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SOME FINITE CONGRUENCE LATTICES, I 

JiRi TÛMA, Praha 

(Received January 2, 1985) 

iMtroductioo. The paper deals with the finite congruence lattice representation 
problem and contains examples of finite permutational algebras with congruence 
lattices isomorphic to partition, Boolean and quasi-ordering lattices. 

The problem whether every finite lattice is isomorphic to the congruence lattice 
of a finite algebra has attracted some attention in the last ten years. Results obtained 
so far have turned the attention to essentially unary algebras, and among them 
especially to groups of permutations. A finite unary algebra whose set of operations 
is a transitive group of permutations is called here a permutational algebra. The 
congruence lattice of a permutational algebra (X, G) is known to be isomorphic to 
the interval [S^, G] in the subgroup lattice of G between the stabihzer of a point 
XEX and the whole group G (see [7]). It follows that by constructing a permutational 
algebra with a given congruence lattice we simultaneously find a finite group con­
taining the given lattice as an interval in its subgroup lattice. Hence our paper could 
be also titled "Some intervals in subgroup lattices of finite groups". 

Our interest in permutational algebtas does not mean any restriction in the finite 
congruence lattice representation problem, since by a result of [7], every finite lattice 
is isomorphic to the congruence lattice of a finite algebra iff" every finite lattice is 
isomorphic to an interval in the subgroup lattice of a finite group. This equivalent 
formulation is sometimes considered to suggest the negative answer. One of the con­
sequences of this feehng is that not too many lattices were really proved to be iso­
morphic to finite congruence lattices. Up to now, the largest class of finite congruence 
lattices closed under finite products, homomorphic images and sublattices is the class 
of finitely fermentable lattices described in [9]. This class contains all distributive 
lattices. Obviously, every finite partition lattice is the congruence lattice of a finite 
algebra — no operations are needed. Further, we have infinitely many congruence 
lattices of length two (not all, now М|з is the smallest undecided case), and some other 
examples, such as McKenzie's example of a finite congruence lattice which is not 
isomorphic to the congruence lattice of any finite algebra with one operation ([4]). 
Moreover, an unpubhshed result of the author shows that the class of finite congru­
ence lattices is closed under (finite) products. 
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In view of the equivalent formulation of the finite congruence lattice representation 
problem quoted above, it is also of interest to examine which lattices are known to 
be isomorphic to congruence lattices of permutational algebras. Here the situation 
is even worse. From the infinite classes of finite congruence lattices listed above only 
the examples of length two are obtained as congruences of permutational algebras. 
Known constructions of finitely fermentable and partition lattices as congruence 
lattices do not use transitive groups of permutations. 

Representations of some finite lattices as congruence lattices of permutational 
algebras are the main topic of this paper. In Section 1 we present a representation 
of partition lattices. In other words, we prove that partition lattices are isomorphic 
to intervals in subgroup lattices of finite symmetric groups. Section 2 contains a repre­
sentation of Boolean lattices as intervals in collineation groups of finite projective 
spaces. This is a known result in group theory. The last Section 4 contains a repre­
sentation of quasi-ordering lattices as congruence lattices of permutational algebras. 
The group is again the collineation group of a finite projective space. The representa­
tion of quasi-ordering lattices and intervals in them as finite congruence lattices is 
the main new result of this paper. As a corollary we get also a representation of finite 
distributive lattices by congruences of permutational algebras, since any finite distri­
butive lattice is isomorphic to an interval in a quasi-ordering lattice. In the same 
way we obtain several new representations of Boolean lattices. This is proved together 
with some auxihary results on quasi-ordering lattices in the short Section 3. To 
characterize intervals in quasi-ordering lattices is an interesting unsolved problem 
related to the present work. 

Although formulated as independent constructions, the algebras studied in this 
paper have many common properties. Roughly speaking, they are constructed by 
amalgamating the Cayley representation of a symmetric group. Below we state some 
axioms to specify what we mean by "good amalgams". First of all we introduce the 
concept of an induced permutational algebra. Take a permutation group (Z, G) 
and a set Л ^ X. By Stab^ we denote the subgroup of G containing all g e G such 
that g{Ä) = A, and by PStab^ the pointwise stabihzer of Л — i.e. the set of all ^̂  G G 
such that g[x) = x for all x e A.lf g, h e Stab^ belong to the same coset of PStab^, 
then the restrictions of g and h to A coincide. It follows that we may regard the group 
Stab^/PStab^ as a group of permutations on A, and we call the algebra [A, Stab^ : 
: PStab^) the induced permutational algebra (or induced permutation group) 
on A. Now we are ready to define "good amalgams". 

A permutational algebra {X, G) together with a collection j / of subsets of X 
(called apartements) is a permutational algebra (or permutation group) of type A„ 
if it satisfies the following conditions: 

(i) (connectedness) for any x, y eX there is a sequence of apartements AQ, A^,.., 
..., Aj^ such that X e AQ, y e Д and Л,- n A^^^ is non-empty for all i = 0 , 1 , . . . , /c — 1; 

(ii) (induced algebras) for all Ae ^, the induced group on A is isomorphic to the 
Cayley representation of the symmetric group on n + 1 letters; 
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(iii) (transitivity) the group G acts transitively on the set of all incident pairs (x. A), 
where x e X, Ae j ^ and x e A. 

The symbol A„ refers to the classification of finite Coxeter groups — see [2]. 
The shape of the congruence lattice of a permutational algebra of type A,^ is 

influenced by intersections of apartements. This will be studied in the second part 
of this paper together with some other examples, their apartement structures and 
general methods of constructing such algebras. 

Our axioms resemble in some directions the axioms and properties of algebras with 
tame minimal sets, the first concept of tame congruence theory developed by R. 
McKenzie in [4] and surveyed in [5] and [6]. In fact, the concept of algebras with 
tame minimal sets and the concept of buildings due to J. Tits ([3], [10], [И]) were 
the main inspiration for the present work. 

We use only standard concepts, although our notation is sometimes unconven­
tional. Necessary definitions are stated throughout the text. Here we point out only 
that a complete lattice homomorphism is a homomorphism preserving also the least 
and the greatest elements. By X cz У we mean always proper inclusion (hence X ф Y). 
The partition, Boolean and quasi-ordering lattices on a set / are denoted respectively 
by n(l), B[I) and 0(1). Finally, all the structures throughout the text are finite. 

P. Palfy informed me that representations of distributive lattices as congruence 
lattices of permutational algebras follow also from a result of Silcock [13]. I am 
also indebted to P. Pudlak for making several suggestions improving the final version 
of the paper. 

1, Representations of partition lattices. In this section we assume / = {0, 1, ... 
..., П — 1}. Let us take a vector of positive integers p = {po, Pi, •", Pn-i) with the 
following property 

(1.1) for any two sets J,K ^ I, J]Pj = ЦРк iff J = К . 
J к 

Vectors p with this property exist, one can take e.g. pi = T for all i e / . 
n - l 

Now take a set X of cardinahty Я = ^ p^. By a p-partition of X we mean a com-
i = 0 

plete lattice embedding e: B[I) -> B{X) such that e(i) has cardinahty p^. Then we have 

(1.2) e[j) = и e^j) for all J ç / . 
JeJ 

Since |X| = j^(/)| = Y. KOI' ^̂ ^ ^^^ ^̂ ^̂  KO ^^^ mutually disjoint, and { (̂0* ^ ̂ ^} 
iel 

is a partition of X of type p. Conversely, any partition {^0* ^ ^^} ^^ -^ ^^ ^УР^ P 
can be extended to a j9-partition e by (1.2). Since all the cardinalities pi are mutually 
different, the correspondence is one-to-one. This explains our terminology. 

Let us denote by E the set of all p-partitions of X. If ç? is a permutation of X 
and e a p-partition of Z , then (p о eis also a p-partition. It follows that the symmetric 
group Sym(Z) acts as a group of permutations of E and this action is obviously 
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transitive. We denote the action of a permutation cp G Sym(X) on the set E by the 
same symbol cp; it will not lead to any confusion. The action of Sym(X) on E will be 
denoted by G. We shall prove that the congruence lattice Con(£, G) is isomorphic 
to the partition lattice Я(/). 

To this end we define a mapping Z: П[1) -^ Я(£) as follows: 

(1.3) {ej) e Z{%) iff e[J) = f{J) for all blocks J of TU . 

Theorem lA. The mapping Z: Tl{I) -> i7(E) defined by (1.3) is a complete lattice 
embedding. 

Proof. We prove that Z = /1 о S о D, where Л, Ü are lattice isomorphisms and S 
is a complete lattice embedding. 

Take an arbitrary partition со e П(Х) of type p and denote its blocks by YQ, YJ, ... 
..., y„_i, \YI\ = pi. The upper interval [со, ix] in П(Х) is isomorphic to Я(/) , and 
we denote by v the obvious isomorphism assigning to each n e П(1) the partition 
ft e n{X) with blocks {[JYy.Jen}. 

Next we take a mapping S: П{Х) -> Я(8ут(Х)) defined by (cp, ф) e S{ô) iff" 
(p[Y) = II/{Y) for all blocks Ye 3. This mapping is known to be a complete lattice 
embedding (see [1] or [12]). 

Finally, we consider a mapping A\ Sym(X) -^ П{Х) defined by A[cp) = {(p[Y^: 
iel}. This mapping is not injective, and we have Л((р) = /1((Д) iff* ф(У,) = ^{Yi) 
for all / G / , hence Л{(р) = Ä{il/) iïï {(p, ф) e S{œ). Since any partition of X of type p 
is of the form Л{(р) for some cp, the mapping Л establishes a bijection between blocks 
of the partition S{œ) and partitions of X of type p. This bijection induces an isomor­
phism Л: Я(8ут'Х)) -> П{Е). 

To prove Z = Л о S о v take two ]?-partitions e,feE and find permutations 
(p, Ф G Sym(X) such that A{(p) = {e{i): i el} and Л(ф) = {f{i): iel}. By the defini­
tions we have (e,f) e Z(n) iff" ((p, ф) e S{n), hence Z = Л о S о v. П 

Theorem IB. The congruence lattice Con(£, G) is isomorphic to П[1). 
Proof. We show that Con(£, G) = Im(Z). A simple observation gives Im(Z) ^ 

Ç Соп(£, G). Indeed, take (eJ) e Z{n) and cp e Sym(X). Then e[J) = f{J) for all 
blocks J of 71, hence (p e[J) = (pf{J) for all Jen, therefore (cpe, (pf) E Z[n). It 
remains to prove the converse inclusion Con(£, G) ^ Im(Z). It will be proved by 
an induction on тг in the lattice Я(/). 

Take two /7-partitions e,fEE. By n(e,f) we denote the least partition ПЕП[1) 
such that ( ^ , / ) G Z ( 7 Ü ) , and by Con(e,/) the least congruence relation of {E, G) 
containing the couple {e,f). We want to prove Con(e,/) = Z(n{e,f)). This is obvious 
if n{e,f) is the least element of Я(/). Now suppose that n = n(e,f) is an atom in 
Я(/). It has just one non-trivial block {ij}. Then we have e[{ij]) = f([ij}) and 
K^) = 1{Щ for к Ф iJ. Moreover, e ф / , hence e[i) ф /(г) and ^(7) ф f{j). 

Since 1̂ (1)1 Ф \e[j% one of the sets ^;^/), e[j), say e(i), intersects both/ ( i ) and/(7). 
Take arbitrary elements xEe[i)r\f[i) and у e e[i) r\ f[j). Then x ф y. Consider 
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the transposition (p = {x, y). Since x, y are in the same block of e, we get (pe = e. 
On the other hand, x, y are in different blocks of / , hence (pf + / . It follows that 
(e, (pf) G Con(^,/), hence also (/, cpf) e Con{e,f). Moreover, we have that the sym­
metric difference/(0 -̂  c/?/(i) = f{j) -- (pf{j) = {x,y}. 

If (g, h)eZ{n), we can find a sequence Ö^(/) = XQ,XI, ...,X^ = h{l) of subsets 
o^ g{{i,j}) = ^({i,j}) such that the symmetric difference of any two subsequent sets 
has cardinality two. 

Now for any / = 0, 1, ..., m - 1 take a permutation cpie Sym(X) sending / ( / ) 
to Z i , (pf{i) to Xi^,, f{{ij]) to g{{i,j}) and f{k) to g{k) for all к Ф ij. Since 
| / (0 — ^ / (01 = 1̂ 1 — ^i + il, such a permutation (pi exists. 

We have (pi + J = cp^cpf for all / = 0, 1, ..., m - 1, cpj = é̂  and (p,r,-i(pf = h. 
In the sequence g = cp^f, cpj^ ..., cp^,_J, (p,„f = (Pm-i9f = h any two subsequent 
elements satisfy {(pj, (Pi+J) = {cpJ, (piçf), hence ((pj, cpt + J) e Con{f, cpf) ^ 
Ç Con(e,/). This proves {g, h) ECon(e,f), hence Z(7z:(e,/)) ç Con(e,/). Since 
Con(e,/) Ç Z(7r(e,/)) holds generally, we get Con(eJ) = Z{n{eJ)). 

Now take arbitrary n e Я(/) greater than an atom. The induction hypothesis is 
that Z(n{g, h)) = СОП(О^, h) whenever n(g, h) < n. Let us suppose that n(e,f) = тг, 
and denote by Q the greatest element of П{1) such that Z{Q) ^ Con{e,f). We have 
to prove Q = n. Suppose on the contrary Q < n. Then there are two different blocks J 
and К of ^ which are subsets of the same block L of n. Now J is not a block of TI, 
hence e{J) Ф f{j). By the condition (1.1), we find an element I e L — J such that e[I) 
intersects bo th / ( J ) a n d / ( L - J) . Take arbitrary x ef{J) n e[l) and у ef{L - J) n 
n </). 

We have x e / ( / ) and у ef{j) for some / e / and j еК. The transposition ф =--
= (x, y) maps e to e and / to a p-partition ф/ ф / , since \l/f{i) Ф /(/'). On the other 
hand, \l/f{k) = f{k) for all к Ф ij and \l/f{{i,j}) = f{{ij})- Hence we get that 
7T(/, i/(/) is the atom of П(1) having just one non-trivial block {i,j}, and (/, ij/f) e 
ECon(e,f). By the induction hypothesis we get Z{n(f,\l/f)) = Соп(/,ф/), hence 
Z{n{f, ф/)) Ç Con(e,/). It follows that iJ are contained in the same block of Q, 
contrary to our assumption. This contradiction proves Con[e,f) = Z(7r(e,/)) for 
any pair {e,f) e E x E. 

Since each join-irreducible element of Con(£, G) is of the form Con(e, f) for some 
{eJ)EE X E (see [8]), we have Con(£, G) ç Im(Z). П 

2. Representations of Boolean lattices. In this section we present a construction of 
Boolean lattices as congruence lattices of permutational algebras. The construction 
is a known result in group theory and is a special case of more general properties 
of groups with a BN-pair — see [3], [10]. We give here a direct, although somewhat 
lengthy, proof without any use of the theory of BN-pairs. Other examples of per­
mutational algebras with congruence lattices isomorphic to arbitrary Boolean lattices 
are obtained as corollaries of constructions presented in Section 4, so this section 
might seem superfluous. But permutational algebras constructed in this section have 
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a very special position among all permutational algebras of type Л„. This fact will 
be another topic of the second part of the paper. 

In this section it is also more convenient to have some order on the set / , so we 
assume again / = {0, 1, ..., n — 1}. By P we denote a finite projective space of rank 
/1 + 1. We consider a projective space as a collection of points and lines subjected 
to some — e.g. Veblen-Young's -- axioms. The rank function on subspaces of P 
is denoted by r. 

By a maximal flag in P we mean a sequence/ = {f-ufo, •••,fn) of subspaces of F 
ordered Hnearly by inclusion and such that r(/,) = i + 1 for all i = — 1, 0, ..., n. 
Hence/_i = 0 and/„ = P. The set of all maximal flags is denoted by E. The group 
ColfP) of all collineations of P maps maximal flags to maximal flags and acts in this 
way on the set E. The action is obviously transitive. The permutation of E induced 
by a colhneation cp e ColfP) (the action of cp on E) will be also denoted by (p. We 
denote by G the group of permutations of E induced by collineations of P. 

We shall prove Con(£, G) ĉ  B{I). To this end we define a mapping Z: В J) -> 
-^ П\Е) by 
(2.1) (ej) e Z{J) iïï ei = f, for all iel - J . 

We have the following theorem. 

Theorem 2A. The mapping Z: B[l) -> ЩЕ) defined by (2.1) is a complete lattice 
embedding. 

Proof. We have (eJ) e Z(0) iff* e^ = /^ for all i e I iïï e = f, and {e,f) e Z{I) for 
all couples (e,f)eE x E. This proves that Z preserves the least and the greatest 
elements. A straightforward verification also shows that Z preserves the order rela­
tions. 

It follows that Z{J n X) с Z{J) n Z{K) for any two subsets J, К of / . But if 
{eJ)EZ{j)nZ{K), then e^ = f^ for аП i e(I - J) и (I - К) = I - (J n К), 
hence {e,f) e Z(J n K) and Z{J) n Z{K) Ç Z(J n K). This proves that Z preserves 
meets. 

We get also Z(J) v Z(K) ^ Z(J u K), since Z preserves order relations. Assume 
(eJ) e Z{J u K), and set I{eJ) = {геР.е^ф / J . Then l{ej) ^ J u X. We prove 
( e , / ) e Z ( j ) V Z{K) by induction on the set l{e,f). If I(e,f) ^^ {i}, then either 
i e J or i e K. In both cases we get {e,f) e Z(j) v Z(K). If I{e,f) contains at least 
two elements, let us take the least possible / el{e,f) and denote by j the least element 
of / — I{e,f) greater than i. Then the whole interval [1,7 — 1] is contained in 
l{e,f). Take a chain a^+i = ^̂  v / ^ с 0^+2 c: ... cz öf̂. = ^̂ . =/^. of subspaces 
of P and complete it to maximal flags 

a = (e_i, eo, ..., Ci, a^+i, а^+2, •••? «j. ^j + i. •••. ^ » 

с = {f^i,fo, ...,fi, ö,-+i, ^/ + 2' •••' ^ j ' / j + l? •••5/n) • 

Then % a) Ç [/ + 1, j - 1], I{a, b) = {/}, /(b, c) ^ ф , / ) - [ij - 1] and 
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I(cyf) ç [i + 1, J - 1]. AU these sets are proper subsets of l{e,f), hence {e, a), 
(a, b), (b, c), (c,f)eZ(j) v Z[K), by the induction hypothesis. This proves {e,f) e 
e Z{J) V Z{K), therefore Z{J KJ K) ^ Z{J) v Z;X), and Z is 1 complete lattice 
homomosphism. 

e^vf, 

еи-t-i Fig. 2.1 

Since this homomorphism is obviously injective, the theorem is proved. П 

We shall need some information about the coHineation group of a projective 
space. By a frame in a projective space Q we mean a set of /c + 1 = r(ß) + 1 
points Xo, ..., Xfc of Q such that the least subspace of Q containing any subset of к 
of these points is equal to Q. Collineations of a projective space are fully described 
by the Fundamental Theorem of Projective Geometry. We use the following version. 

Proposition 2.1. Let {XQ, ..., X/,} and [y^, ..., y^^ be two frames in Q. Then there 
is a unique coHineation cp of Q such that (p{x^ = yi for all i = 0, 1, ..., /c. П 

We use the Fundamental Theorem to derive some results about the group Stab^, 
of all elements of Col(P) stabilizing a given maximal flag e — the so called Borel sub­
group of Col(P). By a base compatible with e we mean a sequence XQ, X^, ..., x„ 
of elements of P such that x̂  e ei — ei_ j for all f = 0, 1 , . . . , n. 

Lemma 2.2. a) Let XQ, ..., X„ and y^, ..., Уп be two bases compatible with e. Then 
there is an element (p e Stab^ such that (p{xi) = ytfor all i = 0, 1, ..., n. 

b) Let j \ к be two different elements of I и {n}, x, у e ej — ej^i and u, v e 
€ ef^ — ^/c-i- Then there is a coHineation cp e Stab^ such that (p[x) = у and (p[u) = v. 
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с) Let X, у E Cj — ^j-i- Then there is a coUineation (/? e Stab^ such that ф/e^-i 
is identity, (p[x) = y, and (p{Q) = Qfor all subspaces Q of P containing e^. 

Proof. 1) Since XiECi — ^^„i for all / = 0, 1, ..., n, the least subspace of P 
containing all Xi is P. Hence we can complete XQ, ..., x„ by a point x̂ , + i to a frame 
of P. The same holds for y's, hence we can find a coUineation cp e Col(P) such that 
<p{x^ = y I for all i = 0, 1, ..., n. Since any ei is spanned both by XQ, ..-, X^ and by 
Jo , . . . , УР we get (p(e^ = ,̂-, hence cp e Stab^. 

b) We can complete x, у and w, и to bases compatible with e. The rest follows 
from a). 

c) There is a coUineation xj/: Cj -> ej such that il/jej^i is the identity and i/̂ (x) = y. 
Then ^(e^) == Ci for all / ^ j . Now take any subspace R of P such that R n ej = (/) 
and r(jR) = n + 1 -- (j + 1). Then P is spanned by the subspaces Cj and R. Now 
take any extension cp e Col(P) of ф satisfying xj/JR is identity. (Existence of cp can be 
proved either directly or as a consequence of a more general Lemma 4.1.). If Q is 
a subspace of P containing ej, then Q is spanned by ej and Q n R. Both the subspaces 
are fixed by (̂ , hence (p{Q) = Q. This proves also ç e Stab^. П 

Now we are ready to prove the main result of this section. 

Theorem 2B. The congruence lattice Con(E, G) is isomorphic to B{l). 
Proof. We shall prove that Con(£, G) = Im(Z). It is easy to observe that Im(Z) ^ 

Ç Con(£, G). Indeed, if (e , / ) e Z{J) and cp e G, then (p[ei) = (p[f^ for all iel - J. 
This proves [cpe, cpf) e Z(J). 

It remains to prove Con(£, G) ^ Im(Z). Take a couple {e,f)eE x E and 
denote by Con(e,f) the least congruence of {E, G) containing (e , / ) . Then we have 
Con{e,f) Я Z(l(e,f)), since Im(Z) Ç Con(£, G). Further, we denote by J^j the 
greatest subset of / such that Z(Jgj) ç Con{e,f). It exists, since Z is a complete 
lattice embedding. We have J^j ç l{e,f), and we shall prove that in fact equality 
holds. Suppose on the contrary that there is a couple {e,f) such that J^j cz I{e,f) 
and choose the couple (e , / ) in such a way tha t / (^ , / ) is minimal under this condition. 
Fix also an element iel(e,f) — J^j. We shall get a contradiction by deriving 
further properties of l(e,f). 

First of all we prove the following general principle. 

(2.2) If (^,; i)GCon(^,/) and gt=¥hi, then I{g, h) = I{ej). 

Since (g, h) e Con(e,/), we have Con{g, h) ^ Con(g,/), hence l(g, h) Ç l{e,f). 
If the inclusion were proper, we should have Con{g, h) = Z(j(g, h)) by our choice 
of the couple (e , / ) . But then Z(Jg j) = Con{g, h) ç Con{e,f), hence Jgj^ ^ J^j. 
It would imply i e J^j, contrary to our assumption on /. This contradiction proves 
I{g, h) = I{e,f). 

Next we prove 

(2.3) e j + i = / j + i . 
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To prove it, consider the least integer 7 > i such that ej = fj. It exists, since e„ = /„. 
Take now a couple (g, h)eCon{e,f) such that gi Ф h^ (such couples exist, e.g. 
(^,/)), and such that the least element of g say gj,, containing hi has rank as large 
as possible under these conditions. Then hi contains a point хед,^ — g^-i. We 
have I{g, h) = I{e,f) by (2.2), hence gj = hj and /c ^ y. If к < j , then gj, Ф /Î;,, 
and 0̂,̂  — о̂ ;̂ _1 contains a point у e hi — hi-i for some / > /c. Then certainly 
уф hi. By Lemma 2.2. b), there is a colHneation ç) G Stab^ such that (p[x) = y. 
Then (pg = 6̂ , hence (g, h), (g, cph) e Con(g, h) and also {h, cph) e Con(ö', /2) ^ 
^ Con(e,/). We have /Zj ф Ç>(̂ t)' since cp(/i/) contains the point y ф hi. We have 
ye hi — hi_i, hence the least element of h containing cp{h^ is at least hi of rank 

Fig. 2.: 

I + 1 > /c + 1, contrary to our maximality assumption on the couple (g, h). This 
proves к = j , hence hi n (̂ ^̂  — 9j~i) is non-empty. 

Now take a point и e hin (gj — gj-i) and a point v e (/Î/ + I — /i/) n (ĝ y — ö^j-i). 
Such a point Ü exists, since hi с /z..,.̂  ç ^̂ .. By Lemma 2.2. c), there is a colhneation 
xj/ E Stahg such that il/jgj-i is the identity and î (w) = v (see Fig. 2.3). Then (/i, 1Д/1) e 
G Con(éf;/ï) £ Con(^,/) and ij/Çh^) Ф /г̂ , since v = ^l/(u)фhi. By (2.2), we have 

i+i, since hi+^ n ^y_i is a hyperplane of /ij+i, 
II e hi+^ — gj_i and \J/(u) e /ÎJ+I-

Fig. 2.3 

It follows that / + lфI{h,l|/h) = l{ej), hence e^+i =fi+i- The proof of (2.3) 
is complete. 

Now let us denote by к the greatest element of / u {— 1} less than i and such that 
ejç = fj,. It exists, since e_i = Д ^ . 

(2-4) A + i $ e ; . 
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Suppose on the contrary t h a t ^ + i e ^.. Take a point xe{fi - ft-i) ^ ( /̂ + i " ^t)" 
It exists since e^ Ф /,• с e^ + i = ft+i. Next we take a point y e/f+i — (/,• u ^.). Now 
apply Lemma 2.2. c) to find a collineation cp e Stab^ such that cpjei is the identity 
and (p(x) = y. 

Fig. 2.4 

Then ф(х) = j ; ф/^, hence ф(/,) Ф / . . On the other hand, (p{fk+i) = A+i , since we 
have assumed f,, + ^ ^ et. We have (f, (pf) e Con{e,f), hence l{f,(pf)=l(e,f), 
by (2.2). This proves /c + 1 ф1(е,/) contrary to the fact that к < i was maximal 
with this property. This contradiction proves//^+1 ф ei. 

From the symmetry we get also 

(2.5) е , ^ 1 ф / , . . 

Now we prove 

(2.6) ^ / - 1 = Л - 1 . 

Suppose on the contrary that е^_1 Ф//_1 or, in other words, к < i — 1. Let 
^ ^ Л + 1 ~" ^i ^"d ^re^y^ + i —/,• be arbitrary points. We also find a point xe 
e iji n e-i) — fi-i- It exists, since/j_i ф ĝ . Suppose that ei is the least element of e 
containing x. Then к < I ^ i. There is a point у on the fine joining x and z and dif­
ferent from both X and z. Then у E ei — в^_l. Moreover, since zфfi and х б / - , 
we have у ф/^. By Lemma 2.2. b), there is a colhneation (p E Stab^ such that (p(x) ~ у 
and (̂ (w) = w. 

Fig. 2.5 

Then 0(Л) Ф Л-, since у = ф(̂ )̂ ^Л- On the other hand, (p{fi) = Л = ê  and (p(w) == 
= w, therefore (^(A+i) = //c+i- This proves к + 1 ^ / ( / , (/?/)• Since (/, (pf) E Con(^,/), 
we have / ( / , (pf) = ф , / ) ' ^У (2-2). But then /c + 1 ф1{е^\ contrary to the maxi-

307 



mality of к. This contradiction proves к = i ~ 1, hence ^,-1 = / i - i . 

(2.7) I{e,f) = {i} . 

Take a point x e/^ - ei and a point у e e^+i — (/. и ^j). By Lemma 2-2. c), we 
find a collineation cp e Stab^ such that (pje^ is the identity, ^(x) = у and ^(6) = 6 
for all subspaces ß ^ ,̂+ 1. 

Ч у ^ ' - ' "•• ' ' - 1 
Fig. 2.6 

Then (/)(/f) Ф/^, since у = (p{x)$fi- On the other hand, (p{f^ = fj^ for all к ^ 
^ г — 1, since (pjei-i is the identity and/^ ^fi-i = ^i-i- Moreover, (p(//) = fj 
for all 7 ^ i + 1, since fj 3 /,+1 = et^^. Hence {i} = /( / , cpf). We have (/, <?>/) e 
e Con(^,/), therefore /( / , cpf) = I{eJ\ by (2.2). This completes the proof of (2.7). 

(2.8) Z({/}) = Con(e,/). 

Take a point ^t+i^ft — ^i and complete it to a base XQ, ..., X„ compatible with e. 
If (̂ r, ]i)eZ[{i]) is another couple of mutually different maximal flags, we have 
l{g, h) = {i}. There is a point y^+j ehi — g^, and we complete j^+i to a base 
Jo,..., Уп compatible with g. There is a colHneation ф of P such that /̂̂ (xy) = j^-
for all j — 0, 1,..., n. 

Fig. 2.7 

Since each ej is spanned by XQ, ..., Xj and each ö'y by y^,..., j ^ - , we get фе = Ö̂ . 
Moreover, /^ is spanned by XQ, ..., x^-i, x^+i and /î  by y^,..., j ^ - i , у^+ ,̂ hence 
also ф/ = /i. This proves {g, h) e Con(eJ), therefore Z({i}) = Con(e,/). 
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But (2.8) contradicts our assumption on the couple {e,f), hence in fact Con(e,/) = 
= Z{I[e,f)) for all couples (e,f)eE x E. Since all join-irreducible elements of 
Con(jE, G) are of the form Con(^,/) for some couple [e,f)eE x E (see [8]), we get 
Con(E, G) ^ Im(Z). D 

3. Quasi-ordering lattices. In this section we define and prove some simple pro­
perties of quasi-ordering lattices. A quasi-ordering on a set / is a reflexive and transi­
tive relation on /. Intersection of any collection of quasi-orderings on / is again 
ordering on / , hence the set of all quasi-orderings forms a complete lattice, the 
quasi-ordering lattice on /. This lattice will be denoted by Q[l). If oc, ß e Q[I), then 
the meet of a and ß is their intersection oc n ß, while the join oc v ß is the transitive 
closure of (x\j ß. The lattice Q(l) is atomic, the atoms being the quasi-orderings 
(/ > j) = {(/, /): i el} Kj {{i,j)}, where i,j el are mutually diff'erent. If a is a quasi-
ordering on / , we say that a set J Ç / is closed in a ifj e J whenever (г, j) e a and / e J. 
The set of all closed sets in a contains together with any two subsets of / also their 
union and intersection. Since it contains also the empty set and the whole set / , it 
forms a complete sublattice D^ of B[l). Conversely, if D is a complete sublattice of 
B[l), we denote by /)(/) the least element of D containing i. It exists, since I e D. 
We define a quasi-ordering j5 on / by {i,j)e ß iff D[i) ^ E>{j). A straightforward 
verification shows D = Dp. The mapping (x\-^ D^ establishes a bijection between the 
set of all quasi-orderings on / and the set A{I) of all complete sublattices of B[l). 
Since D^^ß is the least complete sublattice of Б(/) containing both D^ and Dp, and 
D^^p = D^n Dp, we get the following result. 

Theorem 3.1. The quasi-ordering lattice Q{l) is dually isomorphic to the lattice 
A(l) of all complete sublattices of B[l). П 

This theorem will be used in the next section. We mention also a related well-
known result. 

Proposition 3.2. Let D be a distributive lattice and I the set of all join-irreducible 
elements of D. Denote by a the ordering of D restricted to I. Then D c^ D^. П 

As a corollary we get a representation of distributive lattices as intervals in quasi-
ordering lattices. 

Corollary 3.3. Any distributive lattice is isomorphic to an interval in a quasi-
ordering lattice. 

Proof. Let D be a distributive lattice, / the set of join-irreducible elements of D 
and a the ordering of D restricted to / . Take an element тф1 and define two (quasi-) 
orderings ä, j5 on J = / u {m} as follows: 

ä = a u {(m, m)} and ß = OLKJ {(m, г): i e J) , 

Hence m is incomparable with any f 6 / in ä and greater than all j G / in ß, while ä 
and ß restricted to / coincide with a. 
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What is the interval [oc, ß] in Q{J)1 Any quasi-ordering y e [ä, ß] is completely 
described by the set К = { i e / : ( m , i)ey}. From transitivity, К is closed in a. 
Conversely, any closed set К arises in this way. Hence the interval [ä, ß~\ is iso­
morphic to the lattice of closed sets in a and, by Proposition 3.2, it is isomorphic 
to D, D 

Finally, we describe still another representation of Boolean lattices as intervals 
in Q{I). 

Corollary 3.4. Take the set I = {O, 1, ..., /i — 1} in its natural order oc: n — 1 > 
>n — 2>...>1>0. The interval [a, / x / ] in Q(l) is isomorphic to the Boolean 
lattice on an (n — ])-element set. 

Proof. Any quasi-ordering ß > a contains a pair of equivalent elements (a pair 
of different elements f, j is equivalent in ß iff (/,7) e ß and ( j , i) e ß). It follows that 
any ß > ah a join of quasi-orderings a v (i > г + 1) for some / = 0, 1 , . . . , n — 2. 
Since different joins (in Q(l)) of quasi-orderings a v (/ > / + 1) are different, the 
assertion is proved. П 

Problem. Characterize intervals in quasi-ordering lattices. 

4. Representations of quasi-ordering lattices. In this section n, N, p^ denote the 
same objects as in Section 1. In Theorem 4B we also assume the condition (1.1). 

By P we denote the projective space of rank N over G F(q). If necessary, we denote 
the lattice of all subspaces of P by ^ , and we also denote the rank function on the 
subspaces of P by r. If R, S are subspaces of P, then R + S is the least subspace 
of P containing R and S. 

By a p-partition of P we mean a complete lattice embedding e: B(l) -> ^ such 
that r(e[i)) = pi. Since r[e[l)) = N = J^pi, we get that e[J) and e[I — J) are disjoint 

for any subset J of/. By E we denote the set of all p-partitions of P in this section. 
Theorem 3.1 shows that the quasi-ordering lattice Q{l) is isomorphic to J*(/) — the 

lattice of all complete sublattices of JB(/) ordered by the opposite inclusion. To re­
present J*,/) as a finite congruence lattice we define a mapping Z: zl*(/) -> П(Е) 
as follows: 
(4.1) (ej) e Z{D) iff e{J) = f{J) for all J e D . 

Now, if (p is a colHneation of P and e a /^-partition of P, then cp о e h again a p-
partition of P. Hence the group Col(P) of all colHneations of P acts as a group of 
permutations of E and this action is obviously transitive. In this section we denote 
by G the group of permutations of E induced by colhneations of P. The action of 
a collineation ç e Col(P) on the set E will be also denoted by cp, which should not 
lead to any confusion. We want to prove that Con(£, G) is isomorphic to zl*(/) 
(and therefore to ß(/)). We proceed in the same way as in the two previous construc­
tions. First we prove that the mapping Z is a complete lattice embedding and then we 
show that Im(Z) = Con(E, G). 
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The following concept will be used throughout the whole section. Let Q be a pro­
jective space and Q = R + S, where R and S are disjoint non-empty subspaces of Q 
(a direct decomposition of Q). Suppose further that x ^ î  is a point of Q. Then the 
intersection [R + x) n S contains exactly one point. This point will be called the 
trace of X in S and denoted by tr(x, S). If x e JR, then no trace of x in S is defined. 
Importance of traces follows from the fact that, if x ^ jR u S, the line tr(x, R) + 
+ tr(x, S) is the unique line through x intersecting both R and S. More generally, 
if Г Ф Я is a subspace of Q, then the subspace tr(r, S) == {R + T) n S is the trace 
of Tin S. It is the set of all traces of points from T — R. Our notation of traces is 
slightly inaccurate since it does not refer to the complementary space R which is not 
unique. However, we shall use it almost exclusively in the following context where 
no doubts can arise: a /^-partition e of P induces a lot of direct decompositions of P, 
namely P = e{J) + e{I - J) for any non-empty J с 7. If x ^ e{j) (T ф e[J)), then 
tr(x, el ~ J)) (or tr(r, e{l ~ J))) is the trace of x (or T) in e[I -- J) defined by the 
decomposition P = e{J) + e{l — J). 

As a consequence of Proposition 2.1 we get the following result. 

Lemma 4.1. Let Q = R + S be a direct decomposition and x e ß — (P u 5). 
Suppose further that (jnjective) collineations (p: R -^ Q and ф: S -^ Q satisfying 
Im{(p) n 1т{ф) = 0 are given, and у is any point on the line (p(tr(x, R)) + i/^(tr(x, S)) 
contained neither in (p{R) nor in \I/{S). Then there is a unique collineation (т: Q -^ Q 
such that a[x) = y, ajR = (p and ajS = ф. 

Proof. Take a frame tr(x, P) = XQ, X^, ..., X^ in R and a frame tr(x, S) = Уо, 
j i , ..., у I in S. Then also (р{Хг{х, P)), (^(x^), ..., (p{x,,) and iA(tr(x, S)), \l/{yi), ..., i//(ji) 
are frames in (p[R) and il/{S), respectively. A straightforward verification shows that 
both X, Xi, ..., X;„ y^, ..., у I and y, (p{xj), ..., (p(xj,), lA(yi), ..., \l/{yi) are frames in Q. 
By Proposition 2.1, there is a (unique) coUineation a: Q -^ Q such that a[x) = y, 
(T[Xi) = (p{x,), / = 1, ..., /c, and a{yj) = il/(yj), j = 1, ..., /. It follows that a maps R 
to (p{R) and S to ф{8). Moreover, it has to map the unique line through x intersecting 
P and S to the unique hne through y intersecting a[R) = (p(R) and <7{S) = ^{S). 
Therefore (j(tr(x, P)) = (p(tr(x, P)) and ö-(tr(x, S)) = iA(tr(x, S)). Hence a coincides 
with (p (ф) at all points of the frame Xo,. •., X;̂  (ĵ o? • • •? J/)? therefore cr/P = (p{c7lS == ф, 
respectively) by the uniqueness part of Proposition 2.1. 

If T is another collineation satisfying the conclusion, then т~^а fixes x and is the 
identity in both P and S. Hence it fixes all the points of the frame x, x^, ..., x,̂ , 
у I, ..., у I, and is the identity by the uniqueness part of Proposition 2.1. П 

Two more lemmas on traces wil be useful. The first one states a transitivity 
property. 

Lemma 4.2. Suppose that e is a p-partition of P and 0 c: К c: J с / . Then for 
any X Ф e[l - K) we have tr(tr(x, e(J)), e[K)) = tr(x, e{K)). 

Proof. The assumption x ф e[l — K) ZD e[l — J) implies that the both traces 
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tr(x, е(К)) and tr(x, e{j)) are defined. Moreover, it gives tr(x, e(j)) ф e{J — K) 
(otherwise we should have x e e{l — J) + e{J — K) = e(l — K)), hence the trace 
tr(tr(x, e(j)), e[K)) is also defined. If x e e{J), then tr(x, e[J)) = x and the equahty 
is trivial. The same is true if tr(x, e{J)) e e K), since then tr(tr(x, e[J)), e[K)) = 
= tr(x, e[J)) = tr(x, e[K)). In the remaining case we have well-defined traces 
tr(x, e[I — J)) and tr(tr(x, e[J)), e[J — K)). The points tr(x, el — J)), tr(x, e J)) 
and tr(ti'(x, e[J)), e[J — K)) are vertices of a triangle, the points x e tr(x, е[зУ) + 
+ tr(x, el - J)) and tr(tr(x, e[J% еК)) e tr(x, e[j)) + tr(tr(x, e[J)), e(J - K)) are 
different from these vertices, hence v/e may apply the Pasch axiom. 

/ 
tr(tr(x.e(Jl).e(K)l =tr(x,e(K)) 

Fig. 4.1 

It follows that the line x + tr(tr(x, e[J)), e[K)) intersects tr(x, e[l — J)) -f 
+ tr(tr(x, e{J)), e[J - K)) я e[l - K), Hence {e[l - K) + x) n e[K) contains 
tr(tr(x, e(J)), e[K)) and the equahty is proved. П 

Lemma 4.3. Let e be a p-partition of P, i e J Я I, and x e e[J) but x ф e[K) for 
all К CI J. Suppose that Q is a hyperplane in the subspace e[i). Then there exists 
a p-partition f of P such that f{i) = Q + x and f{j) = e[f) for i Ф j iff Q does 
not contain tr(x, e{ij). 

Proof. The m a p p i n g / : / -> ^ can be extended to a complete lattice embedding 
/ : B{I) -^ ^ iff ( ß + x) n e{I - {i}) = 0. But ( ß + x) n e[I - {i}) ç (e(0 + x) n 
n e[I — {i}) is non-empty iff it contains the point tr(x, e[I ~ {i]))- Since x ^ ß , this 
is the case iff tr(x, e{i)) e Q, Q 

Now we are ready to prove 

Theorem 4A. The mapping Z: J*( / ) -^ П(Е) defined by (4.1) is a complete lattice 
embedding. 
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Proof. If D - B{Il then {i} G D for any i el; [ej) e Z{D) iff e(i) = / ( i ) for all 
i el iff e = f. Hence Z preserves the least element. 

If D = {0, /} , then {eJ) e Z{D) for all couples (ej) e E x E, hence Z preserves 
the greatest element. 

If D ^ С and (eJ) e Z{D), then e[J) = f{J) for all J e D. But then {e,f) e Z{C) 
and Z preserves the order relation. 

From now on, С V D and С n D denote the join and the meet in the lattice A(l). 
Suppose that {e,f) e Z{C) л Z[D). Then e and/coincide on all sets belonging to С 
and D. Since e a n d / are lattice homomorphisms, we have e[J) ~ f{J) for all J from 
the least (in A(l)) sublattice of Б(/) containing both С and D, i.e. С v D. This proves 
{eJ)eZ{C V D). The converse inclusion Z{C v D) ç Z{C) л Z{D) follows from 
the fact that Z preserves the order relation. 

For the same reason we have Z{C) v Z{D) ^ Z{C n D). Suppose (e, f) e Z{C n D). 
We have to prove {e,f) e Z{C) v Z ( D ) . By D{e,f) we denote the sublattice of B(l) 
consisting of all J £ / such that e[J) = f{J). If D{e, f) = B{I), then e = f and (^, / ) e 
G Z(C) V Z{D). 

The case of D[e,f) being a coatom in zl(i) is formulated as a separate lemma. 

Lemma 4.4. Suppose D{eJ) == D^^j. Then {ej)eZ{C) v Z(D). 

Proof. If D/,>^ ^ С n D, we define a distance of/c > / as follows. The assumption 
Dj^^i ^ С n D implies that the least element of С n D containing к contains also /. 
Hence there is a sequence к = ко, /c^, ..., k,„ = I such that, for any p = 0, 1, . . . 
..., m - 1, either kp+^e C{kp) or kp+^e D{kp). The distance d{k > l) is the minimum 
of length of all such sequences. Notice that the distance is not symmetric. Notice 
also that the condition kp+ ^ e C{kp) is equivalent to kp ^c ^p+1 in the quasi-ordering 
corresponding to С Hence the distance could be equivalently defined as the least 
length of a sequence к = k^ ^ k^ ^ ... ^ k^ =^ I, where ^ = ^ c ^ = D -

The proof proceeds by induction on d[i > j). If d[i > j) = 1, we have either 
jeC{i) or jeD(i). Then either 2)̂ >̂ . ^ С or D,> .̂ ^ D. Since D(^,/) = /),->;, 
we have (^,/) e Z(C) v Z(i)) in both cases. 

Suppose now that d{i > j) = m > 1. The induction hypothesis is that {a, b)e 
eZ(C) V Z(D) whenever D{a, Ъ) = Dj^^^-^ С n D and d{k > Î) < m. Let i = 
= г'о, iu •••? ï*m = j be a sequence defining the distance d[i > j). Among all p-parti-
tions g satisfying (e, g)eZ{C) v Z(D) and D(g,f) ^ I>i>y (such p-partitions exist, 
e.g. e) take the one for which the intersection f{i) n g{i) is maximal. If / ( i ) n ^^(0 
is a proper subspace of/(i) , find a point y ef(i) - ö (̂i). Since/(j) = g(j), the point 
2 = tr(y, g{i)) is not contained in f{i) n 0̂ (0? hence there is a hyperplane У in g{i) 
containing / ( i ) n g{l) and not containing z. Moreover, we denote by w the trace 
tr(j;, g^j)). Finally, take a point v e g{ii), a hyperplane U of g{ii) not containing i?, 
a point uev + w,u^v,w, and denote by x the intersection of lines z + и and 
J + Î; (everything is in the plane z + v + w), 
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f(i])=gfi)) h 

Fig. 4.2 

Using Lemma 4.3, we define a p-partition аеЕЪу a{}^ = JJ + и and a{k) = 
= g{k) for к Ф il. Then D(âf, ö̂ ) = /)^,>,-. But D,.̂ >,. 3 C n D and d{i^ > j) = 
= Щ _ 1̂  hence (a, g)eZ{C) v Z(D) by the induction hypothesis. Next, we define 
a p-partition b by b(0 = 7 + x, b(/i) = C/ + w and fe(/c) = g(k), к ф /, f̂ . Since 
X e z + I/, D(a, b) = Di:,j^ ^ Cn D, and (a, b) e Z(C) v Z(D) since d{i > i^) = 1. 
Further, we define a p-partition ce ЕЪу c{i) = Y + x, c(fi) = б (̂г\) and c{k) = Ö̂ Ĉ )̂, 
/с Ф /, ч . Then D(b, с) = D^^^j ^ С n D, hence (b, c) e Z{C) v Z{D), again by 
the induction hypothesis. Finally, we define a p-partition d e E by d{i) = Y + y, 
d[ij) = g[iy) and d{k) = g{k) for к ф г, /\. Since j ; e x + t?, we have D(c, d) = 
= /)j>/,. It follows, again by the induction hypothesis, that (c, d)eZ{C) v Z{D). 

We conclude that {g, d) e Z(C) v Z{D), hence also (^, J) e Z(C) v Z(i)). More­
over, D(f, d) ^ Dj> '̂ and / ( / ) n J(f) => / ( / ) n ^ ( Ï ) , since /(г) n (i(/) contains both 
/ ( / ) n ^ (̂/) and the point у e / ( i ) — ö'(/). This contradicts our choice of g, hence 
/(f) = ^g(i)^ therefore / = Ö̂  and (ej) G Z{C) V Z{D). D 

The proof of Z{C n D) ^ Z[C) v Z(D) continues by decreasing (in A(l)) induc­
tion on D{eJ). We have already verified that {e,f)EZ{C) v Z(D) if D{e,f) is 
a coatom or the greatest element in A(I). The induction hypothesis is that (g, h) e 
e Z{C) V Z{D) whenever (g, h) e Z{C n D) and D{g, h) ZD D{ej). 

Suppose now that D{e,f) is less than a coatom in Â[î). There is iel such that 
e[i) Ф / ( / ) , and denote by J the least element of D{e,f) containing /. Hence e[K) Ф 
Ф f{K) for all non-empty К cz J containing /. 

First we prove that there h g eE with the properties {e, g) e Z{C) v Z[D), 
E>{g,f) 3 D{e,f) and g(i) nf[j - {/}) = 0. To this end, choose an element g eE 
satisfying the first and the second conditions (such elements exist, e.g. g = e), and 
such that r{g{i)nf{j — {/})) is minimal under these conditions. Suppose on the 
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contrary g{i)nf{J - {,•}) ф 0. Then g(J - {i}) ^ tr(f{J - {/}), g[J - {/})), 
hence there is yeg{j - {/}) _ t r ( / ( J - {/}), g{J - {/})). We take an arbitrary 

and a point z e x + у z =^ x, у. Since x e ^(/) and v e 
G ö̂ ( J — {/}), we get tr(z, ^(/)) = X. Now take a hyperplane X in Ö'(/') not containing x, 
and use Lemma 4.3 to define a ]7-partition /t by h{i) = X + z, h(j) = g(j) for j Ф /. 
We have h{i) nf{J ~ {i}) cz g{i) nf{J - {/}), since j ; ^ t r ( / ( j - {/}), g{J - {f})). 
Hence r{h{i)nf{J - {/})) < rig{i)nf{J - {i})). Since g{j) = /i(j) for all ; Ф / 
and z e X + y,WQ get that the least element of D(g, h) containing i is J. This proves 
D{g, h) ^ D{e,f) and, because DigJ) з i)(^, /) , also D{h,f) ^ D(^,/) . It remains 
to prove that {e, h) e Z{C) v Z(i)) and to this end (g, h) e Z{C) v Z{D) is sufficient. 

If D(g, h) Ф D[e,f), we get (̂ f, /z)eZ(C) yZ{D) by the induction hypothesis. 
If D{g, h) = D{e,f), we take na element j e J ~ {/}. Then Dj>y ^ D{e,f), since 
the least element of D(e,f) containing i is J. Now consider the point и = tr(z, g{ij}) 
and recall that X is a hyperplane in g(i) not containing tr(z, g{i)). By further applica­
tion of Lemma 4.3 we construct a p-partition a e E satisfying a{i) = X + и and 
a(k) = g{k) for к Ф i. Then i)(éf, a) = i),>j =5 D(e,/) , and {g, a) e Z{C) v Z(i)) 
by the induction hypothesis. Moreover, a{k) = h{k) for /c ф i and z e w + 
+ tr(z, h[J — {г, j})). It follows that the least element of D(a, h) containing i is 
J - {7}, hence D{a, h) 13 D{e,f). By the induction hypothesis we get [a, h) e Z(C) v 
V Z{D), hence also (0̂ , /z) e Z{C) v Z(/)). 

We have {e, h) e Z{C) v Z{D), D{h,f) ^ D{eJ) and r(/i(ï) n / ( J - { / } ) ) < 
< r[g(i) nf(J — {f})), hence our choice of g is contradicted by the p-partition h. 
This contradiction proves that in fact g[i) nf[J — {/}) = 0. 

Now let us take a j^-partition beE satisfying {b,f)eZ{C)vZ[D), g{i) n 
n b{J - {i}) = 0 and D[g, b) 3 D(e,f) (such p-partitions exist, e.g. / ) , and such 
that r(g(i) n b(i)) is as large as possible under these conditions. Suppose that ^^(0 <^ 
n b(i) cz g[i). Then we can find a point v e g{i) — b{i) and denote by w the trace 
tr(t;, b(f)) G b[î). Since ^ (̂0 n b[J — {i}) = 0, we have also w ф g(i). Now let us take 
a hyperplane Yin b{i) containing ^ (̂0 r^ b{i) and not containing w, and define a p-
partition с G £ by c{i) = Y + v, c{k) = b{k) for к Ф i. The least element of D(b, c) 
containing i is then a subset of J. This proves D[b, c) 3 D(e,f) and, since D(^, b) 3 
^ D(e,f), also D{g,c) ^ D[eJ). Moreover, b(J - {z}) = c(J - {/}), therefore 
6f(i) n c{J — {ï}) = 0. Since Y ^ e'(i) n b[i) and г; ^ ö'(i) n 6(f), we get ^(0^(0 n 
n c(ï)) > Kö^(0 ^ b(i)). It remains to prove (c , / ) G Z(C) v Z ( D ) , and to this end 
(b, c) G Z(C) V Z ( D ) is sufficient. 

If D(b,c) =5 D{eJ), then (6, c) G Z(C) v Z(D) by the induction hypothesis. If 
D{b, c) = D[e,f), then J is the least element of D[b, c) containing i. This proves 
that all the traces tr(i;, b(X)), К ^ J, are defined. Now take an element/ e J — {i} 
and consider the point t = tr(ü, Ь({/, j})). We use once more Lemma 4.3 to define 
a p-partition d e ЕЪу d{i) = Y + t, d{k) = b(k) for к Ф i. Then D{b, d) — 1)̂ >у =э 
=э D(e,f) and (Ь, d')GZ(C) v Z(JD) by the induction hypothesis. Moreover, since 
vet + tr(y, c[J — {i,j})), we get that the least element of D(c, d) containing i is 
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J ~ {j}, hence also (c, J) e Z(C) v Z{D) by the induction hypothesis. But then 
(b, c) e Z{C) V Z{D). 

Our choice of b is contradicted by the p-partition c, and this contradiction proves 
that in fact g(i) = b{i). 

This implies {i} e D{g, b) ^ D{e,f), hence the inclusion is in fact proper, and 
(g, b) e Z{C) V Z{D) by the induction hypothesis. Summarizing our resuks, we obtain 
{e, g), {g, b), {bj) e Z{C) v Z(D). It follows that (ej) e Z{C) v Z[D) which com­
pletes our proof of Z{C n D) = Z{C) v Z{D). 

It remains to prove that the mapping Z is injective. So assume С cz D, C, D e A{I). 
Then there is iel such that D(i) c: C{i).Take an arbitrary p-partition ееE, a point 
X e e[C{i)) such that x ф е[К) for all К с C(/), and a hyperplane Z in e[i) not con­
taining the trace tr(x, e{i)). Using Lemma 4.3, we define a p-partition / by / ( / ) = 
= Z + x, f(j) = e(j) for 7 Ф i. Then the least element of D[e,f) containing i is 
C(i), therefore JD(^ , / ) З С but i)(^,/) $ D. This proves (e , / )GZ(C) - Z{D) and 
the homomorphism Z is a complete embedding. D D 

Next we prove some properties of Stab^ — the group of all collineations of P 
preserving e. This group is not transitive on P and our first task is to describe orbits 
of Stab^ on P. 

By the type of a point x e P we mean the least subset J я I such that x e e[J). 
The type of x will be denoted by typ^'x). If J = typ/x) , we also say that x is in 
a general position in e[J), or x is a general point oï e[J). Since e[l) = P, the type of 
any point X e P is defined. Notice also that tr(x, e[l - K)) is defined iff'X ф tyPe(x), 
and, if X is in a general position in e[J), then tr^'x, e[E^ is general point of e[K) for 
all non-empty К ^ J. 

Lemma 4.5. Two points x, у e P are in the same orbit o/Stab^ г#^урДх) = typ^iy)-
Moreover, suppose typei^) = J,\J\ ^ 2 and К с J is non-empty. Suppose further 

that (p,il/e Stal\ satisfy (р{1г[х, e[K))) = tr{y, e[K)) and iA(tr(x, e[J - K))) = 
= 1г{у, e[J — K)). Then there is a collineation т e Stab^ such that т(х) = у, 
TJeiK) = (ple{K) and T /^ ( J - K ) = il/le{J - K). 

Proof. Obviously, if т(х) = у for some т 6 Stab^, then typ^(x) = typ^{y). The 
converse implication will be proved by induction on type(x). Simultaneously we prove 
the second assertion. 

If typ^(x) = {f}, then there is a collineation Q: e[i) -> e{i) sending x to 3; and it can 
be easily extended to a colhneation т e Stab^. Suppose now |type(x)| ^ 2 and the 
first assertion is true for all u,ve P such that typg(M) = type(i;) с typ/x). We have K, 
J — К a J. Take the coHineations (p,il/ e Stab^. They exist by the induction hypo­
thesis. By Lemma 4.1, there is a collineation a: e[J) -^ e[J) such that C7(x) = y, 
oje'R) = (ple[K) and ajelJ - K) = il/le[J - K). Then (т(е{])) = e{j) for all j e J, 
hence a can be extended to a collineation т e Stabg. G 

Now we investigate orbits of Stab^ on the set of Hues of P. First of all, we extend 
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our definition of types to lines: the type of a line I is the least set J ^ / such that 
/ ^ e[J). By the character of a line I we mean the set chare(/) = {typg(x): x e I] 
of types of points л: e /. A point x e / is a general point of / if type(x) = type(/), 
otherwise it is a special point of /. How many special points can a hne I have? 

Lemma 4.6. Ä line I of P has at most |typg(/)| special points. 

Proof. We have typ^(x) u typ^>') = typJj) for any two different points x, у e I. 
Hence for any i e typjj) there is at most one special point x e / of a type contained 
in typ,(/) - {i}. D 

A hne / is a general line iff all points of / are general, and it is an almost general 
line iff exactly one point of / is special. We have the following characterization of 
general and almost general lines through their traces. 

Lemma 4.7. Let I be a line of P and tyPe{l) = J- Then 
a) / is a general line iff tr(l, e{j)) is a line for all j e J, 
b) I is an almost general line containing a special point of a type К a J iff 

tr(l, e[K)) is a general line and tr(/, e[J — X)) is a general point of e[J — K). 
Proof, a) Notice that / contains a special point of a type К с J iff tr(/, e{J — K)) 

is a point. Indeed, {e[K) + I) n e[J — K) is a point iff e[K) n / is a point, the only 
point of / of type K. 

By Lemma 4.2 we get that / contains a special point iff tr(/, e[j)) is a point for some 
JEJ. 

b) Suppose that / is an almost general Hne. Then tr(/, e[J — K)) is a point, say x. 
If x had a type L с J — X, the whole hne / would be contained in the subspace 
еК) + e{L) с e[J), a contradiction with typ^{l) = J. Hence x is a general point 
of e[J — K). If tr(/, e[K)) had a special point у of a. type Lcz K, then / would have 
a special point / n (y + x) of type L u ( / — X) Ф K, again a contradiction. 

On the other hand, if m = tr(/, e[K)) is a general hne and x = tr(/, e[J — K)) 
a general point, the whole hne / is contained in the plane m + x. Since К n [J — K) = 
= 0, the only non-general points contained in m + x are x and the points on m. 
Since X Ф I (because tr(/, e[K)) is not a point), / contains exactly one special point — 
the intersection I n m — and the type of this special point is K. П 

As an immediate consequence of this lemma and Lemma 4.2 we get 

Corollary 4.8. a) / / / is a general line of type J, then tr(/, e[K)) is a general line 
for all non-empty К a J, 

b) if I is an almost general line containing a special point of a type К a J, 
then tr(/, e[L)) is a general line for all non-empty L ^ К and it is an almost 
general line for all L^ K. П 

By the "only if" part of Lemma 4.5, two hues /, m of P can never be in the same 
orbit of Stab^ on the set of hnes of P if сЬаг^(/) ф сЬагДт). However, equahty of 
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characters is not sufficient for /, m to be in the same orbit. The following description 
of three special orbits is quite sufficient for our purposes. 

Lemma 4.9. Suppose that char^(l) = char/m) and I, m contain at most two 
special points (i.e. |сЬаг^(/)| ^ 3). Then I and m are in the same orbit of Stab^ 
on the set of lines of P. 

More exactly, assume that x^, X2, X3 G / and u^, U2,U2 E m are triples of different 
points and all the special points of I and m are among them. Assume further 
that typ^(x^) = typg(wj), i = 1, 2, 3. Then there is a collineation т e Stab^ such that 
T(X^) = Uifor i — 1, 2, 3. 

If J = typJj) has cardinality at least two, К a J is nonempty and (р,ф e Stab^, 
satisfy (pitT{xi, e[K))) = tr(wi, еК)), \j/{tr{xi, e[J - K))) = tr(w,., e[J - K)) for i = 
= 1, 2, 3, provided the traces are defined, then we can find т satisfying in addition 
ф[К) = ср\е[К) and т\е{3 - К) = ^\e{J - К). 

Proof. We proceed by induction on cardinality of J = typ^/). If J = {7}, then 
there is a collineation Q: e[j) ~» e{j) such that ^(x^) = Ui, i = 1, 2, 3, by Proposition 
2.1. This coHineation can be easily extended to a colHneation т e Stab^. 

Now assume | j | ^ 2. Since / and m contain at most two special points, one point 
of each of the triples x^, X2, X3 and u^, U2, W3, say x^ e / and u^ G m, is a general 
point of the corresponding line. It follows that tyPei^i) = typ J и j) = J and all the 
traces tr(xi, e[j)), tr{ui, e(j)), j e J, are defined. Take arbitrary frames tr(xi, ^ j))> 
У],и •••. yj,pj in e[j), j G J. We set Yj = {yj^^, ..., j;,.,^.}. Then 
(4.2) {tr(xi, e[L))} u (J Yj is a frame in e[L) for any non-empty L ^ J . 

JeL 

If L = {j}, the assertion is true by the definition. Assume \L\ ^ 2 and Z cz 
c= {tr(xi, K^))} ^ П YJ has cardinality r[e[L)). We distinguish two cases. 

JeL 

(i) tr(xi, K^)) Ф ^- Then Yj Ç Z for all j e L, hence e[j) is contained in the sub-
space of e[L) spanned by Z for all j e L. Therefore e[L) is spanned by Z. 

(ii) tr(xi, e[L)) G Z . Then there is a unique ke Lsuch that Yj, ф Z and a unique 
y,^i Ф Z. Then Yj Ç Z for all j e L — '{k}, therefore e[L — {7c}) is contained in the 
subspace spanned by Z. Moreover, tr(xi, e[L)) e Z and tr(xi, e{k)) e tr(xi, e{L)) + 
+ tr(xi, e[L — {k})), hence also tr(xi, e[k)) is in the subspace spanned by Z. This 
subspace therefore contains all the points of the frame {tr(xi, e[k))} u 7^ except y^j. 
This proves that also e[k) is in the subspace spanned by Z, which completes the 
proof of (4.2). 

Suppose now that a non-empty К a J is given. Consider collineations (р,ф e Stab^ 
satisfying (p[tr{xi, e[K))) = tr(ui, e[K)) and il/{tr{xi, e[J — K))) = tr(w£, e{J — K)), 
provided the traces are defined, for / = 1, 2, 3. Such colHneations exist, either by the 
induction hypothesis (if tr(/, e[K)) or tr(/, e{J — K)) are lines) or by Lemma 4.5 
(if tr(/, e[K)) or tr(/, e{J - K)) are points). Similarly as (4.2), we prove that 
{tr{ui,e[K))}u\J(p{Yk) is a frame in e[K) and {tr(wi, < J - K))} u U Ф{Ук) 

кеК keJ - К 
is a frame in e[J — K), and {и^} u U (p{Yj,) u (J \l/{Yj^) is a frame in e[J). 

кеК keJ-K 
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By Proposition 2.1, we find a colhneation Q: e[J) -^ e{J) such that Q{XI) = U^, 
Qiykj) = Фкл) if кеК and / = ! , . . . , pj,, and д{у^^) = il/{ykj) if к e J ~ К and 
/ = 1, ...,P/c. The colhneation Q maps e[K) to e{K), since cp does, and e(J — K) 
to e(J — K), since Ф does. Moreover, it has to map the unique line through x^ 
intersecting both e[K) and e(J — K) to the unique line through u^ intersecting both 
e[K) and e{J - K). This proves ^(tr(xi, e[K))) = c/)(tr(xi, ^(^))) = Ц ^ ь e(X)) and 
£;(tr(xi, e{J - X))) == i/^(tr(wi, ^J - ^))) = ^K^i' ^J ~ ^))- Hence ^ coincides 
with (p at all points of the frame {tr(xi, e{K))} u (J 7;̂ , therefore Qle[K) = (ple{K) 

ksK 

by the uniqueness part of Proposition 2.1. Similarly, ^/e(J - X) = i/^/e(J — K). 
Moreover, Q preserves all the subspaces e[j), J e J, since cp and ф do. So we can 
extend ^ to a colhneation т e Stab^. 

It remains to prove T(X2) = U2Sindi:{x^) = 1/3. Suppose that typ^X2) = typg(i/2) = 
= L2 and typ,/x3) = typ̂ ^W3) = L3. Then L2 u L3 = J. We have well-defined 
traces tr(x2,e(j)), tr(w2, e(j)) if j e L 2 , and Хг{х2, e[j)), tr(w3, e(j)) if j e L s . Let us 
define Q2 as the least subspace of P containing the traces tr(x2, e[j)), j e L2, and Q3 
as the least subspace containing tr(x3, e{j)) for j e L3. We have 

(4.3) Q2= f) {e[L2 - {j}) + X2) , Q3 = Г) {e{L, - {j}) + x, . 
jeL2 jeLa 

We can easily see that 62 - П (^(^2 - (Л) + ^2)^ since each e{L2 — {j}) con-

tains all the traces 1т{х2,е[к)), к e L2 - {j}, and e{L2 - {j}) + X2 contains both 
tr(x2, e[L2 ~ {j})) and X2, hence it contains also tr(x2, e[j)) G tr(x2, e[L2 — {j)) + 
+ X2. To prove the converse inclusion, let us denote П ^(^2 — {j}) + X2 by JR2-

JeL2 

Notice that (e[L2 — {j}) + X2) n e{j) = {tr{x2, e{j))}, hence R2 intersects each 
e[j), j e L2, at just one point tr(x2,e(7)). It follows that R2 intersects e[L2 — {j}) 
in a subspace of rank r(jR2) — 1. By the same argument, if ke L2 — {7}, then R2 
intersects e[L2 — {j, k}) in a subspace of rank r(Ä2) — 2, etc. Finally, we get that R2 
intersects e{j) in a subspace of rank r(jR2) — il^il — !)• Hence ^(^2) = IL2I = K02)-
This proves R2 = 02- The second equality can be proved in the same way. 

From (4.3) we conclude that X2 e Q2 and X3 e Q^. Next we prove 

(4.4) Ö2 n бз = 0 . 

We have tr(x2, e{j)) ф tr(x3, e{j)) for all 7 e L2 n L3, otherwise / would contain 
a special point of a type contained in J — {j}, i.e. of a type different from both L2 
and L3, contrary to our assumption on /. It follows that e[j) intersects Q2 + Оз in 
at least a line, if 7 G L2 n L3. If ; G J - (L2 n L3), then ^(j) intersects either Q2 
or Ö3 at a point. Then we get that e[J) = Ö2 + Ö3 + E Ф ) ^^^ ^^^^^ ^^ "̂̂ ^̂ ^ 

IL2I + IL3I - r(Ô2 П Ô3) + I l̂ i - 1̂ 2 - L3I - IL3 - L2I " 2IL2 n L3I == 

= E î y - KQ2 ^ оз). This proves r{Q2 n Q^) = 0. 
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Now we want to prove that и2 e T{Q2). If L2 ^ K, then tr(x2, e[K)) = X2 and 
T(X2) = ^i^i) = W2, by the assumption. The same is true if L2 ^ J -- K. If L2 
is contained neither in К nor in J — K, we have X2 e tr(x2, e[K)) + tr(x2, e(J — K)), 
hence т(х2) e T(tr(x2, e[K))) + T(tr(x2, ^(-^ - K))) = ф(Цх2, <i^))) + 
+ iA(tr(x2, e{J - K))) = tr(w2, e{K)) + tr(w2, e{J - X)). Since both tr(x2, e[K)) 
and tr(x2, e[J — K)) are in Q2, we get W2 ^ ^{Qi)- Similarly we prove u^ e т(бз). 

Next we consider the direct sum Q2 + оз- Since X2 e Q2 and X3 e ^ 3 , /is the only 
line through Xi intersecting both Q2 and Q^. Hence т(/) is the only line through 
Ui = T(XI) intersecting both 1(62) and т(бз). However, U2 e 1(62) and u^ e т(оз), 
therefore т(/) = m, т(х2) = ^2 and т(хз) = 1/3. This completes the proof. П 

Now we prove some results about existence of general points. Here we also impose 
some restrictions on the field GF(q). 

Lemma 4.10. Let e be a p-partition of P, p-, ^ 2 for allie J. Then for a non-empty 
J ^ I, e[J) is the least subspace of P containing one of the following sets of points: 

a) all general points of e(j), 
b) all general points of e{J) not contained in a given proper subspace Q cz e(J). 
Proof, a) It suffices to find an almost general fine through a given non-general 

point X e e{j). If typ^x) = К с J, take a general point у e e{J) such that 1г(з;, e{k)) Ф 
Ф tr(x, e{k)) for all кеК. Such a point exists since r[e{i)) = Pt^ 2 for all i e L Now 
consider the fine x + y. Its trace tr(/, e[J — K)) is a general point of e{J — X), 
since it coincides with tr{y, e[J — K)). Moreover, tr(Z, e[K)) is a general line, by 
Lemma 4.7a) and Lemma 4.2. By Lemma 4.7b), the fine I = x + у is almost general, 
hence it contains at least two general points. It proves that x is in the least subspace 
of P containing all general points of e{J). 

b) Now let X G 2 be a general point in e[J). Since ß is a proper subspace of e[J), 
there is /c e J such that e[k) ф Q. Take a general point у e e[J) such that tr(j;, e{j)) Ф 
Ф tr(x, e[j)) for all j e J, and moreover tr(3;, e[k)) ф Q. Consider the subspace R 
spanned by the set of traces tr(j;, e{j)), j e J. Q does not contain trfy, e[k)), hence 
it intersects Я in a proper subspaces. This proves that we may find у satisfying in 
addition у ф Q. The line x + 3; is a general line by Lemma 4.7a) and is not contained 
in Q, therefore it contains at least two general points outside Q. It follows that all 
the points in a general position in e{J) are contained in the subspace spanned by the 
general points of e[J) not contained in Q. The rest follows from part a). П 

Corollary 4.11. Let pi ^ 2 for all i e L Then 
a) there is a general line through any general point in e[J), J ^ I, 
b) there is an almost general line [in e[J)) through any non-general point of 

e{J), J ^ / . D 

Finally, we state immediate consequences of Lemma 4.6. 

Lemma 4.12. Let e,f be two p-partitions of P and q ^ 2n. 
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a) Suppose that I is a line of P, charg(/) = J and char^/) = K. Then I contains 
a point X in a general position in both e[J) and f{K). 

b) Suppose that fyK) is the least element o / Im( / ) containing e[J). Then there 
is an element x e e{J) in a general position in both e[J) and f{K). 

Proof, a) The hne / has ^ + 1 ^ 2n + 1 elements. At most \j\ of them are not 
general points of e[J) and at most \К\ of them are not general points of/(K), by two 
applications of Lemma 4.6. Hence at most \j\ + |К| g 2n points of / are not in 
a general position in both e[J) and/(i^). 

b) Among all points in a general position in e[J) let us find a point x such that 
typf{x) is maximal. Since e{J) Ç / (X) , we have typy.(x) ^ K. Suppose that the last 
inclusion is proper. Since f{K) is the least element of Im(/) containing e( J), there 
exists a point z e e[J) not contained in /(typj(x)). The hne / = x + z then has 
characters charg(/) = J (because of x) and charj(/) =з typj(x) (because of z). By 
part a), there is a point у G X + z with the types typg(y) = Jandtypy.(};) = char / / ) =5 
1Э typy.(x), contrary to our choice of x. Hence x is a general point of f{K). П 

Now we start to prove the main result of this paper. 

Theorem 4B. Suppose that q ^ 3n — 2, pi ^ 2 for all i el and the vector p = 
— iPoi Pu •••» Pn-i) satisfies condition ( l . l ) . Then the congruence lattice ConfE, G) 
is isomorphic to Q[l). 

Proof. We want to prove Con(£, G) = Im(Z). We consider the mapping Z as 
a dual embedding of A{I) to П{Е). It is easy to see that Im(Z) ^ Con(£, G). Indeed, 
if {e,f)e Z{D) for a complete sublattice D ^ B{l), we have e[J) = f{J) for all 
J e D. Then also cp e[J) = (pf{J) for any cp G G, hence (cpe, cpf) e 'Z'{D). This proves 
that Z[D) is a congruence relation of (£, G). 

It remains to prove the converse inclusion Con(E, G) Ç Im^Z). Let us denote 
by Con(e, / ) the congruence relation of (£, G) generated by a pair {e, f) € E x E, 
and recall that D{e,f) = {J ç / : e{J) = f{J)]. Since Im(Z) ç Con(E, G), we have 
Con(^,/) Ç Z(D(^,/)). Further, we denote by C^j the least complete sublattice of 
B{I) such that Z[C^j) ç Con(^,/). It exists, since Z is a complete embedding. Then 
we have Z{C^j) ^ Con{e,f) ^ Z{D{eJ)), hence C,j ^ D{e,f). We want to prove 
that in fact equality holds. It will imply that every congruence of(E, G) is of the form 
Z(D) for some D e Л{1). 

Suppose on the contrary that there is a couple (e,f) G E x E such that C^j Ф 
4= D(e,f), and among all couples with this property choose the one for which 
D{e,f) is maximal in A{I). Since С = C^j ^ T>[e,f) = D, there is iel such that 
the set C{i) G С — the least element of С containing i — is a proper subset of D{i). 
Fix such an element i G I and set J = D(i). Then we have C{i) c: J. Since J G D, 
we have e[J) = / ( / ) , and because J is the least element of D containing /, e[K) Ф 
Ф f{K) for all X с J containing i. 

We shall come to a contradiction by the following sequence of lemmas. Proofs 
of the lemmas can be omitted in the first reading, and the remaining text should 
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provide a good idea about the structure of the proof. In fact, we use a multiparameter 
induction; however, in most cases we prefer to proceed by contradiction starting 
with the least possible counterexample. 

First of all, let us mention that D[e,f) Ф BJ). We start with a general principle. 

Lemma 4.13. Let (g, h) e Con(e,f) and let the least element of D(g, h) containing i 
he J. Then D{g,h) = D{eJ). 

Proof. Since {g, h) e Con(eJ), we have D[g, h) 3 D{eJ). If D{g, h) Ф D{eJ\ 
then Z[D{g, h)) = Con{g, h) by our choice of the couple (e,f). But then Z(D(g, h)) с 
Ç Con(ß,/), hence C^j с D{g,h). However, J is the least element of D{g,h) 
containing f, therefore C{i) = J, contrary to our hypothesis С(г) ф D[i). Hence 
D{g,h) = D[eJ). D 

The following lemma is of crucial importance. 

Lemma 4.14. There is a couple (g, h) e Con{e,f) such that D{g,h) = D{e,f) 
and h(i) contains a point in a general position in g{J). 

Proof. Take a couple {g, h) e Con{e,f) such that J is the least element of D{g, h) 
containing i. Such a couple exists, e.g. {e,f). We form a sequence of subspaces of P 
as follows. Set /i(Jo) = ^(0- ^^ K'^m) is already defined and h(J,n) ф /Î(J), we define 
g{K^^ as the least element of Im(ö') containing /i(J^), and h{J„,+i) as the least element 
of lm{h) containing g{J^^ Since g{J) = h{J) and J is the least element of D[g, h) 
containing i with this property, we apply the condition (1.1) to prove that g{K,,^ 
properly contains /Î(J„,) and /z(J^+i) properly contains g{Jjn) if 9{Jm+i) + o{J)' 
This proves that the sequence is finite and ends with h[Ji+i) = h[J). In this way 
we have constructed a sequence 

(4.5) /z(0 = h{Jo) cz g{Ko) c= h{J,) c= .. . c= h{J,) cz g{K,) Я 

^h{J,^,) = h{j) = g{J). 

Suppose now that our couple (g, h) has the property that г{д[Ко)) is maximal 
(under the conditions imposed in the first paragraph of the proof) and that д{Ко) a 
cz ^( j) , or equivalently, / ^ 1. Before proceeding further, we state a consequence 
of Lemma 4.12b): 

(4.6) there is a point x^ in a general position in both /i(J^) and g{K^ for all m = 
= 0 , 1 , . . . , / . 

Indeed, g(K^) is the least element of Im(^) containing h{J^). 
Similarly we prove 

(4.7) there is a point u^ in a general position in g(K^ — K^_ i) such that tyPhi^m) — 
^ Jm+i - Jnt for m = 1,2, . . . , / . 

Take a general point u^ e g{K^ ~ X^_i) such that typ;,(w J is as large as possible, 
and suppose tyPhi^m) ^ ^ + i - Jm- We have g{K^-i) ^ h{J^), and h{Jm+i) is 
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the least element of Im(/z) containing д{К^„). Therefore there is a point z e 
eg(K„, - K,n-i) such that typ;,(z) is not contained in typhi^m)- The line w„, + z 
then contains a point у in a general position in g{K,„ — K„i-i) (because of u,„) and 
of type typ;,(j^) 3 typ/,(w,„) (because of z), by Lemma 4.12a). This contradicts our 
choice of w,„, hence typ/,(wj ^ J„, + i - J^. 

Now we construct inductively a coUineation cp e Stab^. We can use Lemma 4.12b) 
to prove that there is a point уо ii'̂  a general position in both д{Ко) and /î(Ji). Since 
typ»(^o) = typ^Jo) = ^ 0 . there is a colhneation ^o e Stab^ such that <Po(-̂ o) = Jo» 
by Lemma 4.5. Suppose that (p^, m < I, is already defined. The points 
tr(x^, g{K^+i - X j ) and щ^+х are in a general position in g{K^+i - К J , hence 
we can find a coUineation ij/t^i+i e Stab^ such that il/,n+i{tT{Xm, g{K^ + i — J^m))) = 
= w,„^i. The line (pJM^m. ^m)) + u,,+i contains a point 3^„+i in a general position 
in ö'(K„, + i) (because typ^(w^+i) = K^+i - iCJ satisfying typ^j,„ + i) ^ typ;,(w^+i)^ 
3 J,„+2 - Jm + i (by Lemma 4.12a)). Using Lemma 4.5, we find a coUineation 
(p^ + i e Stab g such that (prn+ilg{K,n) = (pJgiK,^), (Pm + ildi^m+i ~ ^m) = 
= ll/,n+ilg{K^+i - K,n), a n d (pm+l{x,n + l) = Упг+i' 

Let us summarize important properties of cp = ^i+i'-

(p e Stab g, 
ф(^т) = Ут for all m = О, 1, .-., /, 
x^ is in a general position in g{Kn,), 
typ J у ̂ ) ^ ^ + 1 - J,„ for all m - 1, 2, ..., /, 
Jo is in a general position in /i( Jx)-

Consider the couple (/г, ф/г). The subspace (p h{i) contains the point jo = ^P^o 
in a general position in h{J^ Ф /г(0- Hence /i ф ф/i and the least element of Im(/z) 
containing (̂  h[i) is /i(Ji) =) ôf(Xo). So if we construct a sequence (4.5) for the 
couple (/z, (ph) instead of {g, h), it starts with cp h(i) с h(J^) c: ... . 

Which is the least element К e D[h, (ph) containing il Since (p h[l) contains jo? 
it must be К ^ J^. Suppose К ^ J^ for some me {1,2, ..., / } . The subspace 
Ф / z ( j j contains the point ф(х„,) = y^ and typ/,(y,„) 3 J,„ + i - J^, hence К ^ J,„ + i. 
This proves К ^ Ji+i = J, and in fact equality holds. 

However, r[h(Ji)) > г{д(Ко)), so our choice of(g, h) is contradicted by the couple 
(h, (ph). Therefore g{KQJ = g[j), hence /z(Jo) = /^(0 contains a point in a general 
position in g{J). Now Lemma 4.13 gives D{g, h) = D{e,f). П 

Since {g, h)eCon{e,f), we have Con(öf, h) Ç Con(e,/) Ф D{e,f) = D{g, h). 
Moreover, Z(Cg^t^ ^ Con(ö^, h) ^ Con(e,/), therefore Ĉ ^̂  ^ C^ y. = C. It follows 
that the least element of C^,, containing / is contained in C(i) c= J. Since D{g, h) = 
= D{e,f), we get that the least element of D{g, h) containing i is J. We conclude 
that the couple {g, h) has all the properties imposed on {e,f). So we may assume from 
now on that / ( i ) contains a point in a general position in e[J). 

Lemma 4.15. There is a couple {g, h) e Con[e,f) such that h{i) contains a point и 
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in a general position in g{J), and tr{u, g)[j — [i])) is a point in a general position 
in both g{J — {i}) and h{J — {i}). 

Proof. First of all, we prove 

(4.8) tr(/(f), e[J — {i}) is spanned by the traces of points in a general position in 
bo th / ( i ) ande( J ) . 

To prove it, let us take a point x in a general position in f(i) and e{j) and set 
w = tr(x, e[J - {i})). If V E tr(/(z), e{J ~- {i})) is an arbitrary point different from w, 
there exists z ef(i) such that v = tr(z, e{J — {i})). The hne x + z is a general line 
in/( i ) and contains at most | J | ^ /i non-general points ofe{J). Hence at least In — 1 
points on the line t; + w = tr(x + z, e[J— {i})) are traces of points of/(i) in a general 
position in e[J). 

Suppose now that e[K) is the least element of lm[e) containing/( J — {/}). We 
prove similarly 

(4.9) i f / ( J - {/}) Ф e[i), then t r ( / ( J - {/}), e[J - {/})) is generated by the traces 
of points in a general position in b o t h / ( J — {?}) and e[K). 

There is a point z e / ( J - {/}) in a general position in b o t h / ( J — {i}) and e[K), 
by Lemma 4.13b). Any line i n / ( J - {/}) through z contains at most \j - {i}\ ^ 
й n — 1 points not in a general position in f{J — {/}) and |XJ ^ n points not in 
a general position in e[K). Hence it contains at least n + 1 points in a general posi­
tion in b o t h / ( J - {i]) and e[K). The rest of the argument is the same as in the proof 
of (4.9). 

Consider now the c a s e / ( j - {i}) ф ^(0- Then tr(/(i), e[J - {i])) + t r ( / ( J - {/}), 
e[J — {/})) = e[J — {i}), otherwise/(j) would be contained in a proper subspace 
of e[J). Take a maximal L^ К - {/) such that there exist a point x̂ ^ in a general 

position inf(i) and e[J), and a point y^ in a general position i n / ( / - {?}) and e[K) 
satisfying tr{xL, КО) =^ ^^{Уь^ КО) ^^^ ^^^ I e L. If there is кеК ~ L, к Ф i, WQ can 
use (4.8) and (4.9) to find a point x^ in a general position in / ( / ) and e(J), and a point 

j/fc in a general position in f(J - {i}) and e[K) such that tr(x/„ e{k)) ф tr{yj,, e[k)) 
(we assume pj^ is at least two!). 

If tr(x;t' K^)) + tr(xj^, e[k)), we certainly have Xj, Ф x^. The Hne x^ + л;̂  contains 
at most I J | ^ n points not in a general position in e{J), and at most | L | + 1 ^ n — 1 
points with at least one trace on some e[m), me Lu {к}, equal to the corresponding 
trace of yL. Hence we can find a general point (of e{J)) Xj^e x^ + x^ such that 
tr(xjvf, e(m)) Ф 1т{уь, e[m)) for all me Lu {к}. This contradicts our choice of L. 

In the case tr{xk, e{k)) = tr(xjr,, e{k)), we have tr(j;;^, e[k)) Ф tr(>;2:, e[k)) = 
= tr(x£, e{k)). The line y^ + Уи contains at most \j\ ~ 1 й n — 1 points not in 
a general position in f{J — {f}), at most |X| g n points not in a general position 
in e[K), and at most [L| + 1 g и — 1 points with at least one trace on e[m), m e 
e Lu {к}, equal to the corresponding trace of x^. Since q ^ 3n — 2, the lines in P 
have at least 3n — 1 points, hence there is a point ум e Уь + Ук ^^ ^ general position 
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in both e[K) and f{J — {i}), and such that 1г{х^,е[лг)) Ф tr{yj^, e[m)) for all 
m e Lu {к}. 

In both cases our choice of Lis contradicted, hence we have L= К — {/}, i.e. 
tr[xL, e[k)) Ф tr(jjr̂ , <?̂ /c)) for all кеК — {i}. Using Lemmas 4.2 and 4.7 we can 
conclude that the hne tr(x£, + y^, e[J — {i})) is either an almost general hne (if 
К Ф j) with a special point ir:{yj^, e[J — {/})), or a general line (if К = j). But then 
^L + Уь either has at most two special points and one of them is y^^ (if К ф J), 
or has at most one special point (if К = J) and both x^ and y^ are general. 

Take an arbitrary point и e x^ + y^, и Ф x^, y^, in a general position in e[J). 
Since typ/xj) = {/} and 1ур/{уь) = i - {i}, we have also typj(w) = J. By Lemma 
4.9, we cann find a collineation т G Stab^ such that T{XL) = и and T(UI) = Уь- Then 
(/, T/) G Con(e,/) and we want to prove that (/, т/) satisfies the conclusions of the 
lemma. 

The point и = T(X2^)GT/(I) is in a general position in/(J) . Moreover, the point 
Уь = '^(Уь) is in a general position i n / ( j — {/}), hence also in T / ( J — {/}). Finally, 
the hne x^ + Уь goes through и and intersects both/(г) a n d / ( / — {i}), therefore 
tv(uJ{J - {i})) = yj^. 

It remains to consider the case/(J ~ {/}) ç e[i). But this is much easier. Take 
a point J in a general position in f{J — {/}), a point x ef{i) in a general position 
in e[J), and a point w G x + 3; in a general position in both e{J) and / ( j ) (Lemma 
4.12b)). The hne x + y contains at most two special points (in e{J)), and one of them 
is always y. By Lemma 4.9, we find a collineation т G Stab^ with т(х) = w and 
'ï̂ (j) = У- The rest is the same as in the case/(J — {i}) ф е(г), and we prove in this 
way that the couple (/, т/) satisfies the conclusions of the lemma. П 

Lemma 4.16. J — {i] e D{e,f). 
Proof. Suppose on the contrary that J — {i} ф D(e,f). By Lemma 4.15, we find 

a couple (g, h) G Con[e,f) such that h(i) contains a point w in a general position 
in g(J) and tr(w, g(j — [i})) is a point in a general position in both g{J — {/}) and 
h{J — {i}). Moreover, let us assume that the couple (g, h) has the property that 
g{J — {/}) n h(J — {i}) is maximal under these conditions. 

Take a point v G tr(M, g(i)) + tr(t/, g{J — {i})) in a general position in both g(J) 
and h(J) (Lemma 4.12a)). We distinguish two cases. 

(i) g{i) n hiJ - {i}) Ф 0. 
Then we use Lemma 4.5 to find a collineation т G Stab^ such that T(W) = v and both 
т/бг(г) and T/Ö'(J - {i}) are identities. We have {h, rh) e Con[g, h) Ç Con(e,/) and 
vET:h(i) is in a general position in /z(J). Moreover, v G и + tr{u, g{j — [i])), 
и G h{i) and tr(w, g{J — {l}))eh{J — {/}), hence tr(t;, h{J — {i})) = tr(w, g{j — {i})). 
However, this point is fixed by т, therefore tr(ü, h[J — {f})) is in a general position 
in both h{J — {/}) and T/I(J — {i}). This proves that the couple (h, th) has all the 
properties inposed on {g, h) in the first paragraph. Moreover, h{J — [i]) n 
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n rh J - {/}) contains not only g{J - {i}) о h{J - {i\) (because т is the identity 
on g{j - |/}))^ but also the non-empty intersection gii) n h[J - {/}). 

(ii) о^(Оп/г(/-{О) = 0. 
Then tr(/2(j - {/}), g[j - {/})) = g[j - {f}). Let us denote by Q the intersection 
/î(i - {/}) n g{J - {/}). Then z = tr(i/, 6 (̂J - {/})) G ß and б is a proper sub-
space of бг(/ — {î}). By Lemma 4.10b), there exist points in a general position in 
öf(J — {i}) and not contained in g. Suppose that i^ is a maximal subset of J — {i} 
such that there exists a point Ук^ Q. in a general position in g{J — {/'}) and 
^АУК^ O{^)) + tr(z, g(k)) for all /c е К . If К is a proper subset of J -• {/}, take some 
le J — K, j ^ i. There is a point y^ e g{J — {/}) — Q such that tr(3;], Ö^(/)) ф 
+ tr(ji<:? ^(0)- Hence yi ф jj^. The line y,^ + yi contains at most \j — {i}\ ^ n — 1 
points not in a general position in g{J — {/}) and at most |XJ + 1 ^ n ~~ 1 points 
such that at least one of their traces on g[k), к GKKJ [I] is equal to the corresponding 
trace tr(z, g{k)). It follows that the line Ук + J/ contains a point yi^ in a general 
position in g{J ~ {/}) and such that tr{yL, g(k)) Ф tr{z,g{k)) for all кеКи {/}. 
This contradicts our assumption on K, hence we get К = J — {/}. 

The Hne y^ + z is then a general Ипе in g{J ~ {/}), by Lemma 4.7a). Since 
tr{h{J - {i}), g{J - {/})) = g(J - {i}), we can find a point w e /i(J - {i}) such 
that tr(w, öf(J — {i})) = Ук- The fine и + w has at most one special point (if it in­
tersects g{J - {/})). Now we apply Lemma 4.9 and find a coHineation т e Stab^ 
such that T(W) = i;, T(W) = w, and both т/^(г) and T/Ö'(J - {/}) are identities. As 
in the case (i) we prove that the couple (/t, rh) has all the properties imposed on 
(g, h) in the first paragraph of the proof. Moreover, the intersection h(J — {i}) n 
n Th[J - {i}) contains not only g(j — {г}) n h{J — {/}), but also the point w^ 
ig{J -{i}\ 

In both cases we get h{J - {i}) n T/I(J - {i}) ID g(j - {i}) n h{J - {/}). This 
contradiction proves that in fact g[J — {i}) = h{j — {i}), therefore J — {/} e 
€ T>{g, h) — D{e,f) and D(Ö', /i) =5 D(e,f). Since /г(/) contains a point in a general 
position in g{J), J is the least element of D(g, h) containing i. But then D{g;h) =э 
=) D(e,f) contradicts Lemma 4.13, hence our basic assumption J — {/} фВ{е,/) 
is false, and this proves Lemma 4.16. П 

Lemma 4.17. {j} e D(e,f) for all j G J — {/}. 
Proof. Take again a couple (g, h) e Con(e,f) satisfying the conclusions of Lemma 

4.15. Let vetv{u, g{i)) + 1г(и, g(J — {i})) be in a general position in both g{J) 
and h[J) (Lemma 4.12a)). By Lemma 4.5, we find a coHineation т e Stab^ such that 
T(M) = V, and both Tlg{ï) and Tig(j — {i}) are identities. We have и e h{i) and 
V = T(W) in a general position in /z( J), hence J is the least element of D(h, rh) con­
taining i. Moreover, т h{j) = h{j) for all jeJ — {i}, since т is the identity on 
g[j - [i]) = /i(j _ {г}). It follows that {;} e D{g, h) for all j e J r- {f}. We have 
(or, /z) G Con(e,/), hence D(ör, /г) = D(e,f) by Lemma 4.13 and {j} e D(e,f) for all 
jeJ-{i}. D 
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Lemma 4.18. | J| = 2. 

Proof. Suppose on the contrary that |ij è 3 and take an arbitrary j e J — {i}. 
The set J — {ij} is still non-empty. There exist couples (g, h) ECon(e,f) such 
that h(i) contains a point in a general position either in g(J) or in g{J — {i}), e,g. 
{e,f) has these properties. Take a particular couple (g, h) eCon(e,f) such that 
r{h{i) n g{J — {7})) is maximal under these conditions. 

Assume that h{i) — g[J — [j]) is non-empty. Then h(i) always contains a point 
in a general position in g[j). Indeed, if w e h[i) is in a general position in g[J — [j}) 
and V G h(i) — g(J — {j}), the hne и + v я h[î) contains a point in a general posi­
tion in g{J), sincej G typ^t;). Next, we take a point z in a general position in 
g{j — {Uj})' It follows that z is also in a general position in h{J — {i,j}), because 
g(J<) = h(k) for all /c G J — {i}, by Lemma 4.17 and the fact that (g, h) G Con(e,f). 
The line x + z contains a point j^ in a general position in both g{j) and h{J — {j}), 
by Lemma 4.12a). Since z e g{J ~ {/}), we have tr(x, ^̂ (f)) = tv(y, g(i)). Now we 
apply Lemma 4.5 to find a collineation т G Stab^ such that т(х) = у and Т/О (̂0 is the 
identity. Then (/Î, T/Z) G Con(ö',/z) ^ Con(^,/). We have y G т/z(/) in a general 
position in h[J — {j}). 

It remains to prove that г(т /t(/) n /z(J - {j})) > r{h{i) n öf(J - {j})). Consider 
a point w G h{ï) n 0̂ (7 - {j}). Then T(W) G T(tr(w, о̂ (г))) + t(tr(w, g{J - {f,;}))) = 
tr{w, g(i)) + T{tx{w, g{J - {ij}))). If TW = w, we have TW e h{i) ^ h{J - {j}). 
If TW Ф w, the line w + TW always intersects h{J — {i,j}), either at the point 
tr(w, g(j — {i.j})) (if T fixes the point) or at a point on the line tr(w, g{J — {ij})) + 
+ T(tr(w, g{J ~ {ij}))) я g{J - {ij}) = h(J - {Uj}). 

gu-iuD^hU-^lij}) 

triw.gdl) 

In all cases we get T(W) G h{J — {j}). It follows that т h{i) n h{J — {j}) contains 
x{h(i) n g[J — {j})). It contains also the point у == т(х) ex + z. Since x G h(i) — 
- g{J - {]% we get that г{т h(ï) n h{J - {j})) > r{h{i) n g{J - {j})). This 
contradicts our choice of the couple (g, h), hence in fact h(i) e g(J — {j}). 

But g{k) = h(k) for any keJ- {i}, hence g{J - {j}) = h{J - {;}). Since h{i) 
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contains a point in a general position in g{J — {j}), we get that the least element 
of D{g, h) containing i is J - {j}. Since (g, h) e Con{e,f), we get D{g, h) ^ D{eJ), 
Hence Z{D{g, h)) = Con{g, h) Ç Con(e,/), therefore Dig, h) 3 C,j = C. It follows 
that the least element of С containing / is at least J — {j}. Since there are at least 
two different j e J — {i}, we conclude that in fact J = C(i), contrary to our hypo­
thesis C{i) cz J. Hence \J\ = 2. П 

Lemma 4.19. There is a couple (g, h) e Con{e,f) such that D(g,h) = D{e,f) 
and r[g{i) n h{i)) = pi — 1 (i.e. g{i) n h{i) is a hyperplane in g{i)). 

Proof. Take a couple (g, h)e Con{e,f) such that D{g, h) = D{e,f) (such couples 
exist, e.g. {e,f)) and with g(^i) n h{i) maximal under these conditions. Then g(i) ф 
Ф h(i), since {i} ф D(e,f) = D(g, h). Suppose that r{g(i) n /z(/)) < Pi — 1. Then 
we can find two different points x, у e h[i) such that the hne x •\- у does not intersect 
g[i) n h{i). We have J = {ij} and x + у ^ g(J) is disjoint with both g{i) and 
g(j) = hi]), hence x + j is a general hne. It follows that tr(x, g{i)) ф tr(3;, gii)) 
and tr(x, g{j)) Ф tr(3;, g{j)). 

Take a point и e tr(x, g{iy^ + tr(x, g{j)), w Ф x and in a general position in both 
g[J) and /z(J). Then the hne w + 3; is also a general line. By Lemma 4.9, there is 
a colhneation т e Stab^ such that т(х) = м, x[y) = }̂  and both restrictions T\g{i) 
and T/6f(j) are identities. Then {h, т/г) e Con[g, h) ^ Con(^,/), и = т(х) e т hyi) is 
in a general position in /z(J), hence the least element of D{h, т/г) containing / is 
again J. The intersection h{i) n т h(i) contains not only g(i) n h{i) (since т is the 
identity on g{i)), but also the point у ф g{i). This proves h{i) n т h{i) з ^(f) n /z(/). 
By Lemma 4.13 we get also D{h, T/I) = D(e,f). Hence our choice of the couple {g, h) 
is contradicted by the couple (й, т/г). This contradiction proves that in fact g{i) n h{i) 
is a hyperplane in g[i), П 

We have again Z{Cg^h) ^ Con(^, h) ç Con[e,f), hence C^,, 3 Ĉ ^̂ - з D^^,/) = 
= D{g, h). The least element of D{g, h) containing i is J, while the least element 
of Cg^^ containing i is a subset of C{i) cz J. Moreover, h{i) contains a point in a gen­
eral position in g{J). It follows that the couple (g, h) has all the properties we 
imposed on (e , / ) , so we may change the notation and assume from now on that 
e[i) nf(i) is a hyperplane in both e{i) and/(f) . 

Lemma 4.20. D{eJ) = D^^j, 
Proof. Let us recall that J = {i,j}, by Lemma 4.18, and e[]) = f{j), by Lemma 

4.17. First of all, we prove the following auxiUary statement. 

(4.10) Let {g, h) e Con{e,f), r{g{i) n h{i)) = Pi - L Then for any z e g{J) = / ( J ) , 
there exists a colhneation (p e Stab^ such that (p{z) = z,(p h[i) contains a point 
in a general position in h{J) and h(i) n (p h{i) is a hyperplane in h(i). 

To prove it, we distinguish three cases, 
(i) z e g{i) u g{j), 
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In this case we take a point x e h{i) in a general position in g{J) and a point и e 
e tr(x, g(i)) + tr(x, g{j)) in a general position in both g{J) and /i(J). By Lemma 4.5, 
there is a colUneation ^ e Stab^ such that (p(x) = и and both (pjg^l) and (plg{j) are 
identities. We have и e (p h{i) in a general position in h{J). Moreover, h{i) and cp h{i) 
are contained in the subspace g{i) + x = g{i) + и of rank pi + 1, therefore r(h{ï) n 
n ф /i(z)) = p. - L 

(ii) z ^ 6̂ (7) u öf( j) u /i(i). 
We can find x e /i(/) in a general position in g{j) and such that tr(x, g{i)) Ф tr(z, 6̂ (0)» 
and a point и e tr(x, ^(/)) + tr(x, 6f(i)) in a general position in both g[j) and h{J). 
Then both the lines x -}- z, и + z SLTQ either general (if tr(x, g{j)) Ф tr(2, ö^(;))) or 
almost general (if the equahty holds). By Lemma 4.9, there is a colHneation cp e Stab^ 
such that cp(x) = w, (p[z) = z, and both (plg{i) and c>/öf(j) are identities. The 
rest of the argument is the same as in the case (i). 

(iii) z e h{i} - g{i). 
In this case take a point v e g(i) n /2(г) and a point м e tr(z, ^^(0) + v, и ^ v, 
tr(z, ö'(O)- There is a colHneation a e Stab^ such that aiy) = и and cr(tr(z, g{i))) = 
= tr(z, g{i)). By Lemma 4.5, we find a colHneation cp e Stab^ such that (p[z) == z, 
^/ö^(0 "̂  ̂ /ö^(0' ^"^ ^̂ /̂ö'O) is the identity. We have w = (p[v) ф h{i), hence cp h{i) ф 
Ф /î(i). Both (p h(i) and /Î(Ï) are contained in g{i) + z, hence r(ç) /z(i) n h{ij) = 
= Pf — L This completes the proof of (4.10). 

Now take an arbitrary к el — J. We choose a couple {g, h) e Con{e,f) such that 
r{g{i) n /i(i)) = p^ — 1 (such couples exist, e.g. {e,f)) and such that '̂(/c) n /г(/с) is 
maximal under this condition. Suppose there is a point у e h[k) — g{k). If j^ ^ 
Ф g{l — J), then the trace tr(y, ö'l* )̂) is defined. Let us denote it by z. Take a col­
Hneation cp e Stab^ constructed in (4.10) and use Lemma 4.5 to find a colHneation 
T G Stab^ such that т{у) = у, T/Ö'(J) = Я^\д{]) and т/б[(/ — J) is the deintity. If 
у e g[I — J) , no point z is defined, and we simply take an arbitrary cp e Stab^ satis­
fying the conclusions of (4.10) (with (p[z) = z omitted). We construct a colHneation 
T e Stab^ such that т1д{3) = (p\g{J) and TJg{I — J) is again the identity. 

Then we have (/i, xh) e Con(e,/) , r[h{i) n т /z(i)) = pi — 1. In both cases, /i(/c) n 
n T /z(/c) contains not only g(k) n /i(/c) but also the point у ф g{k). Hence h{k) n 
n T h(k) 3 ^(/c) n /i(/c) and our choice of [g, h) is contradicted. It follows that in 
fact g{k) = h{k). 

We have {k} e D(g, /г), and the least element of D(g, h) containing f is J = {i, j } . 
The proof of D{g, h) = D(e,f) follows again from Lemma 4.13. This proves that 
in fact {k} e D(e,f) for all /c e / — J. Since we already know that {j}, {ij} e D{e,f)^ 
and {i} Ф D[e,f), it completes the proof of D{e,f) = /)/>> D 

The final contradiction is reached by the following lemma. 

Lemma 4.21. Z(i)(^,/)) = Con(e,/) . 
Proof. We have D(e,f) — J)i>j, by the previous lemma, and r{e{i)nf{i)) = 
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= Pi — I, by Lemma 4.19. Since Con(^,/) ^ Z[D[e,f)), it remains to prove the 
converse inclusion Z{D(e,f)) ^ Con(e,f). 

Take an arbitrary couple (g, h) e Z{D(e,f)). We have g(j) = h{j) and g{{i,j}) = 
= h{{ij'}). We can find a sequence g(i) = go{i), gi{i), •••5 ö̂ m(0 ~ ^(0 of subspaces 
of g{{i,j}) such that none of them intersects h{j) and the intersection of any two sub­
sequent members is a hyperplane in both of them. We complete gi[i) to a p-partition 
g I by defining gi(k) = Ö (̂/C) = /i(/c) for all /c Ф i and / = 0, 1..., m. Hence g^ = g 
and ö'm = ^• 

By Lemma 4.1, there are colhneations cpi'. P -^ P, / = 0, 1, . . . , m — 1, such that 

<Pi{e{i)) = 0^/(0. 
<P/(/(0) = 9i+i{i). and 
<p,(e(^)) = (^^(/(/c)) = g{k) = h{k) for кф1 

This proves (Ö^̂ , ^f+i) e Con(ß,/) for all / = 0, 1» •••, ̂  — 1, hence (g, h) e 

€Con(^ , / ) . Consequently, Z{D{e,f)) ^ Con(e,/) . D 

The last lemma is in a contradiction with our basic assumption Z(D(e,f)) =t= 

Ф Con{e,f). Hence in fact Z(D{e,f)) = Con{e,f) for all couples {e,f)eE x E, 
Since the set {Con(e,/) : (e , / ) e £ x E] is a join-generating subset of Con(£, G) 

(see e.g. [8]), we have Con(£:, G) ^ Im(Z). D D 
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