous projections to the Schauder decomposi-

tion (QF(F*)) of [ U Qf(F*)] is (ug/N;)). Similarly, (u/M,)) is the associated se-
i=1

quence of continuous projections to the Schauder decomposition (PF(E*)) of

[ U Pf(E*)]. Thus, by the statement proved above, (uy(M;)) dominates (uz(N,)).

i=1 :

Also by Lemma 2.7, both u, and u; are linear homeomorphisms. Hence (M)
dominates (N,).

Corollary 3.5. Let (M;, P;) and (N;, Q;) be Schauder decompositions of E and F,
respectively. Then (M) is equivalent to (N,) if and only if (P{(E*)) is equivalent
to (QF(F¥)).
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4. STRICT EQUIVALENCE AND SUBSYMMETRIC DECOMPOSITION

Definition 4.1. A Schauder decomposition (M;) of E is said to be subsymmetric
if it is an unconditional Schauder decomposition and for every increasing sequence

of positive integers (m;) the Schauder decomposition (M,,,) of [U M,,] is equiva-
lent to the Schauder decomposition (M;).

Examples. Let y be a Banach space with the norm | ||. Let us consider the fol-
lowing Banach spaces:
(i) eo(x) = {(x)): x;€ ¢, lim x; = 0 in the norm of x}, the norm on c,(x) being
given by 7
(x| = sup [ -

(i) () = (=) vie e 5[] < o}

the norm on /,(x) being given by
el = 5, e -

Since x is a Banach space, it follows that the topological duals of the spaces ¢,{y)
and I,(y) coincide with their respective cross duals (cf. Table 3.29 for the scalar
case, Kamthan and Gupta [9], and Prop. 4.8 and Cor. 4.9 of Gupta et al. [6] for
vector valued sequence spaces).

Now, we observe that (N;) with
N; = {6 x;ey},

where 67¢ stands for the sequence (0,0, ..., x;, 0, }, i.e., the i-th entry in 67° is x;
and all the others are zero, forms an unconditional Schauder decomposition (see
Gupta et al. [5, p. 291] and Marti [10, p. 95]) of each of the Banach spaces co()
and 14().

Now, one may easily verify that the Schauder decomposition (N;) of ¢o(x) and
1,(x) is subsymmetric.

Theorem 4.2. If (M, P;) is a subsymmetric Schauder decomposition of E, then
0
(PY(E*)) is a subsymmetric Schauder decomposition of [ U P;(E*)].
i=1

Proof. Let (i;) be an increasing sequence of positive integers and (M;,) the sub-
sequence of (M,). Since (M, P;) is a subsymmetric Schauder decomposition of E,
it is unconditional and the subsequence (M;) is equivalent to (M;). Also, by
Proposition 2.9, (Pf(E*)) is an unconditional Schauder decomposition of

@

[ U P{(E*)]. Further, by Lemma 2.8, (M;) is a Schauder decomposition of
i=1 ’

€
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[U M;] = E,, and by Corollary 3.5, (P¥(E*)) is equivalent to the Schauder
decomposmon (¢7(ED)) of[ U ¢;(Eg)]. Moreover, (M) is an unconditional Schau-
der decomposition of E, by Theorem 3.3, (¢7(Eg)) is equivalent to the Schau-
der decomposition (P}(E¥)) of [jC—DJIP (E¥)]. Thus (P}(E*)) is equivalent to
(P¥(E*)). This completes the proof.
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