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0. INTRODUCTION

This paper is a continuation of [1], [2] and [3].

The lattice £, of equational theories of type 4 is antiisomorphic to the lattice of
varieties of A-algebras. The variety, corresponding to an equational theory T, is
denoted by Mod(T); its elements are called models of . If K is any class of 4-algebras,
then Eq(K) denotes the equational theory corresponding to the variety HSP(K) (the
variety generated by K). For any algebra 4 put Eq(A) = Eq({4}); this equational
theory is called the equational theory of A; it is just the set of equations satisfied
in the algebra A.

In this paper we shall be interested in the equational theories of finite algebras.
Our aim is to prove that for any type 4, the set of the equational theories of finite
A-algebras is definable in the lattice ., and that in the case of a finite type 4, the
equational theory of any finite A-algebra is definable up to automorphisms in % ,.
This will answer a problem formulated by George McNulty.

For this purpose, we shall have to find a suitable encoding of finite algebras in Z .
The formulas ¥3, and ¥,s, the two most important formulas discovered in [3],
enable us to carry most of the work over from %4 to the lattice & 4 of full sets of
A-terms. And so instead of in £, we shall encode the algebras in & ,. We shall not
confine ourselves to finite algebras: in the case of a strictly large type 4 all algebras
of cardinality <Max(X,, Card/4)) will be encoded, while in the case of a large but
not strictly large type the same will be done for the algebras of cardinality <Max{(N,,
Card(4 \ 4,)) only.

For the terminology and notation see [1], [2] and [3].

Algebras are often identified with their underlying sets. If 4 is a A-algebra and
F A is a symbol of an arity n, then the corresponding n-ary operation in A will
be denoted by F,.

Most of the lemmas are without proof; they are either evident or follow easily
from the preceding ones.

I would like to correct one wrong place in Section 5 of [2]: the definition of the
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formula @37 should be replaced by
031(X, X5, Y, A,B = ?33(X 1, X, Y) & (3Z(p33(X, X5, 2) &
& Y+ Z & ¢35(X1, X, Z, A, B)) VEL U, A4,, Bo(eo(U) &
&U < Ay & U < By & (A, A) & @g(Bo, B) & Ay < By)) .

1. STRICTLY LARGE TYPES

Throughout this section let 4 be a strictly large type.
Let (F,i) e 4®. The notion of an (F, i)-codelement is defined as follows:

(1) if 4 is finite, then (F, i)-codelements are the elements of & 4 of the form (K (1))*

where x € V and tex[Fki] [Flj:l for some k = 2 and some je {1, ..., ng}\{i};

(2) if 4 is infinite and contains at least one nullary symbol, then (F, i)-codelements
are elements of & 4 of the form (G(Cy, ..., C,.))* where Ge AN 4,and Cy, ..., C, €
€ 4o;

(3) if 4 is infinite and contains no nullary symbols, then (F, i)-codelements are
elements of # 4 of the form (G(x, x, ..., x))* where Ge 4 and x € V.

The set of (F, i)-codelements is denoted by CELy ;.

1.1. Lemma. Let (F,i)e A®. Then CELy; is a set of pairwise uncomparable
elements of F 4; we have Card(CEL; ;) = Max(N,, Card(4)).

Let (F,i)e 4®;let Ge A and let Ay, ..., A, _, A be (F, i)-codelements. For every
variable x there exists a unique pair a, b of terms such that var(a) U var(b) < {x},
b* = A and a = G(ay, ..., a,;) where af = A,, ..., ay = A,,. The element

Hp (a, b) of #, (which does not depend on the choice of x) will be denoted by
[G, Ay, ..., A,,, A]p;. The elements of & , of this form will be called (F, i)-definators.

1.2. Lemma. Let (F, i) e A®. If [G, Ay, ..., A,y, Al and [H, By, ..., B,,, B
are two (F,i)-definators and [G, Ay, ..., A,, Alr; < [H, By, ..., B,,, Blp,; then
G=H, A, =By,...,A,, =B, and A= B.

Proof. As in the definition of codelements, it is necessary to distinguish three
cases. However, each of them is easy.

For every U e # 4 put I*(U) = {1*; teI(U)}.

By an (F, i)-codset we mean an element S of % 4 such that every element of I*(S)
is an (F, i)-codelement. Elements of I*(S) are called (F, i)-codelements of S. There
is a natural one-to-one correspondence between (F, i)-codsets and subsets of CELy ;.
The union of the sets in CELy ; is the largest (F, i)-codest, while the empty set is
the least (F, i)-codset.

By an (F, i)-codalgebra we mean a pair S, R of elements of &, satisfying the fol-
lowing three conditions:

(1) S is a non-empty (F, i)-codset;
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(2) every element of I*(R) is an (F, i)-definator of the form [G, Ay, ..., A,,, Ap.;
where Ge 4 and Ay, ..., 4,,, 4 e I*(S);

(3) for every Ge 4 and every Ay, ..., A,, € I*(S) there exists exactly one (F, i)-
codelement A such that [G, A, ..., 4,5, A]r ; € I*(R).

Given an (F, i)-codalgebra S, R, we can define an algebra Q of type 4 with the
underlying set I*(S) as follows: if Ge 4 and Ay, ..., A,, € I*(S) then Gy(4,, ...
.o Ayg) = A where A is the only (F, i)-codelement with [G, Ay, ..., 4y, A]r.; €

€ I*(R). This algebra Q is said to be the A-algebra corresponding to the (F, i) -
codalgebra S, R.

1.3. Lemma. Let (F, i) e A®. Every A-algebra whose underlying set is a subset
of CELy ; corresponds to exactly one (F, i)-codalgebra. Consequently, a A-algebra
Q is isomorphic to a A-algebra corresponding to an (F, i)-codalgebra, iff Card(Q) <
< Max(N,, Card(4)).

Proof. Lemma follows from 1.2 and the definitions.

Definition. (i) 7,(X, Y, Z,U) = ¢53(X, U) & Y < U & Z.< U & T10,(Y) &
& T0,(Z) & 34, B, C(9s6(X, A, Y) & ¢s6(X, B, Z) & ¢s6(X, C, U) &

& @so(X, A, C) & 96,(X, C, B) &VZ1, Uy, Z5, Us((960(X, 4, Z,, Uy) &
& (/)GO(X’ B, Z,, Uz)) - U, + UZ))' )

(ii) 120X, ¥, Z,U) = 953(X, V) &Y< UK Z < U &(0((Y) > U = Z) &
&(0y(2) » U = Y) &((oy(Y) & T0,(Z)) » (1(X, ¥, Z,U) &
&VU(1(X, Y, Z,U;) » U < Uy))).

(ii)) 5(X, Y, A, B, Z) = U, U,, U, C, D(¢eo(X, ¥; 4, U}) & 06o(X, Y, B, U,) &
& 15(X, A, C, B) & C < D & 05,/X, U, Y) & 956(X, U, B) & 06,(X, U, Z) &
& ¢s6(X, Z, D)).

(iv) 74(X, Y, A, B, Z) = 3U(35(X, Y, 4, B, U) & 965(X, U, Z)).

(v) xs(X, Y, 4, B) = 3Z(34(X, Y, 4, B, Z) & ¢12(X, Z)).

(vi) x6(X, Y, Z) = 34, B, C, U,, U,, Us, Us, U(96s(X, 4, Y) & 04(Z) &

& ¢4(B, X) &p;(B,C)&X + C& el X, X, U,) & 9s4(X, C, Uz) &
& 95! X, Uy, C, U;) & 965(X, Us, Z, Uy) & 96s(X, Y, Uz, Uy, U)).
(vii) 27(X, Y) = 3U,, Uy(ps6(X, Y, Uy) & Uy < Uz &
&VZ, P, 0, R(¢s6(X, Z, U,) & 950\ X, Y, Z) & 14(X, Z, U, Uy, P) &
& (p69{X= P’ Q) & XG(Xs Q> R)) - HUS(U3 < Ul & XS(X’ Z’ U3’ Uz))))
(viii) x5(X, Y) = 1:(X, Y) & VZ(950 X, Z, ¥) = x1(X; Z)).
(ix) %5(X, Y, 4, B, C) = 3Z(14(X, Y, 4, B, Z) & 16X, Z, C)).
(%) 210X, Yy, Yy) = 3Z, Uy, Un(s6(X, Yio Z) & 056(X, Y2, Z) &
& 960X, Y1, Z,Uy) & 960(X, Y3, Z, U,) & (wo(Us) = Uy = U,) &
& VA, C(xo(X, Yy, A, Z, C) - 1! X, Yy, 4, Z, O)))-
(xi) x1; = A(d(4) & VZ(A(Z) > Z < A)):
(xii) 712X, Y) = (111 = 3Z, U, X, Apss(X> Z) & X < Z & 929(X1, Z,U) &
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&X +X: &4 <X &AX X, &(pg(U’ Y))) &((7X11 &HAOC()(A)) -
~ (32(0(2) & 9y, 2)) & V(95 (Y. U) = ¥ = U)) & (a1 & 134 ()
~ 32(el2) & 9,(Z, V)

(xiii) 113(X, Y, 4, B) = 3U. U, C» Cy(9s6(X, U, C,) &X<CL&C <C &
& 18(X, U) & ?6o(X, U, Cz5 A) & (péo(Xs U, Cy, B) & 13X, U, X, Cp,Up) &
&Xv(X, UO) & ‘le(A) & VP, Q((‘Peo(x’ Uo, P, Q) & P + Cl) = X12(X, Q)) &

& (X, U.C,, ¢y, Y)).

(xiv) 114(X, ) = 3Uqys(X. U) &VZ(@1(Z. ¥) > 1,5(X, Z)).

(xv) 115X, Y, Z) = 1,4/X. ¥) & 31 BLisX, Yy, Z, B) & VU(932(X, U, Z) -
e ¢1(U’ Y))

(XVi) X16(X, S, R) = XM(X’ S) & —1600(5) & VZ(‘Pl(Z’ R) -
= 34, B(115(X, Z, 4, B) & 115(X, S, A) & ¢1(B, 5))) & VA(115(X, S, 4) -
= 311 B3Z(y,4(X, Z, 4, B) & ¢,(Z, R)))-

(xvii) X17(X, S,R, Y, Z) = 216l X, Ss R) & XS(X’ Y) & 3P(¢56(X’ Y, P) &

& ps6(X. Z, P)) & VP, Q9o X, Z, P, @) = #1(Q, S)) & (111 VEL 13U o(U))
= VP, P,, C(34(X, Z, Py, P2, C) = T1062(X, €)) & VP, Ps(15(X, Y, Py, P,) -
- 30(0solX, Z, P,, Q) & peo(X, Z, P2: ) & VP, Q((960(X. Y, P, Q) &

& T10,(0)) - 3Y,, Z,, P, D A, B, Z5(950(X, Y1, Y) & ¢56(X, Yy, P) &

& <P59(Xf z, Z) & Pse( X, Zy, Pl) &Py < P& q)l(D’ R) & X13(X’ D, 4, B) &

& <P56(X’ Z,, P) & @sg/_X’ Zy, Zz) & (Peo(,X’ Z,, P, A) & XIO(X’ Y, Zz) &

& pgo(X, Z, P, B))).

(xvii) 215/X, S, R, U) = 716(X, S, R) & 3U,060(X, U;, U) &

& vy, Z((Xn(X, S,R, Y, Z) & 96y(X, Y, U)) - 3P, Py, Q(‘PSG(Xa Y,P)& P, <
<P & 06X, Z, P,, Q) & 060X, Z, P, Q))).

1.4. Lemma. Let A be a strictly large type. Then:
(i) (X, Y, Z,U) in F 4 iff there are (F,i)e 4@, x eV, integers k,m,n = 1

and terms a [ & bex| ™| cex " | such that X = (F,i)*, Y = a*
€X F,l 1) F,i, F,l N - ) > =a ’
Z=b*U=c*andnz=k+ m.

(ii) 22(X, Y, Z, U) in &, iff there are (F,i)e A®, x € V, integers k, m = 0 and

k m k+m _ Nk v % 7 1
termsaexl:F,iJ,bex[F’i],cex[F’i]suchthatX—(F,z),Y—a,Z~b

and U = c*.
(iii) 13(X, Y, A, B, Z) in F, iff there are (F,i)ed®, xeV, a finite sequence

ay, .. dn of terms, two integers k, m (1 <kmZ n) and terms a ex[Fk ,:|,
, 0
m
bex[F’ i] such that X = (F,i)*, Y= Hp (ay,...,4,), A= a* B=>b* and

Z = Hp {a, ..., a,).
(iv) %a(X, Y, A, B, Z) in F, iff there are (F,i)e A, xeV, a finite sequence
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k
day, ..., a, of terms, two integers k,m (1 £ k < m £ n) and terms aex[ i]’
bex[Fmi] such that X = (F,i)*, Y= Hg (ay,...,qa,), A= a* B=Db* and

Z = Hp (a,, a).

(v) Xs(X Y, A, B)in F , iff there are (F, i) e A? , x € V, a finite sequence ay, ..., a,
of terms, two integers k,m (1 £ k < m < n) and terms a ex[FIf i]’ bexl:;li:l
such that X = (F,i)*, Y = Hy (ay, ..., a,), A = a*, B = b* and a, = a,,

(vi) 26(X, Y, Z) in F 4 iff there are (F,i)e 4®, (G, j)€ 4V and two terms a, b
such that X = (F, i)*, Z = (G, j)*, Y = Hp (a, b) and a = G(by, ..., b,) for some
terms by, ..., b, with b; = b.

(vii) xo(X, Y) in F, iff there are (F,i)e A® and a finite sequence aj, ..., a,
of terms such that X = (F,i)*, Y= Hp (ay,...,a,) and the following is true:
if a, = G{by, ..., b,;) then by, ..., b, € {ay,...,a,_,}.

(viii) x(X, Y) in F, iff there are (F,i)e A® and a finite sequence ay, ..., a,
of terms such that X = (F,i)*, Y= Hy (ay,...,a,) and the following is true:
whenever a; = G(by, ..., ,,G) then by, .. b,,G efay, ..., a;y}.

(ix) 79(X Y, A, B, C) in % , iff there are ( z)eA(Z’ (G,j)edW, x eV, a finite
sequence ay, ..., a, of terms, two integers k,m (1 <k < m < n) and terms a e

€ XI:Fk i]’ be x[:li:l such that X = (F, i)*, Y = Hp {(ay, ..., a,), A= a*, B=b*,

= (G, j)* and a,, = G(by, ..., b,,) for some terms by, ..., b,, with b; = a;.

(X) 110/ X, Yy, Vo) in F 4 iff there are (F, i) € A® and two finite sequence a,, ..., a,,
by, ..., b, of terms such that X = (F, i)*,Y, = Hy (ay, ..., a,), Ys = Hg by, ..., b,)
and the following is true: if a, = G(a,,...,a;) where k = ng and iy, ..., i€
ef{l,...,n— 1} then b, = G(b;,, ..., b,).

(xi) x11 in F 4 iff A is finite.

(xii) x12(X, Y) in F 4 iff there is an (F,i)e A? such that X = (F,i)* and Y
is an (F, i)-codelement.

(xiii) x13(X, Y, 4, B) in &, iff there are (F, iye A® and terms a, b such that
X = (F,i)*, A= a* B = b*and Y= Hy ja,b) is an (F, i)-definator.

(xiv) x14(X,Y) in F, iff X = (F,i)* for some (F,i)e 4% and Y is an (F, i)-
codset.

(xv) %15(X, Y, Z) in F 4 ifi there are (F, i) € 4® and an (F,i)-definator Hg (a,b) =
=[G, Ay, ..., A, Alp,; such that X = (F,i)*, Y is an (F,i)-codset, Z = a* and
Ap . ,,Gel*()’)

(xvl) X16(X, S, R) in Z, iff X = (F,i)* for some (F,i)e A® and S,R is an
(F> i)-codalgebra.

(xvii) 217X, S, R Y,Z) in F, iff there are (F,i)e 4% and two finite sequences
ays ..., Ay by, ..., b, of terms such that X = (F,i)*, S, R is an (F, i)-codalgebra,
Y= Hay, ... a,,), Z = Hg (by, ..., b,) and the following are trye: whenever
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a; = G(dy, ..., dy5) thendy, ..., d, € {ay, ..., a;_}; Card(var(b,) U ... U var(b,)) <
< 1; there exists a homomorphism h of the A-algebra W, into the A-algebra
corresponding to S, R such that h(a,) = by, ..., h{a,) = b}.

(xviii) x,5(X, S, R, U) in F, iff there are (F,i)e A® and an equation (a, b)
such that X = (F,i)*, S,R is an (F,i)-codalgebra, U = Hp (a, b) and (a, b)
is satisfied in the A-algebra corresponding to S, R.

Definition. (i) %;o(X, S, R, T) = 154(X, S, R) & VA, B{y3o(X, A, B) > (B < T
« Xsls(X’ S, R, A)))

(i) x20(X, S, R, T) = U(146(X, S, R, U) & T < U).

(if) 12,(T) = 3X, S, R, A(x20(X, S, R, T) & 1°(4) & YU(¢(U, S) —» 4 < U)).

1.5. Lemma. Let A4 be a strictly large type. Then:

(i) %10(X,S, R, T) in &, iff there are (F,i)e A® and an (F,i)-codalgebra
So, R, such that X = Z((F, i)¥), S = Z(S,), R = Z(R,) and T is the equational
theory of the A-algebra corresponding to S,, R,.

(i) x20(X, S, R, T) in &, iff there are (F,i)e 4%® and an (F, i)-codalgebra
So, Ry such that X = Z((F, i)*), S = Z(S,), R = Z(R,) and the A-algebra cor-
responding to S,, R, is a model of the equational theory T.

(iii) x24(T) in L, iff T is the equational theory of a finite A-algebra.

Now let 4 be a finite, strictly large type. For every finite A-algebra A we shall
construct a formula f4(T) with one free variable T'in the following way: Denote by n
the cardinality of A, by m the cardinality of 4 and put 4 = {al, e a,,} and 4 =
= {F,...,F,}. Denote by M the set of finite sequences s = (F; a;,, ..., a;,,)
such that ie {1, ..., m}, k is the arity of Fy, iy, ..., iy+;€{1,...,n} and F{a,, ...
.- ay) = a;_,, holds in the algebra A. For every s = (Fi, Qipyenns a )eM such
that k=2 1 put o = 3p U(gi(D, R) & £34(X, D, U, X,., ) &

& 90%,(Y:,1, X1y, U) & 05,(Yi 0 X, U)) -
For every s = (F,, a;) € M such that F, is nullary put
gs = 3D(¢(D, R) & 155(X, D, Y;, X)) .
Denote by g the conjunction of the formulas g, (s e M). For every ie{l,..., m}
such that F; is of an arity k = 1 put
hi = @3(Y;, Yiy) & ... & 05(Y;, Vi) -
For every ie {1, ..., m} such that F; is nullary put

[

h; = o(Y;).
Finally, put fAT)=3X,S,R3(Xy, .. X,)F
(Y5 evos Yoo Yi 1 cvos Yiups oo Yot oves Yoo )™

(x10(X, S, R, T) & YU(¢{(U, S) >
U =X,VEL...VELU =X,))&h, &... &h, &g).

1.6. Lemma. Let 4 be a finite, strictly large type; let A be a finite A-algebra;
let Te £ 4. Then fA(T) in &, iff T = h(Eq(A)) for some automorphism h of % ,.

336 ¢



2. LARGE BUT NOT STRICTLY LARGE TYPES

Throughout this section let 4 be a type such that 4 = 4, U 4, and Card(Al) = 2.

By a codelement we mean an element of &, of the form (F G"Fx)* where x € V,
n=2and F,Ged, are two different symbols. The set of (F, i)-codelements is
denoted by CEL.

2.1. Lemma. CEL is a set of pairwise uncomparable elements of & ,; we have
Card{CEL) = Max(X,, Card(4,)).

Let He 4, and let A, B be two codelements. For every variable x there exists
a unique pair s,, s, of elements of 4¢7) such that 4 = (s;x)* and B = (s,x)*. The
element (s,Hs,Hs,x)* of &, will be denoted by [H, A, B]. The elements of &, of
this form will be called definators of the first kind.

Let C e 4, and let A be a codelement. For every variable x there exists a unique
element s of 47 such that 4 = (sx)*. The element (sC)* of %, will be denoted
by [C, A]. The elements of &, of this form will be called definators of the second
kind.

Definators are elements of & , that are definators of either the first or the second
kind.

2.2. Lemma. If [H,, A;,B,] <[H,,A4,,B,| then H, =H,, A, = A, and
B, = B,. If [Cy, A;] £ [C,, A,] then C; = C, and A, = A,. No definator of the
first kind can be comparable with a definator of the second kind.

By a codset we mean an element S of &, such that every element of I*(S) =
= {t*; teI(U)} is a codelement. Elements of I*(S) are called codelements of S.
There is a natural one-to-one correspondence between codsets and subsets of CEL.
The union of the sets in CEL is the largest codset, while the empty set is the least
codset.

By a codalgebra we mean a pair S, R of elements of & satisfying the following
three conditions:

(1) Sis a nonempty codset;

(2) every element of I*(R) is a definator; if [H, 4, B] e I*(R) then A, B e I*(S);
if [C, A] e I*(R) then A e I*(S);

(3) for every He A, and A eI*(S) there exists exactly one BeI*(S) with
[H, A, B] e I*(R); for every C € 4, there exists exactly one 4 € I*(S) with [C, 4] e
e I*(R).

Given a codalgebra S, R, we can define an algebra Q of type 4 with the underlying
set I*(S) as follows: Hy(A4) = B iff [H, A, B]eI*(R);-Cy = A iff [C, A] e I*(R).
This algebra Q is said to be the A-algebra corresponding to the codalgebra S, R.

2.3. Lemma. Every A-algebra whose underlying set is a subset of CEL cor-
responds to exactly one codalgebra. A A-algebra Q is isomorphic to a A-algebra
corresponding to a codalgebra, iff Card(Q) < Max(N,, Car(4,)).
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Definition. (i) 15,(4, B, C) = 3X,, X, Y, D(¢47(X1» X2, ¥, 4, B, D) &
& q047(X1, X5, Y,.D, A, C))
(ii) %25(2) = 34, B, X(a,(4) & ¢,,(X, B) & X + A & X + B & 15,(4, B, Z)).

(iii) 724(X, A, B, Y) = 0,(X) & y,,(A) & 125/ B) & IC(x22(X, 4, U) &

& x22(B, U, Y)).

(iv) 125'X, A, Y) = ao(X) & y55(4) & X < Y & ps(Y; A).

(v) x26(Y) = 3X, 4, Bx24(X, A, B, Y) VEL 3X, A225(X, 4, Y).

(Vi) 127(Y) = VA{gs(4; ¥) > y,5(4)).

(vii) 228(S, R) = 127(S) & T0o(S) & VZ(04(Z, R) > (3X. A, B(124(X, 4, B, Z) &
& 9.(4, 5) & py(B, S)) VEL 3X, A(1,,(X, A, Z) & pi(4, 5)))) & VX, A((2(X) &
& ¢,(4, S)) » 31! B3Z(124'X, A, B, Z) & ¢,(Z, R))) & VX(2o(X) -

— AN A3Z{y,4(X, 4, Z) & ¢,(Z, R))).

(viii) x20'X . X5, Y, S, R, A, B, D) = 14(S, R) & ?(4) & ¢4s(X 1, X,. Y, B, D) &
& 3Do(Dy < D & ¢.5(A; Do)) & VZ, U, C94o(X 1, X2, Y, B, Z, U, €) >
- ¢,(C, 8)) &P, Q, H, Z,, Uy, Cy, Z5, Uy, Col(946(X15 X2 Y, P, A) &

& §046(X1a X,, Y, 0, A) & ¢33<X1, X,, Y, H, P, Q) & (P40(X1, X,,Y,B,Z,,Uy, C1)&
& (P4o(X1a X,,Y,B,Z,,U,, Cz) & ¢,5(0, Zl) &z, < ZZ) - HX(QDI(X’ R) &

& 124(H, Cy, €3, X))) & VC((2(C) &C < A) —

- HU’ X7 Z{¢4O(Xh Xza Y, Ba Xl, U, X) & XZS(C: X’ Z) & (pl(z’ R)))

(ix) x30(X1, X2, Y, A, Uy, B, U,, S, R) = 035(X;, X2, Y) & 043(X,. 4, U) &

& @43(X1, B, U,) & 1,5(S, R) & VBy, Dy, By, Dy, Py, Py, P3, Py, Oy, 03, 03, Q4
((x20(X1, X5, Y, S, R, A, By, D) & x20(X1, X5, Y, S, R, By, Dy) &

& @ao( X1, X, Y, By, Dy, Py, Q1) & 940(X 1, X, Y, Byy D2, Pa, Q) &

& (P40(X1, X5, Y, By, Xy, Ps, Qs) & (p40(X1,X2, Y, B,, Xy, Py, Q4) & Q; + Qz) -
- (7“0(U1) &U, =U, & Q5 + Q,)).

2.4. Lemma. Let A be a large but not strictly large type. Then:

i) %22(A4, B, C) in # 4 iff there are two sequences sy, 5, €47 and a variable x such
that A = (s;x)*, B = (s;x)*, C = (5;5,5,x)*
(ii) x23(2) in F 4 iff Z is a codelement. »
(iii) 24X, A, B, Y) in F 4 iff X = F* for some F € 4;, A, B are two codelements
and Y = [X, 4, B].
(iv) x25(X, 4, Y) in F, iff X = C* for some Ce Ay, A is a codelement and
Y = [X, A].
(v) x26(Y) in F 4 iff Y is a definator.
(vi) x27(Y) in F, iff Yis a codset.

(vii) x.4(S, R) in Z 4 iff S, R is a codalgebra.

(viii) Let F,Ged,, F+ G, xeV, X, = F* X, = G* Y= (GFx)*. Then
%20(X1,X,,Y,S,R, A, B, D) in #, iff S,R is a codalgebra, A = (H, ... H y)*
for some yeVu A, and Hy,...,H,e 4, (n 2 0), and (B, D) is an (F, G, GF, x)-
code of the sequence h(y), h(H,y), ..., h(H, ... Hyy) for some homomorphism h of
the algebra W, into the A-algebra corresponding to the codalgebra S, R.
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(ix) Let F,Ged,, F+ G, xeV, X, = F* X, = G*, Y = (GFx)*. Then
230X, X5, Y, A, Uy, B,U,, S, R) in 4 iff S,R is a codalgebra, (4,U,) is the
fine F-code of a term a, (B, U,) is the fine F-code of a term b and the equation
(a, b) is satisfied in the A-algebra corresponding to S, R.

Definition. (i) x3,(X, 4, Uy, B,U,, S, R) = 3X,, Y(35(X, X,, Y) &
& 150(X, X5, Y, A, Uy, B,U,, S, R)).

(ii) %32(S, R, T) = x55(S, R) & VX, A, Uy, B, U, Y(Y45(X, A, Uy, B, U,, Y) —
= (x3:(X, A, U, B,U,,S,R) > Y < T)).

(iii) x33(T) = 3S, R, X1, X5, Y, 4, D(x32(S, R, T) & ¢5,(X,,X,, Y, A, D) &
& VU(¢}(U, S) — 3Z, Bp5o(X 4, X5, Y, A4, Z, B, U))).

2.5. Lemma. Let 4 be a large but not strictly large type. Then:

(i) x3:(X, A, U, B,U,,S,R) in & iff there are F € Ay, terms a, b and a cod-
algebra Sy, Ry such that X = Z(F*), (A4, U,) is the fine F-code of a in £ 4, (B, U,)
is the fine F-code of b in %4, S = Z(S,), R = Z(R,) and the equation (a, b) is
satisfied in the A-algebra corresponding to Sy, R,.

(i) x32(S, R, T) in £, iff there is a codalgebra S,, Ry such that S = Z(S,),
R = Z(R,) and T is the equational theory of the A-algebra corresponding to Sy, Ro.

(iii) x33(T) in &4 iff T is the equational theory of a finite algebra.

Now let 4 be a finite, large but not strictly large type. For every finite 4-algebra 4
we shall construct a formula f,(T) with one free variable T in the following way.
Denote by n the cardinality of A, by m, the cardinality of 4,, by m, the cardinality
of 4; and put A = {ay, ..., a,}, 4o = {Cy, ..., C,,} and 4; = {Fy, ..., F,, }. Denote
by M the set of the triples s = (F;, a;, a,) such that ie {1, ..., my}, j, ke {1, ..., n}
and F{a;) = a; holds in the algebra A; denote by M, the set of the pairs s = (C;, a;)
such that ie{l,...,me}, je{l,...,n} and C; = a; holds in A. For every s =
= (Fy a;,a,) € M, put

gs = 3D(¢%(D; R) & 154(Yi, X, Xy, D)) .

For every s = (C;, a;) € M, put
g9; = 3D(¢5(D, R) & x55(Zi, X, D)) .

Denote by g the conjunction of the formulas g, (s € M; U M,). Finally, put

FAT) =38, R Xy, .. X,)* H(Yes oo Y, ) AZy, . Z)*
(132(S, R, T) & YU(¢3(U, S) > (U = X, VEL... VELU = X,)) &
& (V) & ... &o(Y,,) &oh(Zy) & ... & 4(Z,,) & g) .
2.6. Lemma. Let A be a finite, large but not strictly large type; let A be a finite

A-algebra; let Te £ ,. Then f4(T) in £, iff T = h(Eq(A)) for some automorphism h
of Z,. ’
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3. SMALL TYPES

3.1. Lemma. Let A = A, U {F} for some unary symbol F and let Te £ 4. Then T
is the equational theory of a finite algebra iff the following two conditions are
satisfied:

(1) there are non-negative integers n, m such that n < m and (F'x, F"x)e T
(where x e V);

(2) there exists a finite subset H of Ay such that for every F € A, there is a G e H
with (F,G)e T.

Proof. The direct implication is clear. Conversely, let (1) and (2) be satisfied.
It is easy to see that the free algebra of rank 2 in the variety corresponding to T
is finite; this algebra generates the variety, since 4 contains only nullary and unary
symbols.

Definition. (i) y34(X) = 34,B,C, P, Q(¥so(4, B,C) & C < X & Y63(P) &
& Ya(P, Q) & VU 3Z, T((25(U) & T195(U, Q) — (#5(2. Q) & ¥24/U, Z, T) &
T < X))).

(ii) %35(X) = (34, B(eo(A) & ao(B) & A + B) & y34(X)) VEL (3! A a(A) &
& Two(X) & 7134, Bysg(A4, B, X)) VEL (71340, 4) & TTwy(X)).

3.2. Lemma. (i) Let 4 = Ay U {F} where F € A; and Card(4,) = 2. Then y3,(X)
in %, iff X is the equational theory of a finite algebra.

(ii) Let 4 be a small type containing a unary symbol. Then y35(X) in £, iff X
is the equational theory of a finite algebra.

3.3. Lemma. Let A = A, and let Te # 4. Then T is the equational theory of a finite
algebra iff there exists a finite subset H of A, such that for every F € A, there is
a Ge H with (F,G)eT.

Definition. 134(X) = w(X) VEL 34, B(,(4) & Yrs3(B) & A = B v X).

3.4. Lemma. Let A = Ay. Then x36(X) in L4 iff X is the equational theory of
a finite algebra.

4. THE MAIN RESULTS

Definition. x(X) = (12,(X) & ¥s & 34 @5(A)) VEL (x33(X) & Y5
& 7134 &5(4)) VEL (Y4 & 136(X)) VEL (135(X) & 4 & ¥s5).

4.1. Theorem. Let A be any type. Then y(X) in £, iff X is the equational theory
of a finite algebra. Consequently, the set of the equational theories of finite A-
algebras is definable in % 4.

Proof. Theorem follows from 1.5(iii), 2.5(iii), 3.2(ii) and 3.4.

&
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4.2. Theorem. Let A be a finite type and A a finite A-algebra. Then the equational
theory Eq(A) is definable up to automorphisms in 2 .

Proof. For large types the appropriate formula is constructed in Lemmas 1.6
and 2.6. If 4 is a finite small type, then every equational theory of type 4 is finitely
based (see [4]) and so by Theorem 13.4 of [3] every element of %, is definable up
to automorphisms.
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